Watch out! Carbon monoxide gas is likely fleeing the disk of a young star like our Sun, producing an unusual signature in infrared. This could be the first time winds have been confirmed in association with a T Tauri star, or something else might be going on.
Because the observed signature of the star (called AS 205 N) didn’t meet what models of similar stars predicted, astronomers say it’s possible it’s not winds after all, but a companion tugging away at the gas.
“The material in the disk of a T Tauri star usually, but not always, emits infrared radiation with a predictable energy distribution,” stated Colette Salyk, an astronomer with the National Optical Astronomical Observatory who led the research. “Some T Tauri stars, however, like to act up by emitting infrared radiation in unexpected ways.”
T Tauri stars are still young enough to be surrounded by dust and gas that could eventually form planets. Winds in the vicinity, however, could make it difficult for enough gas to stick around to form Jupiter-sized gas giants — or could change where planets are formed altogether.
While it’s still unclear what’s going on in AS 205 N, the astronomers plan to follow up their work with observing other T Tauri stars. Maybe with more observations, they reason, they can better understand what these signatures are telling us.
The weird environment was spotted by astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA), a set of 66 radio telescopes in Chile. A paper based on the research was published in the Astrophysical Journal and is also available in preprint version on Arxiv.
The Anglo-Australian Telescope in New South Wales has been watching how lazy giant galaxies gain size – and it isn’t because they create their own stars. In a research project known as the Galaxy And Mass Assembly (GAMA) survey, a group of Australian scientists led by Professor Simon Driver at the International Centre for Radio Astronomy Research (ICRAR) have found the Universe’s most massive galaxies prefer “eating” their neighbors.
According to findings published in the journal “Monthly Notices of the Royal Astronomical Society”, astronomers studied more than 22,000 individual galaxies to see how they grew. Apparently smaller galaxies are exceptional star producers, forming their stellar members from their own gases. However, larger galaxies are lazy. They aren’t very good at stellar creation. These massive monsters rarely produce new stars on their own. So how do they grow? They cannibalize their companions. Dr. Aaron Robotham, who is based at the University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), explains that smaller ‘dwarf’ galaxies were being consumed by their heavyweight peers.
“All galaxies start off small and grow by collecting gas and quite efficiently turning it into stars,” he said. “Then every now and then they get completely cannibalized by some much larger galaxy.”
So how does our home galaxy stack up to these findings? Dr. Robotham, who led the research, said the Milky Way is at a tipping point and is expected to now grow mainly by eating smaller galaxies, rather than by collecting gas.
“The Milky Way hasn’t merged with another large galaxy for a long time but you can still see remnants of all the old galaxies we’ve cannibalized,” he said. “We’re also going to eat two nearby dwarf galaxies, the Large and Small Magellanic Clouds, in about four billion years.” Robotham also added the Milky Way wouldn’t escape unscathed. Eventually, in about five billion years, we’ll encounter the nearby Andromeda Galaxy and the tables will be turned. “Technically, Andromeda will eat us because it’s the more massive one,” he said.
This simulation shows what will happen when the Milky Way and Andromeda get closer together and then collide, and then finally come together once more to merge into an even bigger galaxy.
Simulation Credit: Prof Chris Power (ICRAR-UWA), Dr Alex Hobbs (ETH Zurich), Prof Justin Reid (University of Surrey), Dr Dave Cole (University of Central Lancashire) and the Theoretical Astrophysics Group at the University of Leicester. Video Production Credit: Pete Wheeler, ICRAR.
What exactly is going on here? Is it a case of mutual attraction? According to Dr. Robotham when galaxies grow, they acquire a heavy-duty gravitational field allowing them to suck in neighboring galaxies with ease. But why do they stop producing their own stars? Is it because they have exhausted their fuel? Robotham said star formation slow downs in really massive galaxies might be “because of extreme feedback events in a very bright region at the center of a galaxy known as an active galactic nucleus.”
“The topic is much debated, but a popular mechanism is where the active galactic nucleus basically cooks the gas and prevents it from cooling down to form stars,” Dr. Robotham said.
Will the entire Universe one day become just a single, large galaxy? In reality, gravity may very well cause galaxies groups and clusters to congeal into a limited number of super-giant galaxies, but that will take many billions of years to occur.
“If you waited a really, really, really long time that would eventually happen, but by really long I mean many times the age of the Universe so far,” Dr. Robotham said.
While the GAMA survey findings didn’t take billions of years, it didn’t happen overnight either. It took seven years and more than 90 scientists to complete – and it wasn’t a single revelation. From this work there have been over 60 publications and there are still another 180 in progress!
Fall will soon be at our doorstep. But before the leaves change colors and the smell of pumpkin fills our coffee shops, the Pleiades star cluster will mark the new season with its earlier presence in the night sky.
The delicate grouping of blue stars has been a prominent sight since antiquity. But in recent years, the cluster has also been the subject of an intense debate, marking a controversy that has troubled astronomers for more than a decade.
Now, a new measurement argues that the distance to the Pleiades star cluster measured by ESA’s Hipparcos satellite is decidedly wrong and that previous measurements from ground-based telescopes had it right all along.
The Pleiades star cluster is a perfect laboratory to study stellar evolution. Born from the same cloud of gas, all stars exhibit nearly identical ages and compositions, but vary in their mass. Accurate models, however, depend greatly on distance. So it’s critical that astronomers know the cluster’s distance precisely.
A well pinned down distance is also a perfect stepping stone in the cosmic distance ladder. In other words, accurate distances to the Pleiades will help produce accurate distances to the farthest galaxies.
But accurately measuring the vast distances in space is tricky. A star’s trigonometric parallax — its tiny apparent shift against background stars caused by our moving vantage point — tells its distance more truly than any other method.
Originally the consensus was that the Pleiades are about 435 light-years from Earth. However, ESA’s Hipparcos satellite, launched in 1989 to precisely measure the positions and distances of thousands of stars using parallax, produced a distance measurement of only about 392 light-years, with an error of less than 1%.
“That may not seem like a huge difference, but, in order to fit the physical characteristics of the Pleiades stars, it challenged our general understanding of how stars form and evolve,” said lead author Carl Melis, of the University of California, San Diego, in a press release. “To fit the Hipparcos distance measurement, some astronomers even suggested that some type of new and unknown physics had to be at work in such young stars.”
If the cluster really was 10% closer than everyone had thought, then the stars must be intrinsically dimmer than stellar models suggested. A debate ensued as to whether the spacecraft or the models were at fault.
To solve the discrepancy, Melis and his colleagues used a new technique known as very-long-baseline radio interferometry. By linking distant telescopes together, astronomers generate a virtual telescope, with a data-gathering surface as large as the distances between the telescopes.
The network included the Very Long Baseline Array (a system of 10 radio telescopes ranging from Hawaii to the Virgin Islands), the Green Bank Telescope in West Virginia, the William E. Gordon Telescope at the Arecibo Observatory in Puerto Rico, and the Effelsberg Radio Telescope in Germany.
“Using these telescopes working together, we had the equivalent of a telescope the size of the Earth,” said Amy Miouduszewski, of the National Radio Astronomy Observatory (NRAO). “That gave us the ability to make extremely accurate position measurements — the equivalent of measuring the thickness of a quarter in Los Angeles as seen from New York.”
After a year and a half of observations, the team determined a distance of 444.0 light-years to within 1% — matching the results from previous ground-based observations and not the Hipparcos satellite.
“The question now is what happened to Hipparcos?” Melis said.
The spacecraft measured the position of roughly 120,000 nearby stars and — in principle — calculated distances that were far more precise than possible with ground-based telescopes. If this result holds up, astronomers will grapple with why the Hipparcos observations misjudged the distances so badly.
ESA’s long-awaited Gaia observatory, which launched on Dec. 19, 2013, will use similar technology to measure the distances of about one billion stars. Although it’s now ready to begin its science mission, the mission team will have to take special care, utilizing the work of ground-based radio telescopes in order to ensure their measurements are accurate.
The findings have been published in the Aug. 29 issue of Science and is available online.
The young universe was composed of a pristine mix of hydrogen, helium, and a tiny trace of lithium. But after hundreds of millions of years, it began to cool and giant clouds of the primordial elements collapsed to form the first stars.
The first “Population III” stars were extremely massive and bright, synthesizing the first batches of heavy elements, and erupting as supernovae after relatively short lifetimes of just a few million years. This cycle of star birth and death has steadily produced and dispersed more heavy elements throughout cosmic history.
Astronomers haven’t spotted any of the first stars still shining today. But now, a team using the 8.2-meter Subaru Telescope has discovered an ancient low-mass star that likely formed from the elements produced in the supernova explosion of a very massive first generation star.
Pop III stars with masses exceeding 100 times that of the Sun would have died in a peculiar explosion that theorists call a pair-instability supernova.
Like its lower-energy comrade, a pair-instability supernova occurs when a massive star no longer produces enough energy to counteract the inward pull of gravity. But with so much mass, the star’s core is squeezed to such a high temperature and pressure that runaway nuclear reactions power a devastating explosion. The whole star is obliterated and no compact remnant, such as a black hole or neutron star, is left behind.
Astronomers have seen hints of these rare events before. But now, Wako Aoiki from the National Astronomical Observatory of Japan and colleagues have approached the search in a different way, by finding a star that bears the chemical fingerprints of these ancient explosions.
The elements we see lacing a star’s surface provide a key to understanding the supernova that preceded the star’s birth. And the star, dubbed SDSS001820.5-093939.2, exhibits a peculiar set of chemical abundance ratios. It has high levels of heavy elements, such as nickel, calcium, and iron, but low levels of light elements, such as carbon, magnesium and cobalt.
Note that the star is still metal poor in the grand scheme of things. Its iron abundance is 1/100 of the solar level. But compared with most metal-poor stars, where the iron abundance can be 1/100,000 or less of the solar level, the star is metal rich.
These odd fingerprints suggest the star formed from material seeded by the death of a very massive Pop III star. In fact, the chemical composition of the star matches the elements that pair-instability supernovae are predicted to create.
The team notes that this is the only star of about 500 in the same low-metallicity range that has this peculiar makeup. It is — at the moment — our only window into the early universe and the first generation of stars.
Is this group of stars belonging to one generation, or more? That’s one of the things that was puzzling astronomers for decades, particularly when they were trying to pin down the age of IC 4499 — the globular cluster you see in this new picture from the Hubble Space Telescope.
“It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster’s age,” stated information from the European Space Agency reposted on NASA’s website.
“For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times.”
IC 4499 is somewhere in between these extremes, but only has a single generation of stars — its gravity wasn’t quite enough to pull in neighboring gas and dust to create more. Goes to show you how important it is to re-examine the results in science.
It’s well past the Fourth of July, but you can still easily find fireworks in the sky if you look around. The Chandra X-Ray Observatory has been doing just that for the past 15 years, revealing what the universe looks like in these longer wavelengths that are invisible to human eyes.
Just in time for the birthday, NASA released four pictures that Chandra took of supernova (star explosion) remnants it has observed over the years. The pictures stand as a symbol of what the telescope has shown us so far.
“Chandra changed the way we do astronomy. It showed that precision observation of the X-rays from cosmic sources is critical to understanding what is going on,” stated Paul Hertz, NASA’s Astrophysics Division director, in a press release. “We’re fortunate we’ve had 15 years – so far – to use Chandra to advance our understanding of stars, galaxies, black holes, dark energy, and the origin of the elements necessary for life.”
The telescope launched into space in 1999 aboard the space shuttle and currently works at an altitude as high as 86,500 miles (139,000 miles). It is named after Indian-American astrophysicist Subrahmanyan Chandrasekhar; the name “Chandra” also means “moon” or “luminous” in Sanskrit.
And there’s more to come. You can learn more about Chandra’s greatest discoveries and its future in this Google+ Hangout, which will start at 3 p.m. EDT (7 p.m. EDT) at this link.
On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future heavyweight adorned with a dazzling string of super-sized star clusters.
The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.
Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.
Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.
But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.
Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.
The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.
Simulation of the Milky Way-Andromeda collision 4 billion years from now
Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.
It’s one of the most iconic images of the modern Space Age. In 1995, the Hubble Space Telescope team released an image of towering columns of gas and dust that contained newborn stars in the midst of formation. Dubbed the “Pillars of Creation,” these light-years long tendrils captivated the public imagination and now grace everything from screensavers to coffee mugs. This is a cosmic portrait of our possible past, and the essence of the universe giving birth to new stars and worlds in action.
Now, a study out on Thursday from the 2014 National Astronomy Meeting of the Royal Astronomical Society has shed new light on just how these pillars may have formed. The announcement comes out of Cardiff University, where astronomer Scott Balfour has run computer simulations that closely model the evolution and the outcome of what’s been observed by the Hubble Space Telescope.
The ‘Pillars’ lie in the Eagle Nebula, also known as Messier 16 (M16), which is situated in the constellation Serpens about 7,000 light years distant. The pillars themselves have formed as intense radiation from young massive stars just beginning to shine erode and sculpt the immense columns.
But as is often the case in early stellar evolution, having massive siblings nearby is bad news for fledgling stars. Such large stars are of the O-type variety, and are more than 16 times as massive as our own Sun. Alnitak in Orion’s belt and the stars of the Trapezium in the Orion Nebula are examples of large O-type stars that can be found in the night sky. But such stars have a “burn fast and die young” credo when it comes to their take on nuclear fusion, spending mere millions of years along the Main Sequence of the Hertzsprung Russell diagram before promptly going supernova. Contrast this with a main sequence life expectancy of 10 billion years for our Sun, and life spans measured in the trillions of years — longer than the current age of the universe — for tiny red dwarf stars. The larger a star you are, the shorter your life span.
Such O-Type stars also have surface temperatures at a scorching 30,000 degrees Celsius, contrasted with a relatively ‘chilly’ 5,500 degree Celsius surface temperature for our Sun.
This also results in a prodigious output in energetic ultraviolet radiation by O-type stars, along with a blustery solar wind. This carves out massive bubbles in a typical stellar nursery, and while it may be bad news for planets and stars attempting to form nearby any such tempestuous stars, this wind can also compress and energize colder regions of gas and dust farther out and serve to trigger another round of star formation. Ironically, such stars are thus “cradle robbers” when it comes to potential stellar and planetary formation AND promoters of new star birth.
In his study, Scott looked at the way gas and dust would form in a typical proto-solar nebula over the span of 1.6 million years. Running the simulation over the span of several weeks, the model started with a massive O-type star that formed out of an initial collapsing smooth cloud of gas.
That’s not bad, a simulation where 1 week equals a few hundred million years…
As expected, said massive star did indeed carve out a spherical bubble given the initial conditions. But Scott also found something special: the interactions of the stellar winds with the local gas was much more complex than anticipated, with three basic results: either the bubble continued to expand unimpeded, the front would expand, contract slightly and then become a stationary barrier, or finally, it would expand and then eventually collapse back in on itself back to the source.
The study was notable because it’s only in the second circumstance that the situation is favorable for a new round of star formation that is seen in the Pillars of Creation.
“If I’m right, it means that O-type and other massive stars play a much more complex role than we previously thought in nursing a new generation of stellar siblings to life,” Scott said in a recent press release. “The model neatly produces exactly the same kind of structures seen by astronomers in the classic 1995 image, vindicating the idea that giant O-type stars have a major effect in sculpting their surroundings.”
Such visions as the Pillars of Creation give us a snapshot of a specific stage in stellar evolution and give us a chance to study what we may have looked like, just over four billion years ago. And as simulations such as those announced in this week’s study become more refined, we’ll be able to use them as a predictor and offer a prognosis for a prospective stellar nebula and gain further insight into the secret early lives of stars.
Let’s just casually look at this image of a galaxy 86 million light-years away from us. In the center of this incredible image is a bright loop that you can see surrounding the heart of the galaxy. That is where stars are being born, say the scientists behind this new Hubble Space Telescope image.
“Compared to other spiral galaxies, it looks a little different,” NASA stated. “The galaxy’s barred spiral center is surrounded by a bright loop known as a resonance ring. This ring is full of bright clusters and bursts of new star formation, and frames the supermassive black hole thought to be lurking within NGC 3081 — which glows brightly as it hungrily gobbles up in-falling material.”
A “resonance ring” refers to an area where gravity causes gas to stick around in certain areas, and can be the result of a ring (like you see in NGC 3081) or close-by objects with a lot of gravity. Scientists added that NGC 3081, which is in the constellation Hydra or the Sea Serpent, is just one of many examples of barred galaxies with this type of resonance.
By the way, this image is a combination of several types of light: optical, infrared and ultraviolet.
Brazilian astronomers have discovered some 300+ star clusters that were largely overlooked owing to sizable obscuration by dust. The astronomers, from the Universidade Federal do Rio Grande do Sul, used data obtained by NASA’s WISE (Wide-Field Infrared Survey Explorer) space telescope to detect the clusters.
“WISE is a powerful tool to probe … young clusters throughout the Galaxy”, remarked the group. The clusters discovered were previously overlooked because the constituent stars are deeply embedded in their parent molecular cloud, and are encompassed by dust. Stars and star clusters can emerge from such environments.
The group added that, “The present catalog of new clusters will certainly become a major source for future studies of star cluster formation.” Indeed, WISE is well-suited to identify new stars and their host clusters because infrared radiation is less sensitive to dust obscuration. The infrared part of the electromagnetic spectrum is sampled by WISE.
Historically, new star clusters were often identified while inspecting photographic plates imaged at (or near) visible wavelengths (i.e., the same wavelengths sampled by the eye). Young embedded clusters were consequently under-sampled since the amount of obscuration by dust is wavelength dependent. As indicated in the figure above, the infrared observations penetrate the dust by comparison to optical observations.
The latest generation of infrared survey telescopes (e.g., Spitzer and WISE) are thus excellent instruments for detecting clusters embedded in their parent cloud, or hidden from detection because of dust lying along the sight-line. The team notes that, “The Galaxy appears to contain 100000 open clusters, but only some 2000 have established astrophysical parameters.” It is hoped that continued investigations using WISE and Spitzer will help astronomers minimize that gap.