The most common type of star in the galaxy is the red dwarf star. None of these small, dim stars can be seen from Earth with the naked eye, but they can emit flares far more powerful than anything our Sun emits. Two astronomers using the Hubble space telescope saw a red dwarf star give off a powerful type of flare called a superflare. That’s bad news for any planets in these stars’ so-called habitable zones.
Red dwarfs make up about 75% of the stars in the Milky Way, so they probably host many exoplanets. In fact, scientists think most of the planets that are in habitable zones are orbiting red dwarfs. But the more astronomers observe these stars, the more they’re becoming aware of just how chaotic and energetic it can be in their neighbourhoods. That means we might have to re-think what habitable zone means.
“When I realized the sheer amount of light the superflare emitted, I sat looking at my computer screen for quite some time just thinking, ‘Whoa.'” – Parke Loyd, Arizona State University.
What exactly is a “normal” solar system? If we thought we had some idea in the past, we definitely don’t now. And a new study led by astronomers at Cambridge University has reinforced this fact. The new study found four gas giant planets, similar to our own Jupiter and Saturn, orbiting a very young star called CI Tau. And one of the planets has an extreme orbit that takes it more than a thousand times more distant from the star than the innermost planet.
There’s something poignant and haunting about ancient astronomers documenting things in the sky whose nature they could only guess at. It’s true in the case of Père Dom Anthelme, who in 1670 saw a star suddenly burst into view near the head of the constellation Cygnus, the Swan. The object was visible with the naked eye for two years, as it flared in the sky repeatedly. Then it went dark. We call that object CK Vulpeculae.
In December of 2013, the European Space Agency (ESA) launched the Gaia mission. Since that time, this space observatory has been busy observing over 1 billion astronomical objects in our galaxy and beyond – including stars, planets, comets, asteroids, quasars, etc. – all for the sake of creating the largest and most precise 3D space catalog ever made.
The ESA has also issued two data releases since then, both of which have led to some groundbreaking discoveries. The latest comes from the Leiden Observatory, where a team of astronomers used Gaia data to track what they thought were high-velocity stars being kicked out of the Milky Way, but which actually appeared to be moving into our galaxy.
Ever since they were first discovered in the 1930s, scientists have puzzled over the mystery that is neutron stars. These stars, which are the result of a supernova explosion, are the smallest and densest stars in the Universe. While they typically have a radius of about 10 km (6.2 mi) – about 1.437 x 10-5 times that of the Sun – they also average between 1.4 and 2.16 Solar masses.
At this density, which is the same as that of atomic nuclei, a single teaspoon of neutron star material would weigh about as much as 90 million metric tons (100 million US tons). And now, a team of scientists has conducted a study that indicates that the strongest known material in the Universe – what they refer to as “nuclear pasta” – exists deep inside the crust of neutron stars.
For decades, scientists have theorized that beyond the edge of the Solar System, at a distance of up to 50,000 AU (0.79 ly) from the Sun, there lies a massive cloud of icy planetesimals known as the Oort Cloud. Named in honor of Dutch astronomer Jan Oort, this cloud is believed to be where long-term comets originate from. However, to date, no direct evidence has been provided to confirm the Oort Cloud’s existence.
This is due to the fact that the Oort Cloud is very difficult to observe, being rather far from the Sun and dispersed over a very large region of space. However, in a recent study, a team of astrophysicists from the University of Pennsylvania proposed a radical idea. Using maps of the Cosmic Microwave Background (CMB) created by the Planck mission and other telescopes, they believe that Oort Clouds around other stars can be detected.
The study – “Probing Oort clouds around Milky Way stars with CMB surveys“, which recently appeared online – was led by Eric J Baxter, a postdoctoral researcher from the Department of Physics and Astronomy at the University of Pennsylvania. He was joined by Pennsylvania professors Cullen H. Blake and Bhuvnesh Jain (Baxter’s primary mentor).
To recap, the Oort Cloud is a hypothetical region of space that is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun – though some estimates indicate it could reach as far as 100,000 to 200,000 AU (1.58 and 3.16 ly). Like the Kuiper Belt and the Scattered Disc, the Oort Cloud is a reservoir of trans-Neptunian objects, though it is over a thousands times more distant from our Sun as these other two.
This cloud is believed to have originated from a population of small, icy bodies within 50 AU of the Sun that were present when the Solar System was still young. Over time, it is theorized that orbital perturbations caused by the giant planets caused those objects that had highly-stable orbits to form the Kuiper Belt along the ecliptic plane, while those that had more eccentric and distant orbits formed the Oort Cloud.
According to Baxter and his colleagues, because the existence of the Oort Cloud played an important role in the formation of the Solar System, it is therefore logical to assume that other star systems have their own Oort Clouds – which they refer to as exo-Oort Clouds (EXOCs). As Dr. Baxter explained to Universe Today via email:
“One of the proposed mechanisms for the formation of the Oort cloud around our sun is that some of the objects in the protoplanetary disk of our solar system were ejected into very large, elliptical orbits by interactions with the giant planets. The orbits of these objects were then affected by nearby stars and galactic tides, causing them to depart from orbits restricted to the plane of the solar system, and to form the now-spherical Oort cloud. You could imagine that a similar process could occur around another star with giant planets, and we know that there are many stars out there that do have giant planets.”
As Baxter and his colleagues indicated in their study, detecting EXOCs is difficult, largely for the same reasons for why there is no direct evidence for the Solar System’s own Oort Cloud. For one, there is not a lot of material in the cloud, with estimates ranging from a few to twenty times the mass of the Earth. Second, these objects are very far away from our Sun, which means they do not reflect much light or have strong thermal emissions.
For this reason, Baxter and his team recommended using maps of the sky at the millimeter and submillimeter wavelengths to search for signs of Oort Clouds around other stars. Such maps already exist, thanks to missions like the Planck telescope which have mapped the Cosmic Microwave Background (CMB). As Baxter indicated:
“In our paper, we use maps of the sky at 545 GHz and 857 GHz that were generated from observations by the Planck satellite. Planck was pretty much designed *only* to map the CMB; the fact that we can use this telescope to study exo-Oort clouds and potentially processes connected to planet formation is pretty surprising!”
This is a rather revolutionary idea, as the detection of EXOCs was not part of the intended purpose of the Planck mission. By mapping the CMB, which is “relic radiation” left over from the Big Bang, astronomers have sought to learn more about how the Universe has evolved since the the early Universe – circa. 378,000 years after the Big Bang. However, their study does build on previous work led by Alan Stern (the principal investigator of the New Horizons mission).
In 1991, along with John Stocke (of the University of Colorado, Boulder) and Paul Weissmann (from NASA’s Jet Propulsion Laboratory), Stern conducted a study titled “An IRAS search for extra-solar Oort clouds“. In this study, they suggested using data from the Infrared Astronomical Satellite (IRAS) for the purpose of searching for EXOCs. However, whereas this study focused on certain wavelengths and 17 star systems, Baxter and his team relied on data for tens of thousands of systems and at a wider range of wavelengths.
“Furthermore, the Gaia satellite has recently mapped out very accurately the positions and distances of stars in our galaxy,” Baxter added. “This makes choosing targets for exo-Oort cloud searches relatively straightforward. We used a combination of Gaia and Planck data in our analysis.”
To test their theory, Baxter and is team constructed a series of models for the thermal emission of exo-Oort clouds. “These models suggested that detecting exo-Oort clouds around nearby stars (or at least putting limits on their properties) was feasible given existing telescopes and observations,” he said. “In particular, the models suggested that data from the Planck satellite could potentially come close to detecting an exo-Oort cloud like our own around a nearby star.”
In addition, Baxter and his team also detected a hint of a signal around some of the stars that they considered in their study – specifically in the Vega and Formalhaut systems. Using this data, they were able to place constraints on the possible existence of EXOCs at a distance of 10,000 to 100,000 AUs from these stars, which roughly coincides with the distance between our Sun and the Oort Cloud.
However, additional surveys will be needed before the existence any of EXOCs can be confirmed. These surveys will likely involve the James Webb Space Telescope, which is scheduled to launch in 2021. In the meantime, this study has some rather significant implications for astronomers, and not just because it involves the use of existing CMB maps for extra-solar studies. As Baxter put it:
“Just detecting an exo-Oort cloud would be really interesting, since as I mentioned above, we don’t have any direct evidence for the existence of our own Oort cloud. If you did get a detection of an exo-Oort cloud, it could in principle provide insights into processes connected to planet formation and the evolution of protoplanetary disks. For instance, imagine that we only detected exo-Oort clouds around stars that have giant planets. That would provide pretty convincing evidence that the formation of an Oort cloud is connected to giant planets, as suggested by popular theories of the formation of our own Oort cloud.”
As our knowledge of the Universe expands, scientists become increasingly interested in what our Solar System has in common with other star systems. This, in turn, helps us to learn more about the formation and evolution of our own system. It also provides possible hints as to how the Universe changed over time, and maybe even where life could be found someday.
Eta Carinae, a double star system located 7,500 light years away in the constellation Carina, has a combined luminosity of more than 5 million Suns – making it one of the brightest stars in the Milky Way galaxy. But 170 years ago, between 1837 and 1858, this star erupted in what appeared to be a massive supernova, temporarily making it the second brightest star in the sky.
Strangely, this blast was not enough to obliterate the star system, which left astronomers wondering what could account for the massive eruption. Thanks to new data, which was the result of some “forensic astronomy” (where leftover light from the explosion was examined after it reflected off of interstellar dust) a team of astronomers now think they have an explanation for what happened.
In their first study, the team indicates how they studied the “light echoes” produced by the explosion, which were reflected off of interstellar dust and are just now visible from Earth. From this, they observed that the eruption resulted in material expanding at speeds that were up to 20 times faster than with any previously-observed supernova.
In the second study, the team studied the evolution of the echo’s light curve, which revealed that it experienced spikes before 1845, then plateaued until 1858 before steadily declining over the next decade. Basically, the observed velocities and light curve were consistent with the blast wave of a supernova explosion rather than the relatively slow and gentle winds expected from massive stars before they die.
The light echoes were first detected in images obtained in 2003 by telescopes at the Cerro Tololo Inter-American Observatory in Chile. For the sake of their study, the team consulted spectroscopic data from the Magellan telescopes at the Las Campanas Observatory and the Gemini South Observatory, both located in Chile. This allowed the team to measure the light and determine the ejecta’s expansion speeds – more than 32 million km/h (20 million mph).
Based on this data, the team hypothesized that the eruption may have been triggered by a prolonged battle between three stars, which destroyed one star and left the other two in a binary system. This battle may have culminated with a violent explosion when Eta Carinae devoured one of its two companions, sending more than 10 Solar masses into space. This ejected mass created the gigantic bipolar nebula (aka. “the Homunculus Nebula”) which is seen today.
As Smith explained in a recent HubbleSite press release:
“We see these really high velocities in a star that seems to have had a powerful explosion, but somehow the star survived. The easiest way to do this is with a shock wave that exits the star and accelerates material to very high speeds.”
In this scenario, Eta Carinae started out as a trinary system, with two massive stars orbiting close to each other and the third orbiting further away. When the most massive of the binary neared the end of its life, it began to expand and then transfer much of its material onto its slightly smaller companion. This caused the smaller star to accumulate just enough energy to cause it to eject its outer layers, but not enough to completely annihilate it.
The companion star would have then grown to become about 100 times the mass of our Sun and extremely bright. The other star, now weighing only 30 Solar masses, would have been stripped of its hydrogen layers, exposing its hot helium core – which represent an advanced stage of evolution in the lives of massive stars. As Armin Rest – a researcher from the STSI, The John Hopkins University and a co-author on the paper – explained:
“From stellar evolution, there’s a pretty firm understanding that more massive stars live their lives more quickly and less massive stars have longer lifetimes. So the hot companion star seems to be further along in its evolution, even though it is now a much less massive star than the one it is orbiting. That doesn’t make sense without a transfer of mass.”
This transfer of mass would have altered the gravitational balance of the system, causing the helium-core star to move farther away from its now-massive companion and eventually travel so far that it would interact with the outermost third star. This would cause the third star to move towards the massive star and eventually merge with it, producing an outflow of material.
Initially, the merger caused ejecta that expanded relatively slowly, but as the two stars finally joined together, they produced an explosive event that blasted material off 100 times faster. This material caught up to the slow ejecta, pushing it forward and heating the material until it glowed. This glowing material was the main light source that was viewed by astronomers 170 years ago.
In the end, the smaller helium-core star settled into an elliptical orbit around around its massive counterpart, passing through the star’s outer layers every 5.5 years and generating X-ray shock waves. According to Smith, while this explanation cannot account for everything observed in Eta Carinae, it does explain both the brightening and the fact that the star remains:
“The reason why we suggest that members of a crazy triple system interact with each other is because this is the best explanation for how the present-day companion quickly lost its outer layers before its more massive sibling.”
These studies have provided new clues as to the mystery of how Eta Carinae appeared to explode in a massive supernova, but left behind a massive star and nebula. In addition, a better understanding of the physics behind the Eta Carinae explosion could help astronomers to learn more about the complicated interactions that govern binary and multiple star systems – which are critical to our understanding of the evolution and death of massive stars.
When looking to study the most distant objects in the Universe, astronomers often rely on a technique known as Gravitational Lensing. Based on the principles of Einstein’s Theory of General Relativity, this technique involves relying on a large distribution of matter (such as a galaxy cluster or star) to magnify the light coming from a distant object, thereby making it appear brighter and larger.
This technique has allowed for the study of individual stars in distant galaxies. In a recent study, an international team of astronomers used a galaxy cluster to study the farthest individual star ever seen in the Universe. Although it normally to faint to observe, the presence of a foreground galaxy cluster allowed the team to study the star in order to test a theory about dark matter.
For the sake of their study, Prof. Kelly and his associates used the galaxy cluster known as MACS J1149+2223 as their lens. Located about 5 billion light-years from Earth, this galaxy cluster sits between the Solar System and the galaxy that contains Icarus. By combining Hubble’s resolution and sensitivity with the strength of this gravitational lens, the team was able to see and study Icarus, a blue giant.
Icarus, named after the Greek mythological figure who flew too close to the Sun, has had a rather interesting history. At a distance of roughly 9 billion light-years from Earth, the star appears to us as it did when the Universe was just 4.4 billion years old. In April of 2016, the star temporarily brightened to 2,000 times its normal luminosity thanks to the gravitational amplification of a star in MACS J1149+2223.
As Prof. Kelly explained in a recent UCLA press release, this temporarily allowed Icarus to become visible for the first time to astronomers:
“You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions.”
Kelly and a team of astronomers had been using Hubble and MACS J1149+2223 to magnify and monitor a supernova in the distant spiral galaxy at the time when they spotted the new point of light not far away. Given the position of the new source, they determined that it should be much more highly magnified than the supernova. What’s more, previous studies of this galaxy had not shown the light source, indicating that it was being lensed.
As Tommaso Treu, a professor of physics and astronomy in the UCLA College and a co-author of the study, indicated:
“The star is so compact that it acts as a pinhole and provides a very sharp beam of light. The beam shines through the foreground cluster of galaxies, acting as a cosmic magnifying glass… Finding more such events is very important to make progress in our understanding of the fundamental composition of the universe.
In this case, the star’s light provided a unique opportunity to test a theory about the invisible mass (aka. “dark matter”) that permeates the Universe. Basically, the team used the pinpoint light source provided by the background star to probe the intervening galaxy cluster and see if it contained huge numbers of primordial black holes, which are considered to be a potential candidate for dark matter.
These black holes are believed to have formed during the birth of the Universe and have masses tens of times larger than the Sun. However, the results of this test showed that light fluctuations from the background star, which had been monitored by Hubble for thirteen years, disfavor this theory. If dark matter were indeed made up of tiny black holes, the light coming from Icarus would have looked much different.
Since it was discovered in 2016 using the gravitational lensing method, Icarus has provided a new way for astronomers to observe and study individual stars in distant galaxies. In so doing, astronomers are able to get a rare and detailed look at individual stars in the early Universe and see how they (and not just galaxies and clusters) evolved over time.
When the James Webb Space Telescope (JWST) is deployed in 2020, astronomers expect to get an even better look and learn so much more about this mysterious period in cosmic history.
In September of 2015, the star KIC 8462852 (aka. Tabby’s Star) captured the world’s attention when it was found to be experiencing a mysterious drop in brightness. In the years since then, multiple studies have been conducted that have tried to offer a natural explanation for this behavior – and even an unnatural one (i.e. the “alien megastructure” theory). At the same time, multiple observatories have been tracking the star regularly for further dimming.
Well, it seems that Tabby’s Star is at it again! On Friday, March 16th, Tabetha Boyajian (the astronomer who was responsible for discovering the star’s variations in flux) and her colleagues reported that the star was dimming yet again. As they indicated recently their blog – Where’s the Flux? – the star experienced its greatest dip since it was observed by the Kepler mission in 2013.
Despite thousands of years of research and observation, there is much that astronomers still don’t know about the Milky Way Galaxy. At present, astronomers estimate that it spans 100,000 to 180,000 light-years and consists of 100 to 400 billion stars. In addition, for decades, there have been unresolved questions about how the structure of our galaxy evolved over the course of billions of years.
For example, astronomers have long suspected that galactic halo came from – giant structures of stars that orbit above and below the flat disk of the Milky Way – were formed from debris left behind by smaller galaxies that merged with the Milky Way. But according to a new study by an international team of astronomers, it appears that these stars may have originated within the Milky Way but were then kicked out.
The study recently appeared in the journal Nature under the title “Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk“. The study was led by Margia Bergmann, a researcher from the Max Planck Institute for Astronomy, and included members from the Australian National University, the California Institute of Technology, and multiple universities.
For the sake of their study, the team relied on data from the W.M. Keck Observatory to determine the chemical abundance patterns from 14 stars located in the galactic halo. These stars were located in two different halo structures – the Triangulum-Andromeda (Tri-And) and the A13 stellar overdensities – which are bout 14,000 light years above and below the Milky Way disc.
As Bergemann explained in a Keck Observatory press release:
“The analysis of chemical abundances is a very powerful test, which allows, in a way similar to the DNA matching, to identify the parent population of the star. Different parent populations, such as the Milky Way disk or halo, dwarf satellite galaxies or globular clusters, are known to have radically different chemical compositions. So once we know what the stars are made of, we can immediately link them to their parent populations.”
The team also obtained spectra from one additional using the European Southern Observatory’s Very Large Telescope (VLT) in Chile. By comparing the chemical compositions of these stars with the ones found in other cosmic structures, the scientists noticed that the chemical compositions were almost identical. Not only were they similar within and between the groups being studies, they closely matched the abundance patterns of stars found within the Milky Way’s outer disk.
From this, they concluded that these stellar population in the Galactic Halo were formed in the Milky Way, but then relocated to locations above and below the Galactic Disk. This phenomena is known as “galactic eviction”, where structures are pushed off the plane of the Milky Way when a massive dwarf galaxy passes through the galactic disk. This process causes oscillations that eject stars from the disk, in whichever the dwarf galaxy is moving.
“The oscillations can be compared to sound waves in a musical instrument,” added Bergemann. “We call this ‘ringing’ in the Milky Way galaxy ‘galactoseismology,’ which has been predicted theoretically decades ago. We now have the clearest evidence for these oscillations in our galaxy’s disk obtained so far!”
These observations were made possible thanks to the High-Resolution Echelle Spectrometer (HiRES) on the Keck Telescope. As Judy Cohen, the Kate Van Nuys Page Professor of Astronomy at Caltech and a co-author on the study, explained:
“The high throughput and high spectral resolution of HIRES were crucial to the success of the observations of the stars in the outer part of the Milky Way. Another key factor was the smooth operation of Keck Observatory; good pointing and smooth operation allows one to get spectra of more stars in only a few nights of observation. The spectra in this study were obtained in only one night of Keck time, which shows how valuable even a single night can be.”
These findings are very exciting for two reasons. On the one hand, it demonstrates that halo stars likely originated in the Galactic think disk – a younger part of the Milky Way. On the other hand, it demonstrates that the Milky Way’s disk and its dynamics are much more complex than previously thought. As Allyson Sheffield of LaGuardia Community College/CUNY, and a co-author on the paper, said:
“We showed that it may be fairly common for groups of stars in the disk to be relocated to more distant realms within the Milky Way – having been ‘kicked out’ by an invading satellite galaxy. Similar chemical patterns may also be found in other galaxies, indicating a potential galactic universality of this dynamic process.”
As a next step, the astronomers plan to analyze the spectra of additional stars in the Tri-And and A13 overdensities, as well as stars in other stellar structures further away from the disk. They also plan to determine masses and ages of these stars so they can constrain the time limits of when this galactic eviction took place.
In the end, it appears that another long-held assumption on galactic evolution has been updated. Combined with ongoing efforts to probe the nuclei of galaxies – to see how their Supermassive Black Holes and star formation are related – we appear to be getting closer to understanding just how our Universe evolved over time.