Planets Have Just Started to Form in This Binary System

Binary stars are common and imaging their planets will be a challenge. How can astronomers block all that light so they can see the planets? This artist's illustration shows the eclipsing binary star Kepler 16, as seen from the surface of an exoplanet in the system. Image Credit: NASA

Astronomers have watched the young binary star system SVS 13 for decades. Astronomers don’t know much about how planets form around proto-binary stars like SVS 13, and the earliest stages are especially mysterious. A new study based on three decades of research reveals three potentially planet-forming disks around the binary star.

Continue reading “Planets Have Just Started to Form in This Binary System”

Astronomers Find a Black Hole That was Somehow Pushed Over Onto its Side

Artist impression of an X-ray binary system. This one is called MAXI J1820+070 containing a black hole (small black dot at the center of the gaseous disk) and a companion star. A narrow jet is directed along the black hole spin axis, which is strongly misaligned from the rotation axis of the orbit. Image produced with Binsim (credit: R. Hynes).
Artist impression of an X-ray binary system. This one is called MAXI J1820+070 containing a black hole (small black dot at the center of the gaseous disk) and a companion star. A narrow jet is directed along the black hole spin axis, which is strongly misaligned from the rotation axis of the orbit. Image produced with Binsim (credit: R. Hynes).

The planets in our Solar System all rotate on axes that roughly match the Sun’s rotational axis. This agreement between the axes of rotation is the typical arrangement in any system in space where smaller objects orbit a larger one.

But in one distant binary system, the large central object has an axis of rotation tilted about 40 degrees compared to its smaller satellite. This situation is even more strange because the main body isn’t a star but a black hole.

Continue reading “Astronomers Find a Black Hole That was Somehow Pushed Over Onto its Side”

Astronomers Discover a Strange new Star That Might be From the Collision Between two Dead Stars

With how many stars there are in our galaxy, there are sure to be plenty of different types of them.  But they still continue to amaze us with their differences and constantly challenge our models on how exactly they form.  Now a new class of stars was discovered by Dr. Klaus Werner of the University of Tübingen, and they are covered in different materials than expected.

Continue reading “Astronomers Discover a Strange new Star That Might be From the Collision Between two Dead Stars”

TESS Finds Almost 100 Quadruple Star Systems

This is an artist's illustration of the quadruple star system 30 Arietis. Astronomers are discovering more quadruple star systems as observational power increases. Image Credit: Karen Teramura, UH IfA

NASA’s Transiting Exoplanet Survey Satellite (TESS) has found over 5000 candidate exoplanet candidates, and 197 confirmed exoplanets since its mission began in late 2018. TESS is good at finding exoplanets, but the spacecraft is a powerful scientific platform, and it’s made other discoveries, too. Scientists working with TESS recently announced 97 quadruple star candidates, nearly doubling the number of known quadruple systems.

Continue reading “TESS Finds Almost 100 Quadruple Star Systems”

It Turns out, We Have a Very Well-Behaved Star

Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.
Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.

Should we thank our well-behaved Sun for our comfy home on Earth?

Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.

Continue reading “It Turns out, We Have a Very Well-Behaved Star”

Incredible Image Shows Twin Stellar Jets Blasting Out of a Star-Forming Region

The sinuous young stellar jet, MHO 2147, meanders lazily across a field of stars in this image captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The stellar jet is the outflow from a young star that is embedded in an infrared dark cloud. Astronomers suspect its sidewinding appearance is caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA

Young stars go through a lot as they’re being born. They sometimes emit jets of ionized gas called MHOs—Molecular Hydrogen emission-line Objects. New images of two of these MHOs, also called stellar jets, show how complex they can be and what a hard time astronomers have as they try to understand them.

Continue reading “Incredible Image Shows Twin Stellar Jets Blasting Out of a Star-Forming Region”

These Newly-Discovered Planets are Doomed

An artist’s rendition of what a planetary system similar to TOI-2337b, TOI-4329b, and TOI-2669b might look like, where a hot Jupiter-like exoplanet orbits an evolved, dying star. Image Credit: Karen Teramura/University of Hawai?i Institute for Astronomy

Astronomers have spied three more exoplanets. But the discovery might not last long. Each planet is in a separate solar system, and each orbits perilously close to its star. Even worse, all of the stars are dying.

The results?

Three doomed planets.

Continue reading “These Newly-Discovered Planets are Doomed”

A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk

Scientists have captured an intruder object disrupting the protoplanetary disk—birthplace of planets—in Z Canis Majors (Z CMa), a star in the Canis Majoris constellation. This artist’s impression shows the perturber leaving the star system, pulling a long stream of gas from the protoplanetary disk along with it. Observational data from the Subaru Telescope, Karl G. Jansky Very Large Array, and Atacama Large Millimeter/submillimeter Array suggest the intruder object was responsible for the creation of these gaseous streams, and its “visit” may have other as yet unknown impacts on the growth and development of planets in the star system. Credit: ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)

When it comes to observing protoplanetary disks, the Atacama Large Millimetre/sub-millimetre Array (ALMA) is probably the champion. ALMA was the first telescope to peer inside the almost inscrutable protoplanetary disks surrounding young stars and watch planets forming. ALMA advanced our understanding of the planet-forming process, though our knowledge of the entire process is still in its infancy.

According to new observations, it looks like chaos and disorder are part of the process. Astronomers using ALMA have watched as a star got too close to one of these planet-forming disks, tearing a chunk away and distorting the disk’s shape.

What effect will it have on planetary formation?

Continue reading “A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk”

Astronomers Discover a Totally New Kind of Nebula

Discovery image of the nebula. For this image, 120 individual exposures had to be combined to obtain a total exposure time of 20 hours. The images were taken over several months from Brazil. Image Credit: Maicon Germiniani

Most Universe Today readers are familiar with nebulae. They’re gaseous structures lit up with radiation from nearby stars, and they’re some of nature’s most beautiful forms.

With the help of amateur astronomers who laid the groundwork, an international team of astronomers have discovered a new type of nebulae around binary stars that they’re calling galactic emission nebulae.

Continue reading “Astronomers Discover a Totally New Kind of Nebula”

Astronomers See a Star Crash Through the Planetary Disk of Another Star

Flash heating around the second star after it has crashed through the disc. FU Ori. Credit: Elisabeth Borchert.

What causes an otherwise unremarkable star to become over 100 times brighter? That’s a question astronomers have been pondering since 1936, when a star in Orion brightened from 16th magnitude to 8th magnitude in a single year.

The star, named FU Ori, is still bright to this day. Astronomers have come up with different explanations for the star’s brightening, but none of them provides a complete explanation.

Now we might have one.

Continue reading “Astronomers See a Star Crash Through the Planetary Disk of Another Star”