Earth’s Gold Came From Colliding Stars

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold (Credit: Dana Berry, SkyWorks Digital, Inc.)

Are you wearing a gold ring? Or perhaps gold-plated earrings? Maybe you have some gold fillings in your teeth… for that matter, the human body itself naturally contains gold — 0.000014%, to be exact! But regardless of where and how much of the precious yellow metal you may have with you at this very moment, it all ultimately came from the same place.

And no, I don’t mean Fort Knox, the jewelry store, or even under the ground — all the gold on Earth likely originated from violent collisions between neutron stars, billions of years in the past.

Recent research by scientists at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts has revealed that considerable amounts of gold — along with other heavy elements — are produced during impacts between neutron stars, the super-dense remains of stars originally 1.4 to 9 times the mass of our Sun.

The team’s investigation of a short-duration gamma-ray outburst that occurred in June (GRB 130603B) showed a surprising residual near-infrared glow, possibly from a cloud of material created during the stellar merger. This cloud is thought to contain a considerable amount of freshly-minted heavy elements, including gold.

“We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses – quite a lot of bling!” said lead author Edo Berger.

"With this remnant of a dead neutron star, I thee wed." (FreeDigitalPhotos.net/bigjom)
“With this remnant of a dead neutron star, I thee wed.” (FreeDigitalPhotos.net/bigjom)

The mass of the Moon is 7.347 x 1022 kg… about 1.2% the mass of Earth. The collision between these neutron stars then, 3.9 billion light-years away, produced 10 times that much gold based on the team’s estimates.

Quite a lot of bling, indeed.

Gamma-ray bursts come in two varieties – long and short – depending on the duration of the gamma-ray flash. GRB 130603B, detected by NASA’s Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn’t match the typical “afterglow” created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that’s dominated by infrared light – exactly what the team observed.

“We’ve been looking for a ‘smoking gun’ to link a short gamma-ray burst with a neutron star collision,” said Wen-fai Fong, a graduate student at CfA and a co-author of the paper. “The radioactive glow from GRB 130603B may be that smoking gun.”

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have likely occurred over the entire age of the Universe, all the gold in the cosmos – and thus on Earth – may very well have come from such gamma-ray bursts.

Watch an animation of two colliding neutron stars along with the resulting GRB below (Credit: Dana Berry, SkyWorks Digital, Inc.):

How much gold is there on Earth, by the way? Since most of it lies deep inside Earth’s core and is thus unreachable, the total amount ever retrieved by humans over the course of history is surprisingly small: about 172,000 tonnes, or enough to make a cube 20.7 meters (68 feet) per side (based on the Thomson Reuters GFMS annual survey.) Some other estimates put this amount at slightly more or less, but the bottom line is that there really isn’t all that much gold available in Earth’s crust… which is partly what makes it (and other “precious” metals) so valuable.

And perhaps the knowledge that every single ounce of that gold was created by dead stars smashing together billions of years ago in some distant part of the Universe would add to that value.

“To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff,” Berger said.

The team’s findings were presented today in a press conference at the CfA in Cambridge. (See the paper here.)

Source: Harvard-Smithsonian CfA

Jets Boost — Not Hinder — Star Formation in Early Galaxies, New Study Suggests

An artist's conception of jets protruding from a quasar. Credit: ESO/M. Kornmesser

Understanding the formation of stars and galaxies early in the Universe’s history continues to be somewhat of an enigma, and a new study may have turned our current understanding on its head. A recent survey used archival data from four different telescopes to analyze hundreds of galaxies. The results provided overwhelming evidence that radio jets protruding from a galactic center enhance star formation – a result that directly contradicts current models, where star formation is hindered or even stopped.

All early galaxies consist of intensely luminous cores powered by huge black holes.  These so-called active galactic nuclei, or AGN for short, are still the topic of intense study. One specific mechanism astronomers are studying is known as AGN feedback.

“Feedback is the astronomer’s slang term for the way in which an AGN – with its large amount of energy release – influences its host galaxy,” Dr. Zinn, lead researcher on this study, recently told Universe Today. He explained there is both positive feedback, in which the AGN will foster the main activity of the galaxy: star formation, and negative feedback, in which the AGN will hinder or even stop star formation.

Current simulations of galaxy growth invoke strong negative feedback.

“In most cosmological simulations, AGN feedback is used to truncate star formation in the host galaxy,” said Zinn. “This is necessary to prevent the simulated galaxies from becoming too bright/massive.”

Zinn et al. found strong evidence that this is not the case for a large number of early galaxies, claiming that the presence of an AGN actually enhances star formation. In such cases the total star formation rate of a galaxy may be boosted by a factor of 2 – 5.

Furthermore the team showed that positive feedback occurs in radio-luminous AGN. There is strong correlation between the far infrared (indicative of star formation) and the radio.

Now, a correlation between the radio and the far infrared is no stranger to galactic astronomy. Stars form in extremely dusty regions. This dust absorbs the starlight and re-emits it in the far infrared. The stars then die in huge supernova explosions, causing powerful shock-fronts, which accelerate electrons and lead to the emission of strong synchrotron radiation in the radio.

This correlation however is a stranger to AGN studies. The key lies in the radio jets, which penetrate far into the host galaxy itself.  A “jet which is launched from the AGN hits the interstellar gas of the host galaxy and thereby induces supersonic shocks and turbulence,” explains Zinn. “This shortens the clumping time of gas so that it can condense into stars much more quick and efficiently.”

This new finding conveys that the exact mechanisms in which AGN interact with their host galaxies is much more complicated than previously thought. Future observations will likely shed a new understanding of the evolution of galaxies.

The team used data primarily from the Chandra Deep Field South image
but also data from Hubble, Herschel and Spitzer.

The results will be published in the Astrophysical Journal (preprint available here).

ALMA Spots a Nascent Stellar Monster

ALMA/Spitzer image of a monster star in the process of forming

Even though it comprises over 99% of the mass of the Solar System (with Jupiter taking up most of the rest) our Sun is, in terms of the entire Milky Way, a fairly average star. There are lots of less massive stars than the Sun out there in the galaxy, as well as some real stellar monsters… and based on new observations from the Atacama Large Millimeter/submillimeter Array, there’s about to be one more.

Early science observations with ALMA have provided astronomers with the best view yet of a monster star in the process of forming within a dark cloud of dust and gas. Located 11,000 light-years away, Spitzer Dark Cloud 335.579-0.292 is a stellar womb containing over 500 times the mass of the Sun — and it’s still growing. Inside this cloud is an embryonic star hungrily feeding on inwardly-flowing material, and when it’s born it’s expected to be at least 100 times the mass of our Sun… a true stellar monster.

The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)
The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)

The star-forming region is the largest ever found in our galaxy.

“The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud,” said Nicolas Peretto of CEA/AIM Paris-Saclay, France, and Cardiff University, UK. “We wanted to see how monster stars form and grow, and we certainly achieved our aim! One of the sources we have found is an absolute giant — the largest protostellar core ever spotted in the Milky Way.”

Watch: What’s the Biggest Star in the Universe?

SDC 335.579-0.292 had already been identified with NASA’s Spitzer and ESA’s Herschel space telescopes, but it took the unique sensitivity of ALMA to observe in detail both the amount of dust present and the motion of the gas within the dark cloud, revealing the massive embryonic star inside.

“Not only are these stars rare, but their birth is extremely rapid and their childhood is short, so finding such a massive object so early in its evolution is a spectacular result.”

– Team member Gary Fuller, University of Manchester, UK

The image above, a combination of data acquired by both Spitzer and ALMA (see below for separate images) shows tendrils of infalling material flowing toward a bright center where the huge protostar is located. These observations show how such massive stars form — through a steady collapse of the entire cloud, rather than through fragmented clustering.

SDC 335.579-0.292 seen in different wavelengths of light.
SDC 335.579-0.292 seen in different wavelengths of light.

“Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its center,” said Peretto. “This object is expected to form a star that is up to 100 times more massive than the Sun. Only about one in ten thousand of all the stars in the Milky Way reach that kind of mass!”

(Although, with at least 200 billion stars in the galaxy, that means there are still 20 million such giants roaming around out there!)

Read more on the ESO news release here.

Image credits: ALMA (ESO/NAOJ/NRAO)/NASA/JPL-Caltech/GLIMPSE

Astronomers Spy Early Galaxies Caught In A Cosmic Spiderweb

The Spiderweb, imaged by the Hubble Space Telescope – a central galaxy (MRC 1138-262) surrounded by hundreds of other star-forming 'clumps'. Credit: NASA, ESA, George Miley and Roderik Overzier (Leiden Observatory)

Once upon a time, when the Universe was just about three billion years old, galaxies started to form. Now astronomers using a CSIRO radio telescope have captured evidence of the raw materials these galaxies used to fashion their first stars… cold molecular hydrogen gas, H2. Even though we can’t see it directly, we know it is there by using another gas that reveals its presence – carbon monoxide (CO) – a radio wave emitter.

The telescope is CSIRO’s Australia Telescope Compact Array telescope near Narrabri, NSW. “It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths,” says CSIRO astronomer Professor Ron Ekers.

One of the studies of these “raw” galaxies was performed by astronomer Dr. Bjorn Emonts of CSIRO Astronomy and Space Science. He and fellow researchers employed the Compact Array to observe and record a gigantic and distant amalgamation of “star forming clumps or proto-galaxies” which are congealing together to create a single massive galaxy. This framework is known as the “Spiderweb” and is theorized to be at least ten thousand million light years distant. The Compact Array radio telescope is capable of picking up the signature of star formation, giving astronomers vital clues about how early galaxies began star formation.

In blue, the carbon monoxide gas detected in and around the Spiderweb. Credit: B. Emonts et al (CSIRO/ATCA)
In blue, the carbon monoxide gas detected in and around the Spiderweb. Credit: B. Emonts et al (CSIRO/ATCA)
The “Spiderweb” was loaded. Here Dr. Emont and his colleagues found the molecular hydrogen gas fuel they were seeking. It covered an area of space almost a quarter of a million light-years across and contained at least sixty thousand million times the mass of the Sun! Surely this had to be the material responsible for the new stars seen sprinkled across the region. “Indeed, it is enough to keep stars forming for at least another 40 million years,” says Emonts.

In another research project headed by Dr. Manuel Aravena of the European Southern Observatory, the scientists measured the CO – the indicator of H2 – in two very distant galaxies. The signal of the faint radio waves was amped up by the gravitational fields of the additional galaxies – the “line of sight” members – which created gravitational lensing. Says Dr. Aravena, “This acts like a magnifying lens and allows us to see even more distant objects than the Spiderweb.”

Dr. Aravena’s team went to work measuring the amount of H2 in both of their study galaxies. One of these, SPT-S 053816-5030.8, produced enough radio emissions to allow them to infer how quickly it was forming stars – “an estimate independent of the other ways astronomers measure this rate.”

The Compact Array was tuned in. Thanks to an upgrade which increased its bandwidth – the amount of the radio spectrum which can be observed at any particular time – it is now sixteen times stronger and capable of reaching a range from 256 MHz to 4 GHz. That makes it a very sensitive ear!

“The Compact Array complements the new ALMA telescope in Chile, which looks for the higher-frequency transitions of CO,” says Ron Ekers.

Original Story Source: CSIRO News Release

Space Observatories Watch a Black Hole Go Dormant

The Sculptor galaxy is seen in a new light, in this composite image from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Southern Observatory in Chile. Image credit: NASA/JPL-Caltech/JHU

The Chandra X-ray Observatory has been keeping an eye on a black hole actively munching away on gas at the middle of the nearby Sculptor galaxy. Now, with the added eyes of the Nuclear Spectroscopic Telescope Array (NuSTAR), which sees higher-energy X-ray light, the observatories have found the black hole has fallen asleep, even amid rampant star-formation going on around it.

“Our results imply that the black hole went dormant in the past 10 years,” said Bret Lehmer of the Johns Hopkins University, Baltimore, and NASA’s Goddard Space Flight Center. “Periodic observations with both Chandra and NuSTAR should tell us unambiguously if the black hole wakes up again. If this happens in the next few years, we hope to be watching.”

Lehmer is lead author of a new study detailing the findings in the Astrophysical Journal.

The now-latent black hole is about 5 million times the mass of our Sun. The Sculptor galaxy (NGC 253) is a so-called starburst galaxy, which is actively giving birth to new stars. At just 13 million light-years away, it is one of the closest starbursts galaxies to us.

Why did the black hole go dormant?

“Black holes feed off surrounding accretion disks of material. When they run out of this fuel, they go dormant,” said co-author Ann Hornschemeier of Goddard. “NGC 253 is somewhat unusual because the giant black hole is asleep in the midst of tremendous star-forming activity all around it.”

“Black hole growth and star formation often go hand-in-hand in distant galaxies,” added Daniel Stern, a co-author and NuSTAR project scientist at the Jet Propulsion Laborator. “It’s a bit surprising as to what’s going on here, but we’ve got two powerful complementary X-ray telescopes on the case.”

Chandra first observed signs of what appeared to be a feeding supermassive black hole at the heart of the Sculptor galaxy in 2003. Then, in September and November of 2012, Chandra and NuSTAR observed the same region simultaneously. NuSTAR, which launched in June of 2012, detected focused, high-energy X-ray light from the region, allowing the researchers to say conclusively that the black hole is not accreting material.

There are two possibilities: either the black hole has in fact gone dormant, or another possibility is that the black hole was not actually awake 10 years ago, and Chandra observed a different source of X-rays. Future observations with both telescopes may solve the puzzle.

The combination of coordinated Chandra and NuSTAR observations is extremely powerful for answering questions like this,” said Lou Kaluzienski, NuSTAR Program Scientist at NASA Headquarters in Washington. “Now, we can get all sides of the story.”

NuSTAR launched into space in June of 2012.

If and when the Sculptor’s slumbering giant does wake up in the next few years amidst all the commotion, NuSTAR and Chandra will monitor the situation. The team plans to check back on the system periodically.

Source: JPL

How do Hypervelocity Stars End up Breaking The Speed Limit?

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

The Sun is racing through the Galaxy at a speed that is 30 times greater than a space shuttle in orbit (clocking in at 220 km/s with respect to the galactic center). Most stars within the Milky Way travel at a relatively similar speed. But certain stars are definitely breaking the stellar speed limit. About one in a billion stars travel at a speed roughly 3 times greater than our Sun – so fast that they can easily escape the galaxy entirely!

We have discovered dozens of these so-called hypervelocity stars. But how exactly do these stars reach such high speeds? Astronomers from the University of Leicester may have found the answer.

The first clue comes in observing hypervelocity stars, where we can note their speed and direction. From these two measurements, we can trace these stars backward in order to find their origin. Results show that most hypervelocity stars begin moving quickly in the Galactic Center.

We now have a rough idea of where these stars gain their speed, but not how they reach such high velocities. Astronomers think two processes are likely to kick stars to such great speeds. The first process involves an interaction with the supermassive black hole (Sgr A*) at the center of our Galaxy. When a binary star system wanders too close to Sgr A*, one star is likely to be captured, while the other star is likely to be flung away from the black hole at an alarming rate.

The second process involves a supernova explosion in a binary system. Dr. Kastytis Zubovas, lead author on the paper summarized here, told Universe Today, “Supernova explosions in binary systems disrupt those systems and allow the remaining star to fly away, sometimes with enough velocity to escape the Galaxy.”

There is, however, one caveat. Binary stars in the center of our Galaxy will both be orbiting each other and orbiting Sgr A*. They will have two velocities associated with them. “If the velocity of the star around the binary’s center of mass happens to line up closely with the velocity of the center of mass around the supermassive black hole, the combined velocity may be large enough to escape the Galaxy altogether,” explained Zubovas.

In this case, we can’t sit around and wait to observe a supernova explosion breaking up a binary system. We would have to be very lucky to catch that! Instead, astronomers rely on computer modeling to recreate the physics of such an event. They set up multiple calculations in order to determine the statistical probability that the event will occur, and check if the results match observations.

Astronomers from the University of Leicester did just this. Their model includes multiple input parameters, such as the number of binaries, their initial locations, and their orbital parameters. It then calculates when a star might undergo a supernova explosion, and depending on the position of the two stars at that time, the final velocity of the remaining star.

The probability that a supernova disrupts a binary system is greater than 93%. But does the secondary star then escape from the galactic center? Yes, 4 – 25% of the time. Zubovas described, “Even though this is a very rare occurrence, we may expect several tens of such stars to be created over 100 million years.” The final results suggest that this model ejects stars with rates high enough to match the observed number of hypervelocity stars.

Not only do the number of hypervelocity stars match observations but also their distribution throughout space. “Hypervelocity stars produced by our supernova disruption method are not evenly distributed on the sky,” said Dr. Graham Wynn, a co-author on the paper. “They follow a pattern which retains an imprint of the stellar disk they formed in. Observed hypervelocity stars are seen to follow a pattern much like this.”

In the end, the model was very successful at describing the observed properties of hypervelocity stars. Future research will include a more detailed model that will allow astronomers to understand the ultimate fate of hypervelocity stars, the effect that supernova explosions have on their surroundings, and the galactic center itself.

It’s likely that both scenarios – binary systems interacting with the supermassive black hole and one undergoing a supernova explosion – form hypervelocity stars.  Studying both will continue to answer questions about how these speedy stars form.

The results will be published in the Astrophysical Journal (preprint available here)

 

An Amazing Anniversary Image from the VLT

A new view of the spectacular stellar nursery IC 2944 (ESO)

This Saturday will mark 15 years that the European Southern Observatory’s Very Large Telescope (VLT) first opened its eyes on the Universe, and ESO is celebrating its first-light anniversary with a beautiful and intriguing new image of the stellar nursery IC 2944, full of bright young stars and ink-black clouds of cold interstellar dust.

This is the clearest ground-based image yet of IC 2944, located 6,500 light-years away in the southern constellation Centaurus.

Emission nebulae like IC 2944 are composed mostly of hydrogen gas that glows in a distinctive shade of red, due to the intense radiation from the many brilliant newborn stars. Clearly revealed against this bright backdrop are mysterious dark clots of opaque dust, cold clouds known as Bok globules. They are named after Dutch-American astronomer Bart Bok, who first drew attention to them in the 1940s as possible sites of star formation. This particular set is nicknamed the Thackeray Globules.

Larger Bok globules in quieter locations often collapse to form new stars but the ones in this picture are under fierce bombardment from the ultraviolet radiation from nearby hot young stars. They are both being eroded away and also fragmenting, like lumps of butter dropped into a hot frying pan. It is likely that Thackeray’s Globules will be destroyed before they can collapse and form stars.

This new picture celebrates an important anniversary for the the VLT – it will be fifteen years since first light on the first of its four Unit Telescopes on May 25, 1998. Since then the four original giant telescopes have been joined by the four small Auxiliary Telescopes that form part of the VLT Interferometer (VLTI) – one of the most powerful and productive ground-based astronomical facilities in existence.

The selection of images below — one per year — gives a taste of the VLT’s scientific productivity since first light in 1998:

A selection of images from 15 years of the VLT
A selection of images from 15 years of the VLT (Credits: ESO/P.D. Barthel/M. McCaughrean/M. Andersen/S. Gillessen et al./Y. Beletsky/R. Chini/T. Preibisch)

Read more on the ESO site here, and watch an ESOCast video below honoring the VLT’s fifteen-year milestone:

Happy Anniversary VLT!

Source: ESO

Orion’s Secret Fire Dance

In this image, the submillimetre-wavelength glow of dust clouds in the Orion A nebula is overlaid on a view of the region in the more familiar visible light, from the Digitized Sky Survey 2. The large bright cloud in the upper right of the image is the well-known Orion Nebula, also called Messier 42. Credit: ESO/Digitized Sky Survey 2

The Great Orion Nebula has captivated observers for at least four hundred years, but the ancient Mayans may have known about its secrets long before then. According to legend, the nebula might have been the smoke situated between the “Three Hearthstones” and the light of the emerging stars seen as the very embers of creation itself. Now the ESO-operated Atacama Pathfinder Experiment (APEX) in Chile has revealed what we cannot see. At wavelengths too long for human vision, this new image shows us an ancient fire dance painted in colors of cold interstellar dust.

As we know, deposits of gas and interstellar dust are virtual star factories. However, the very material which creates stars also masks them. So how do we peer behind the veil? The answer is to observe at alternative wavelengths of light. In this case, the submillimetre wavelength reveals what our eyes cannot see… dust grains igniting the view, even though they are just a few tens of degrees above absolute zero. This makes the APEX telescope with its submillimetre-wavelength camera LABOCA, located at an altitude of 5000 metres above sea level on the Chajnantor Plateau in the Chilean Andes, the perfect instrument to play the tune for this cold fire dance.

Take a look around the picture. It’s just a small portion of a vast complex known as the Orion Molecular Cloud. Wafting across hundreds of light years space some 1350 light years away, this rich arena of hot young stars, cold dust clouds and bright nebula is the epitome of stellar creation. The image reveals the submillimetre-wavelength glow in shades of orange and it is combined with visible light for a total visual experience. Note deep ribbons, sheets and bubbles… These are the product of gravitational collapse and the effects of stellar winds. Powerful stellar processes are at work here. The atmospheres of the stars are crafting the clouds much the same way a gentle breeze swirls the smoke from a fire.

Loading player…

Credit: ESO/Nick Risinger (skysurvey.org), Digitized Sky Survey 2. Music: movetwo

As beautiful as it is, there is still science behind the imagery. Astronomers have employed the data taken with ESA’s Herschel Space Observatory, along with the APEX information, to aid them in their search for early star formation. At this point in time, the researchers have been able to verify more than a dozen candidate protostars – objects which appear far brighter at longer wavelengths rather than short. It’s a triumph for the researchers. These new observations could well be the youngest protostars so far observed and it brings astronomers just one step closer to witnessing the moment when a star ignites.

Original Story Source: ESO News Release.

Anarchic Star Formation Found In Dust Cloud

The Danish 1.54-metre telescope located at ESO’s La Silla Observatory in Chile has captured a striking image of NGC 6559, an object that showcases the anarchy that reigns when stars form inside an interstellar cloud. Credit: ESO

If you think that breaking all the rules is cool, then you’ll appreciate one of the latest observations submitted by the Danish 1.54 meter telescope housed at ESO’s La Silla Observatory in Chile. In this thought-provoking image, you’ll see what kind of mayhem occurs when stars are forged within an interstellar nebula.

Towards the center of the Milky Way in the direction of the constellation of Sagittarius, and approximately 5000 light-years from our solar system, an expansive cloud of gas and dust await. By comparison with other nebulae in the region, this small patch of cosmic fog known as NGC 6559 isn’t as splashy as its nearby companion nebula – the Lagoon (Messier 8). Maybe you’ve seen it with your own eyes and maybe you haven’t. Either way, it is now coming to light for all of us in this incredible image.

Comprised of mainly hydrogen, this ethereal mist is the perfect breeding ground for stellar creation. As areas contained within the cloud gather enough matter, they collapse upon themselves to form new stars. These neophyte stellar objects then energize the surrounding hydrogen gas which remains around them, releasing huge amounts of high energy ultraviolet light. However, it doesn’t stop there. The hydrogen atoms then merge into the mix, creating helium atoms whose energy causes the stars to shine. Brilliant? You bet. The gas then re-emits the energy and something amazing happens… an emission nebula is created.

Loading player…

This zoom starts with a broad view of the Milky Way. We head in towards the centre, where stars and the pink regions marking star formation nurseries are concentrated. We see the huge gas cloud of the Lagoon Nebula (Messier 8) but finally settle on the smaller nebula NGC 6559. The colourful closing image comes from the Danish 1.54-metre telescope located at ESO’s La Silla Observatory in Chile. Credit: ESO/Nick Risinger (skysurvey.org)/S. Guisard. Music: movetwo

In the center of the image, you can see the vibrant red ribbon of the emission nebula, but that’s not the only thing contained within NGC 6559. Here swarms of solid dust particles also exist. Consisting of tiny bits of heavier elements, such as carbon, iron and silicon, these minute “mirrors” scatter the light in multiple directions. This action causes NGC 6559 to be something more than it first appears to be… now it is also a reflection nebula. It appears to be blue thanks to the magic of a principle known as Rayleigh scattering – where the light is projected more efficiently in shorter wavelengths.

Don’t stop there. NGC 6559 has a dark side, too. Contained within the cloud are sectors where dust totally obscures the light being projected behind them. In the image, these appear as bruises and dark veins seen to the bottom left-hand side and right-hand side. In order to observe what they cloak, astronomers require the use of longer wavelengths of light – ones which wouldn’t be absorbed. If you look closely, you’ll also see a myriad of saffron stars, their coloration and magnitude also effected by the maelstrom of dust.

It’s an incredible portrait of the bedlam which exists inside this very unusual interstellar cloud…

Original Story Source: ESO News Release.

NGC 6240: Gigantic Hot Gas Cloud Sheaths Colliding Galaxies

Credit: X-ray (NASA/CXC/SAO/E.Nardini et al); Optical (NASA/STScI)

Looking almost like a cosmic hyacinth, this image is anything but a cool, Spring flower… it’s a portrait of an enormous gas cloud radiating at more than seven million degrees Kelvin and enveloping two merging spiral galaxies. This combined image glows in purple from the Chandra X-ray information and is embellished with optical sets from the Hubble Space Telescope. It flows across 300,000 light years of space and contains the mass of ten billion Suns. Where did it come from? Researchers theorize it was caused by a rush of star formation which may have lasted as long as 200 million years.

What we’re looking at is known in astronomical terms as a “halo” – a glorious crown which is located in a galactic system cataloged as NGC 6240. This is the site of an interacting set of of spiral galaxies which have a close resemblance to our own Milky Way – each with a supermassive black hole for a heart. It is surmised the black holes are headed towards each other and may one day combine to create an even more incredible black hole.

However, that’s not all this image reveals. Not only is this pair of galaxies combining, but the very act of their mating has caused the collective gases to be “violently stirred up”. The action has caused an eruption of starbirth which may have stretched across a period of at least 200 million years. This wasn’t a quiet event… During that time, the most massive of the stars fled the stellar nursery, evolving at a rapid pace and blowing out as supernovae events. According to the news release, the astronomers who studied this system argue that the rapid pace of the supernovae may have expelled copious quantities of significant elements such as oxygen, neon, magnesium and silicon into the gaseous envelope created by the galactic interaction. Their findings show this enriched gas may have expanded into and combined with the already present cooler gas.

Now, enter a long time frame. While there was an extensive era of star formation, there may have been more dramatic, shorter bursts of stellar creation. “For example, the most recent burst of star formation lasted for about five million years and occurred about 20 million years ago in Earth’s time frame.” say the paper’s authors. However, they are also quick to point out that the quick thrusts of star formation may not have been the sole producer of the hot gases.

Perhaps one day these two interactive spiral galaxies will finish their performance… ending up as rich, young elliptical galaxy. It’s an act which will take millions of years to complete. Will the gas hang around – or will it be lost in space? No matter what the final answer is, the image gives us a first-hand opportunity to observe an event which dominated the early Universe. It was a time “when galaxies were much closer together and merged more often.”

Original Story Source: Chandra X-Ray Observatory News Release.