Fireworks Erupt From Newborn Star

Just in time for summer fireworks season, the Hubble science team has released an image of Herbig-Haro 110, a young star with geysers of hot gas skyrocketing away through interstellar space. Twin jets of heated gas are being ejected in opposite directions from this star that is still in the formation process. The Hubble team says these outflows are fueled by gas falling onto the young star, which is surrounded by a disc of dust and gas. If the disc is the fuel tank, the star is the gravitational engine, and the jets are the exhaust. And even though the plumes of gas look like whiffs of smoke, they are actually billions of times less dense than the smoke from a fireworks display.

More information about this image from the HubbleSite:

Herbig-Haro (HH) objects come in a wide array of shapes, but the basic configuration stays the same. Twin jets of heated gas, ejected in opposite directions away from a forming star, stream through interstellar space. Astronomers suspect that these outflows are fueled by gas accreting onto a young star surrounded by a disk of dust and gas. The disk is the “fuel tank,” the star is the gravitational engine, and the jets are the exhaust.

When these energetic jets slam into colder gas, the collision plays out like a traffic jam on the interstate. Gas within the shock front slows to a crawl, but more gas continues to pile up as the jet keeps slamming into the shock from behind. Temperatures climb sharply, and this curving, flared region starts to glow. These “bow shocks” are so named because they resemble the waves that form at the front of a boat.

In the case of the single HH 110 jet, astronomers observe a spectacular and unusual permutation on this basic model. Careful study has repeatedly failed to find the source star driving HH 110, and there may be good reason for this: perhaps the HH 110 outflow is itself generated by another jet.

Astronomers now believe that the nearby HH 270 jet grazes an immovable obstacle — a much denser, colder cloud core — and gets diverted off at about a 60-degree angle. The jet goes dark and then reemerges, having reinvented itself as HH 110.

The jet shows that these energetic flows are like the erratic outbursts from a Roman candle. As fast-moving blobs of gas catch up and collide with slower blobs, new shocks arise along the jet’s interior. The light emitted from excited gas in these hot blue ridges marks the boundaries of these interior collisions. By measuring the current velocity and positions of different blobs and hot ridges along the chain within the jet, astronomers can effectively “rewind” the outflow, extrapolating the blobs back to the moment when they were emitted. This technique can be used to gain insight into the source star’s history of mass accretion.

This image is a composite of data taken with Hubble’s Advanced Camera for Surveys in 2004 and 2005 and the Wide Field Camera 3 in April 2011.

Source: HubbleSite, ESA

A Close-up Look at the War and Peace Nebula

Take a trip out to the constellation of Scorpius get a close-up look at the War and Peace nebula, courtesy of the Very Large Telescope. This is the most detailed visible-light image so far of this spectacular stellar nursery, which is within NGC 6357. The view shows many hot young stars, glowing clouds of gas and weird dust formations sculpted by ultraviolet radiation and stellar winds.

The unusual name of “War and Peace” was given to this nebula not because of the famous novel by Tolstoy, but because in infrared light, the bright, western part of the nebula resembles a dove, while the eastern part looked like a skull. Unfortunately this effect cannot be seen in this visible-light image, but instead we can see dark disks of gas and young stars wrapped in expanding cocoons of dust.

In fact, the whole image is covered with dark trails of cosmic dust, but some of the most fascinating dark features appear at the lower right and on the right hand edge of the picture. Here the radiation from the bright young stars has created huge columns, similar to the famous “pillars of creation” in the Eagle Nebula and other fascinating structures revealed by the awesome power of the VLT.

Lead image caption: The War and Peace Nebula inside NGC 6357, as seen by the Very Large Telescope. Credit: ESO

Source: ESO

Herschel Telescope Peers into the Glow of Cygnus X

This new view of the Cygnus-X star-formation region by Herschel highlights chaotic networks of dust and gas that point to sites of massive star formation. Credits: ESA/PACS/SPIRE/Martin Hennemann & Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, France.

[/caption]

In infrared, Cygnus-X is a glowing star nursery, and the Herschel space observatory has captured this beautiful new view showing an extremely active region of big-baby stars. It is located about 4,500 light-years from Earth in the constellation of Cygnus, the Swan. The image highlights the unique capabilities of Herschel to probe the birth of large stars and their influence on the surrounding interstellar material.

The bright white areas are where large stars have recently formed out of turbulent clouds, especially evident in the chaotic network of filaments seen in the right-hand portion of the image. The dense knots of gas and dust collapse to form new stars; the bubble-like structures are carved by the enormous radiation emitted by these stars.

In the center of the image, fierce radiation and powerful stellar winds from stars undetected at Herschel’s wavelengths have partly cleared and heated interstellar material, which then glows blue. The threads of compact red objects scattered throughout the image shows where future generations of stars will be born.

See larger versions of this image at ESA’s website.

The Secret Origin Story of Brown Dwarfs

Artist's impression of a Y-dwarf, the coldest known type of brown dwarf star. (NASA/JPL-Caltech)

[/caption]

Sometimes called failed stars, brown dwarfs straddle the line between star and planet. Too massive to be “just” a planet, but lacking enough material to start fusion and become a full-fledged star, brown dwarfs are sort of the middle child of cosmic objects. Only first detected in the 1990s, their origins have been a mystery for astronomers. But a researchers from Canada and Austria now think they have an answer for the question: where do brown dwarfs come from?

If there’s enough mass in a cloud of cosmic material to start falling in upon itself, gradually spinning and collapsing under its own gravity to compress and form a star, why are there brown dwarfs? They’re not merely oversized planets — they aren’t in orbit around a star. They’re not stars that “cooled off” — those are white dwarfs (and are something else entirely.) The material that makes up a brown dwarf probably shouldn’t have even had enough mass and angular momentum to start the whole process off to begin with, yet they’re out there… and, as astronomers are finding out now that they know how to look for them, there’s quite a lot.

So how did they form?

According to research by Shantanu Basu of the University of Western Ontario and  Eduard I. Vorobyov from the University of Vienna in Austria and Russia’s Southern Federal University, brown dwarfs may have been flung out of other protostellar disks as they were forming, taking clumps of material with them to complete their development.

Basu and Vorobyov modeled the dynamics of protostellar disks, the clouds of gas and dust that form “real” stars. (Our own solar system formed from one such disk nearly five billion years ago.) What they found was that given enough angular momentum — that is, spin — the disk could easily eject larger clumps of material while still having enough left over to eventually form a star.

Model of how a clump of low-mass material gets ejected from a disk (S. Basu/E. Vorobyev)

The ejected clumps would then continue condensing into a massive object, but never quite enough to begin hydrogen fusion. Rather than stars, they become brown dwarfs — still radiating heat but nothing like a true star. (And they’re not really brown, by the way… they’re probably more of a dull red.)

In fact a single protostellar disk could eject more than one clump during its development, Basu and Vorobyov found, leading to the creation of multiple brown dwarfs.

If this scenario is indeed the way brown dwarfs form, it stands to reason that the Universe may be full of them. Since they are not very luminous and difficult to detect at long distances, the researchers suggest that brown dwarfs may be part of the answer to the dark matter mystery.

“There could be significant mass in the universe that is locked up in brown dwarfs and contribute at least part of the budget for the universe’s missing dark matter,” Basu said. “And the common idea that the first stars in the early universe were only of very high mass may also need revision.”

Based on this hypothesis, with the potential number of brown dwarfs that could be in our galaxy alone we may find that these “failed stars” are actually quite successful after all.

The team’s research paper was accepted on March 1 into The Astrophysical Journal.

Read more on the University of Western Ontario’s news release here.

Where All The Hottest Stars Gather

The star cluster NGC 6604 (ESO)

[/caption]

An ESO telescope captures a group of hot young stars that would outshine any Hollywood party!

At the upper left of this image is the star cluster NGC 6604, a grouping of hot young stars within a larger collection located in the sky near the much more famous Eagle Nebula (of “Pillars of Creation” fame.) The young stars, which burn bright and blue, are helping make a new generation of stars with their strong stellar winds, which condense nearby gas and dust into even more star-forming regions.

Eventually the new stars will replace the ones seen here, which, although big and bright, will quickly burn through their stellar fuel and fade. Such is the life cycle of massive stars — live fast and die young.

This image was acquired by the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile. NGC 6604 is about 5,500 light-years from Earth, located in the constellation Serpens. Read more on the ESO news release here.

Astronomers See Stars Changing Right Before Their Eyes in Orion Nebula

This new view of the Orion nebula highlights fledging stars hidden in the gas and clouds. Image credit: NASA/ESA/JPL-Caltech/IRAM

[/caption]

A gorgeous new image from the tag team effort of the Herschel and Spitzer Space telescopes shows a rainbow of colors within the Orion nebula. The different colors reflect the different wavelengths of infrared light captured by the two space observatories, and by combining their observations, astronomers can get a more complete picture of star formation. And in fact, astronomers have spotted young stars in the Orion nebula changing right before their eyes, over a span of just a few weeks!

Astronomers with Herschel mapped this region of the sky once a week for six weeks in the late winter and spring of 2011. Notice the necklace of stars strung across the middle of the image? Over just that short amount of time, a discernible change in the stars took place as they appeared to be rapidly heating up and cooling down. The astronomers wondered if the stars were actually maturing from being star embryos, moving towards becoming full-fledged stars.

To monitor for activity in protostars, Herschel’s Photodetector Array Camera and Spectrometer stared in long infrared wavelengths of light, tracing cold dust particles, while Spitzer took a look at the warmer dust emitting shorter infrared wavelengths. In this data, astronomers noticed that several of the young stars varied in their brightness by more than 20 percent over just a few weeks.

As this twinkling comes from cool material emitting infrared light, the material must be far from the hot center of the young star, likely in the outer disk or surrounding gas envelope. At that distance, it should take years or centuries for material to spiral closer in to the growing starlet, rather than mere weeks.

The astronomers said a couple of scenarios could account for this short span. One possibility is that lumpy filaments of gas funnel from the outer to the central regions of the star, temporarily warming the object as the clumps hit its inner disk. Or, it could be that material occasionally piles up at the inner edge of the disk and casts a shadow on the outer disk.

“Herschel’s exquisite sensitivity opens up new possibilities for astronomers to study star formation, and we are very excited to have witnessed short-term variability in Orion protostars,” said Nicolas Billot, an astronomer at the Institut de Radioastronomie Millimétrique (IRAM) in Grenada, Spain who is preparing a paper on the findings along with his colleagues. “Follow-up observations with Herschel will help us identify the physical processes responsible for the variability.”

Source: NASA

‘Dark Markings of the Sky’ are Hiding Star Formation

This image from the APEX telescope, of part of the Taurus Molecular Cloud, shows a sinuous filament of cosmic dust more than ten light-years long. Could life exist in molecular clouds like this one? Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

[/caption]

This stunning new image shows a sinuous filament of cosmic dust more than ten light-years long. The makeup of filamentary cloud structures like this used to be a mystery, and in the early 20th century, Edward Emerson Barnard compiled a photographic atlas of these features, calling them “dark markings of the sky,” as these regions appeared as dark lanes, with no stars visible. Barnard correctly argued that this appearance was due to “obscuring matter in space.” Today we call segments in this particular cloud Barnard 211 and Barnard 213, or the Taurus Molecular Cloud. And we now know that these are clouds of interstellar gas and dust grains. But also, within these clouds, newborn stars are hidden, and dense clouds of gas are on the verge of collapsing to form yet more stars.

The Taurus Molecular Cloud is one of the closest regions of star formation to us. It is located in the constellation of Taurus about 450 light-years from Earth. The cosmic dust grains are so cold that observations at wavelengths of around one millimeter, such as these made with the LABOCA camera on APEX (Atacama Pathfinder Experiment) telescope in Chile, are needed to detect their faint glow.

This image shows two parts of a long filament. The dust grains — tiny particles similar to very fine soot and sand — absorb visible light, blocking our view of the rich star field behind the clouds. The Taurus Molecular Cloud is particularly dark at visible wavelengths, as it lacks the massive stars that illuminate the nebulae in other star-formation regions such as Orion.

But active star formation is taking place. This is why observations at longer wavelengths, such as the millimeter range, are essential for understanding the early stages of star formation.

Read more about this particular region at the ESO website.

Starbursts May Actually Destroy Globular Clusters

The Galactic globular cluster M80 in the constellation Scorpius contains several hundred thousand stars. Credit: HST/NASA/ESA

[/caption]

It seems logical to assume that long ago, the amount of globular clusters increased in our galaxy during star-making frenzies called ‘starbursts.’ But a new computer simulation shows just the opposite: 13 billion years ago, starbursts may have actually destroyed many of the globular clusters that they helped to create.

“It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them,” said Dr. Diederik Kruijssen of the Max Planck Institute for Astrophysics. “This occurs not only in galaxy collisions, but should be expected in any starburst environment”

Astronomers have wondered why throughout the Universe, typical globular star clusters contain about the same number of stars. In contrast much younger stellar clusters can contain almost any number of stars, from fewer than 100 to many thousands.

The new computer simulation by Kruijssen and his team proposes that this difference could be explained by the conditions under which globular clusters formed early on in the evolution of their host galaxies.

In the early Universe, starbursts were common. Large galaxies were in clusters, and collisions occurred often. The computer simulation showed that during starbursts, gas, dust and stars were still being sloshed around from the galaxy collision, with the pull of gravity on the globular clusters constantly changing. This was enough to rip apart most of the globular clusters and only the biggest ones were strong enough to survive. The simulations showed most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. But after the environment calmed down, the surviving globular clusters have survived – now living quietly – and we can still enjoy their beauty.

In their paper, the astronomers say that this explains why the number of stars contained within globular clusters is roughly the same across the entire Universe. “It therefore makes perfect sense that all globular clusters have approximately the same large number of stars,” said Kruijssen. “Their smaller brothers and sisters that didn’t contain as many stars were doomed to be destroyed.”

Kruijssen and his team said that while the very brightest and largest clusters were capable of surviving the galaxy collision due to their own gravitational attraction, numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces.

The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. Kruijssen and his team says globular clusters can therefore be used to shed more light on how the first generations of stars and galaxies were born.

“In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation,” said Kruijssen. “It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters.”

This new finding may also tie in with other recent findings from Spitzer and ESO that starburst activity may have only lasted around 100 million years and may have also been cut short when black holes formed at the center of galaxies.

Source: Max-Planck Institute for Astrophysics. Paper: Kruijssen et al, “Formation versus destruction: the evolution of the star cluster population in galaxy mergers”

New Study Shows How Trace Elements Affect Stars’ Habitable Zones

Comparison of the habitable zone around the Sun in our solar system and around the star Gliese 581. Credit: ESO

[/caption]

Habitable zones are the regions around stars, including our own Sun, where conditions are the most favourable for the development of life on any rocky planets that happen to orbit within them. Generally, they are regions where temperatures allow for liquid water to exist on the surface of these planets and are ideal for “life as we know it.” Specific conditions, due to the kind of atmosphere, geological conditions, etc. must also be taken into consideration, on a case-by-case basis.

Now, by examining trace elements in the host stars, researchers have found clues as to how the habitable zones evolve, and how those elements also influence them. To determine what elements are in a star, scientists study the wavelengths of its light. These trace elements are heavier than the hydrogen and helium gases which the star is primarily composed of. Variations in the composition of these stars are now thought to affect the habitable zones around them.

The study was led by Patrick Young, a theoretical astrophysicist and astrobiologist at Arizona State University. Young and his team presented their findings on January 11, 2012 at the annual meeting of the American Astronomical Society in Austin, Texas. He and his colleagues have examined more than a hundred dwarf stars so far.

An abundance of these elements can affect how opaque a star’s plasma is. Calcium, sodium, magnesium, aluminum and silicon have been found to also have small but significant effects on a star’s evolution – higher levels tended to result in cooler, redder stars. As Young explains, “The persistence of stars as stable objects relies on the heating of plasma in the star by nuclear fusion to produce pressure that counteracts the inward force of gravity. A higher opacity traps the energy of fusion more efficiently and results in a larger radius, cooler star. More efficient use of energy also means that nuclear burning can proceed more slowly, resulting in a longer lifetime for the star.”

The lifetime of a star’s habitable zone can also be influenced by another element – oxygen. Young continues: “The habitable lifetime of an orbit the size of Earth’s around a one-solar-mass star is only 3.5 billion years for oxygen-depleted compositions but 8.5 billion years for oxygen-rich stars. For comparison, we expect the Earth to remain habitable for another billion years or so, for about 5.5 billion years total, before the Sun becomes too luminous. Complex life on Earth arose some 3.9 billion years after its formation, so if Earth is at all representative, low-oxygen stars are perhaps less than ideal targets.”

As well as the habitable zone, the composition of a star can determine the eventual composition of any planets that form. The carbon-oxygen and magnesium-silicon ratios of stars can affect whether a planet will have magnesium or silicon-loaded clay minerals such as magnesium silicate (MgSiO3), silicon dioxide (SiO2), magnesium orthosilicate (Mg2SiO4), and magnesium oxide (MgO). A star’s composition can also play a role in whether a rocky planet might have carbon-based rock instead of silicon-based rock like our planet. Even the interior of planets could be affected, as radiocative elements would determine whether a planet has a molten core or a solid one. Plate tectonics, thought to be important for the evolution of life on Earth, depend on a molten interior.

Young and his team are now looking at 600 stars, ones that are already being targeted in exoplanet searches. They plan to produce a list of the 100 best stars which could have potentially habitable planets.

Hitchcock Haunts a Nebula

The star-forming region NGC 3324. The intense radiation from several of NGC 3324's massive, blue-white stars has carved out a cavity in the surrounding gas and dust. The ultraviolet radiation from these young hot stars also cause the gas cloud to glow in rich colors. Credit: ESO

[/caption]

First impression after seeing this new image of NGC 3324? It’s Alfred Hitchcock, bulbous nose and all (see image below for comparison). The right edge of the wall of gas and dust in this star-forming region really bears a strong resemblance to the famous profile of the British film director and producer, notorious for his thriller movies from the 1940’s through the 1970’s.

NGC 3324 is located in the southern constellation of Carina, roughly 7500 light-years from Earth. It is on the northern outskirts of the chaotic environment of the Carina Nebula. All the gas and dust here fueled a burst of star birth several millions of years ago and led to the creation of several hefty and very hot stars that are prominent in the new picture.

Alfred Hitchcock. Via iwatchstuff.com

A nickname for the NGC 3324 region is the ‘Gabriela Mistral Nebula,’ after the Nobel Prize-winning Chilean poet but I think I’ll start a petition to call it the Hitchcock Nebula. Hitchcock liked to make cameo appearances in his own movies, and perhaps he is making a pareidoliaic guest appearance here.

The new image of NGC 3324 was taken with the Wide Field Imager on the the European Southern Observatory’s 2.2-metre telescope at the La Silla Observatory in Chile. Read more about it on the ESO website.