Newborn Star Surrounded By Planet-Forming Disks at Different Angles

This artist's concept is based on Hubble Space Telescope images of gas-and-dust disks around the newborn star TW Hydrae. HST images show shadows sweeping across the disks encircling the system. These shadows are probably from slightly inclined inner disks that block starlight from reaching the outer disk. The disks are slightly inclined to each other due to the gravitational pull of unseen planets warping the disk structure. Credits ARTWORK: NASA, AURA/STScI for ESA, Leah Hustak (STScI)
This artist's concept is based on Hubble Space Telescope images of gas-and-dust disks around the newborn star TW Hydrae. HST images show shadows sweeping across the disks encircling the system. These shadows are probably from slightly inclined inner disks that block starlight from reaching the outer disk. The disks are slightly inclined to each other due to the gravitational pull of unseen planets warping the disk structure. Credits ARTWORK: NASA, AURA/STScI for ESA, Leah Hustak (STScI)

One of the great questions about our solar system is: what was it like as it formed? We know that a protosolar nebula birthed the Sun and planets. And, we know planets in our solar system have slightly different orbital inclinations, probably due to some interesting dynamics in the birth crèche. Why is that? The answer may be in a slightly weird-looking protoplanetary disk circling the newborn star TW Hydrae.

Continue reading “Newborn Star Surrounded By Planet-Forming Disks at Different Angles”

Mother of Dragons: Astronomers Peer Inside the “Dragon Cloud”

The inner core of the "dragon cloud" complex. Image credit: Barnes et al.
The inner core of the "dragon cloud" complex. Image credit: Barnes et al.

How did the most massive stars form? Astronomers have debated their origins for decades. One of the biggest problems facing these theories is the lack of observations. Massive stars are relatively rare, and so it’s hard to catch them in the act of formation. But new observations of the so-called Dragon cloud may hold the clue to answering this mystery.

Continue reading “Mother of Dragons: Astronomers Peer Inside the “Dragon Cloud””

When Clouds Collide, Destruction and Creation Go Hand-in-Hand

New stars seen by the Hubble Space Telescope in the Orion Nebula. ESA/Hubble & NASA, J. Bally; Acknowledgment: M. H. Özsaraç.

All stars are born from the collapse of clouds of dust and gas. But triggering star formation is a tricky process, because these gas clouds can just hang out doing nothing for billions of years. A pair of researchers have found a precise recipe for getting gas clouds to trigger star formation. It involves a lot of collision.

Continue reading “When Clouds Collide, Destruction and Creation Go Hand-in-Hand”

Astronomers Find 1,179 Previously Unknown Star Clusters in Our Corner of the Milky Way

Some of the most exciting things that happen in a telescope’s lifetime are its data releases. Gaia, which has been operating since 2013, recently released its third major dataset, and astronomers that weren’t intimately involved in the operation and planning for the project have had some time to pull over. Their studies are starting to pop up in journals everywhere. For example, a new one from a research team, mainly from Guangzhou University, catalogs over 1100 new star clusters, significantly increasing the overall total of these critical components in the structure of the Milky Way.

Continue reading “Astronomers Find 1,179 Previously Unknown Star Clusters in Our Corner of the Milky Way”

Water’s Epic Journey to Earth Began Before the Sun Formed

This artist’s impression shows the planet-forming disc around the star V883 Orionis. New research shows how water starts its journey in the gas cloud that forms the star, and eventually ends its journey on Earth. Image Credit: ESO/L. Calçada

The origins of Earth’s water is a complicated mystery that scientists have been untangling for decades. Life is impossible without water, so the origin of Earth’s life-giving water is a foundational question. As the power of our telescopes grows, researchers have made meaningful headway on the question.

Previous research uncovered links between Earth’s water and the Solar System’s comets and icy planetesimals. But newer research follows the chain back even further in time to when the Sun itself had yet to form.

Continue reading “Water’s Epic Journey to Earth Began Before the Sun Formed”

Speedrunning Star Formation in the Cygnus X Region

Cygnus X is a massive star formation region about 4600 light-years away. New research shows star formation occurring very rapidly. Image Credit: By NASA - http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15253.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19475200

Stars are born in molecular clouds, massive clouds of hydrogen that can contain millions of stellar masses of material. But how do molecular clouds form? There are different theories and models of that process, but the cloud formation is difficult to observe.

A new study is making some headway, and showing how the process occurs more rapidly than thought.

Continue reading “Speedrunning Star Formation in the Cygnus X Region”

Galaxies Aren’t Just Stars. They’re Intricate Networks of Gas and Dust

This image taken by the NASA/ESA/CSA James Webb Space Telescope shows the spiral galaxy NGC 1433. Image Credit: NASA, ESA, CSA, and J. Lee (NOIRLab), A. Pagan (STScI)

Astronomers have studied the star formation process for decades. As we get more and more capable telescopes, the intricate details of one of nature’s most fascinating processes become clearer. The earliest stages of star formation happen inside a dense veil of gas and dust that stymies our observations.

But the James Webb Space Telescope sees right through the veil in its images of nearby galaxies.

Continue reading “Galaxies Aren’t Just Stars. They’re Intricate Networks of Gas and Dust”

Hubble’s New View of the Tarantula Nebula

A snapshot of the Tarantula Nebula (also known as 30 Doradus) is the most recent Picture of the Week from the NASA/ESA Hubble Space Telescope. Image Credit: ESA/Hubble & NASA, C. Murray, E. Sabbi; Acknowledgment: Y. -H. Chu

The Tarantula Nebula, also called 30 Doradus, is the brightest star-forming region in our part of the galaxy. It’s in the Large Magellanic Cloud (LMC) and contains the most massive and hottest stars we know of. The Tarantula Nebula has been a repeat target for the Hubble since the telescope’s early years.

Continue reading “Hubble’s New View of the Tarantula Nebula”

Face-on View of Galaxy NGC 4303 Reveals its Arms are Filled with Active Star Formation

NGC 4303, a galaxy rich in star formation. It lies about 55 million light-years away in the Virgo Cluster. This view shows both visible-light and millimeter-wavelength views of the galaxy. Credit: ESO/ALMA (ESO/NAOJ/NRAO)/PHANGS

Galaxies fill a lot of roles in the universe. The most obvious one is star formation factories. Without that activity, the cosmos would be a very different place. The European Southern Observatory and the Atacama Large Millimeter Array recently zeroed in on the galaxy NGC 4303. Their goal: to take a multi-wavelength view of its star formation activity.

Continue reading “Face-on View of Galaxy NGC 4303 Reveals its Arms are Filled with Active Star Formation”

A.I. Finds a New Way to Build Multiple-Star Systems

A false-color image of NGC 6334 from multiple telescopes. The area is believed to be a hotspot of furious star birth. Credit: S. Willis (CfA+ISU); ESA/Herschel; NASA/JPL-Caltech/ Spitzer; CTIO/NOAO/AURA/NSF

Over over 50% of high mass stars reside in multiple star systems. But due to their complex orbital interactions, physicists have a difficult time understanding just how stable and long-lived these systems are. Recently a team of astronomers applied machine learning techniques to simulations of multiple star systems and found a new way that stars in such systems can arrange themselves.

Continue reading “A.I. Finds a New Way to Build Multiple-Star Systems”