The Strange, Misshapen Orbits of Planet-Forming Disks in a Triple-Star System

ALMA images of the planet-forming disk with misaligned rings around triple star system GW Orionis. The image on the right is made with ALMA data taken in 2017 from Bi et al. The image on the left is made with ALMA data taken in 2018 from Kraus et al. Credit: ALMA (ESO/NAOJ/NRAO), S. Kraus & J. Bi; NRAO/AUI/NSF, S. Dagnello

Whatever we grow up with, we think of as normal. Our single solitary yellow star seems normal to us, with planets orbiting on the same, aligned ecliptic. But most stars aren’t alone; most are in binary relationships. And some are in triple-star systems.

And the planet-forming disks around those three-star systems can exhibit some misshapen orbits.

Continue reading “The Strange, Misshapen Orbits of Planet-Forming Disks in a Triple-Star System”

Fastest Star Ever Seen is Moving at 8% the Speed of Light

This artist's impression shows part of the orbit of one of the stars very close to the supermassive black hole at the centre of the Milky Way. Analysis of data from ESO’s Very Large Telescope and other telescopes suggests that the orbits of these stars may show the subtle effects predicted by Einstein’s general theory of relativity. There are hints that the orbit of this star, called S2, is deviating slightly from the path calculated using classical physics. This close-up of the orbit of star S2 shows how the path of the star is slightly different when it passed the same part of its orbit for the second time, 15 years later, due to the effects of general relativity.

In the center of our galaxy, hundreds of stars closely orbit a supermassive black hole. Most of these stars have large enough orbits that their motion is described by Newtonian gravity and Kepler’s laws of motion. But a few orbits so closely that their orbits can only be accurately described by Einstein’s general theory of relativity. The star with the smallest orbit is known as S62. Its closest approach to the black hole has it moving more than 8% of light speed.

Continue reading “Fastest Star Ever Seen is Moving at 8% the Speed of Light”

Supercomputer Simulation Shows a Supernova 300 Days After it Explodes

A 2-D snapshot of a pair-instability supernovae as the explosion waves are about to break through the star's surface. The tiny disturbances represent fluid instability - in a region where different elements interact and mix. Image Credit: ASIAA/Ken Chen

The answers to many questions in astronomy are hidden behind the veil of deep time. One of those questions is around the role that supernovae played in the early Universe. It was the job of early supernovae to forge the heavier elements that were not forged in the Big Bang. How did that process play out? How did those early stellar explosions play out?

A trio of researchers turned to a supercomputer simulation to find some answers.

Continue reading “Supercomputer Simulation Shows a Supernova 300 Days After it Explodes”

1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly

Artist's impression of a red giant star. If the star is in a binary pair, what happens to its sibling? Credit:NASA/ Walt Feimer

Sunspots are common on our Sun. These darker patches are cooler than their surroundings, and they’re caused by spikes in magnetic flux that inhibit convection. Without convection, those areas cool and darken.

Lots of other stars have sunspots, too. But Red Giants (RGs) don’t. Or so astronomers thought.

A new study shows that some RGs do have spots, and that they rotate faster than thought.

Continue reading “1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly”

Betelgeuse Probably Dimmed Because of Enormous Starspots

An artist's impression of Betelgeuse. Its surface is covered by large star spots, which reduce its brightness. During their pulsations, such stars regularly release gas into their surroundings, which condenses into dust. Image Credit: MPIA graphics department

A few months ago we all watched as Betelgeuse dimmed. Between October 2019 and 22nd of February 2020 the star’s brightness dropped by a factor of about three. It went from magnitude 0.5, and from being the tenth-brightest star in the sky, to magnitude 1.7.

Naturally, we all wondered what was happening. Would it go supernova? Even though that was extremely unlikely, how could we help but wonder?

Continue reading “Betelgeuse Probably Dimmed Because of Enormous Starspots”

Planets Form in Just a Few Hundred Thousand Years

Artist's conceptualization of the dusty TYC 8241 2652 system as it might have appeared several years ago when it was emitting large amounts of excess infrared radiation. Credit: Gemini Observatory/AURA artwork by Lynette Cook. https://www.gemini.edu/node/11836

Astronomers like to observe young planets forming in circumstellar debris disks, the rotating rings of material around young stars. But when they measure the amount of material in those disks, they don’t contain enough material to form large planets. That discrepancy has puzzled astronomers.

The answer might come down to timing.

A new study suggests that planets form much quicker than astronomers think.

Continue reading “Planets Form in Just a Few Hundred Thousand Years”

Antares is a supergiant star that would fill the Solar System beyond Mars, but its atmosphere is 12 times bigger than that

This artist’s impression shows the red supergiant star. Using ESO’s Very Large Telescope Interferometer, an international team of astronomers have constructed the most detailed image ever of this, or any star other than the Sun. Credit: ESO/M. Kornmesser

Antares, the angry red eye of the constellation Taurus the bull, is a red supergiant star near the end of its life. And astronomers with the VLA and ALMA have realized that it’s much, much bigger than we ever imagined.

Continue reading “Antares is a supergiant star that would fill the Solar System beyond Mars, but its atmosphere is 12 times bigger than that”

New Horizons is so Far From Earth That the Positions of the Stars Look a Little Different From its Perspective

Credit: NASA/JHUAPL

In July of 2015, the New Horizons spacecraft made history when it became the first robotic explorer to conduct a flyby of Pluto. This was followed by another first, when the NASA mission conducted the first flyby of a Kuiper Belt Object (KBO) on December 31st, 2018 – which has since been named Arrokoth. Now, on the edge of the Solar System, New Horizons is still yielding some groundbreaking views of the cosmos.

For example, we here on Earth are used to thinking that the positions of the stars are “fixed”. In a sense, they are, since their positions and motions are relatively uniform when seen from our perspective. But a recent experiment conducted by the New Horizons team shows how familiar stars like Proxima Centauri and Wolf 359 (two of the closest stars in our neighbors) look different when viewed from the edge of the Solar System.

Continue reading “New Horizons is so Far From Earth That the Positions of the Stars Look a Little Different From its Perspective”

This is a Binary Star in the Process of Formation

Zoom into the Ophiuchus molecular cloud, highlighting the star forming system IRAS 16293-2422 with the proto-star B in the upper right corner and the now clearly identified binary proto-stars A1 and A2 on the bottom left. The binary system is shown also in a further zoom-in panel. Image: © MPE; background: ESO/Digitized Sky Survey 2; Davide De Martin)

About 460 light years away lies the Rho Ophiuchi cloud complex. It’s a molecular cloud—an active star-forming region—and it’s one of the closest ones. R. Ophiuchi is a dark nebula, a region so thick with dust that the visible light from stars is almost completely obscured.

But scientists working with ALMA have pin-pointed a pair of young proto-stars inside all that dust, doing the busy work of becoming active stars.

Continue reading “This is a Binary Star in the Process of Formation”

It Should Be Easiest to Search for Young Earth-like Planets When They’re Completely Covered in Magma

Artist's impression of magma ocean planet. Credit: Mark Garlick

How did Earth evolve from an ocean of magma to the vibrant, life-supporting, blue jewel it is now? In its early years, the Earth was a blistering hot ball of magma. Now, 4.5 billion years later, it’s barely recognizable.

Is it possible to find exoplanets out there in the vast expanse, which are young molten globes much like young Earth was? How many of them can we expect to find? Where will we find them?

Continue reading “It Should Be Easiest to Search for Young Earth-like Planets When They’re Completely Covered in Magma”