Astronomers are gazing closely at supernova 2014J (inset) to see what sort of triggers caused the star explosion. Credit: NASA/SAO/CXC/R. Margutti et al
X marks the spot: after probing the area where a star used to be, in X-rays, astronomers have been able to rule out one cause for the supernova explosion.
Because the Chandra X-Ray Observatory did not detect anything unusual in X-rays, astronomers say this means that a white dwarf was not responsible for pulling off material from a massive star that exploded (from Earth’s vantage point) on Jan. 21, 2014, triggering excitement from professional and amateur astronomers alike.
“While it may sound a bit odd, we actually learned a great deal about this supernova by detecting absolutely nothing,” stated study leader Raffaella Margutti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Massachusetts. “Now we can essentially rule out that the explosion was caused by a white dwarf continuously pulling material from a companion star.”
So what caused it? Possibly two white dwarfs merged instead. Follow-up observations will take place in Messier 88 and the source of the explosion, which was about 12 million light-years from Earth. While that’s a long time by human standards, astronomers point out that is close on the cosmic distance scale.
A Hubble Space Telecope picture of globular cluster IC 4499. The new observations showed that it is about 12 billion years old, contrary to previous observations showing a puzzling young age. Credit: European Space Agency and NASA
Is this group of stars belonging to one generation, or more? That’s one of the things that was puzzling astronomers for decades, particularly when they were trying to pin down the age of IC 4499 — the globular cluster you see in this new picture from the Hubble Space Telescope.
“It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster’s age,” stated information from the European Space Agency reposted on NASA’s website.
“For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times.”
IC 4499 is somewhere in between these extremes, but only has a single generation of stars — its gravity wasn’t quite enough to pull in neighboring gas and dust to create more. Goes to show you how important it is to re-examine the results in science.
How WISE 70304-2705 could have evolved from a star to a "planet-like object". Credit: John Pinfield,
Nature once again shows us how hard it is to fit astronomical objects into categories. An examination of a so-far unique brown dwarf — an object that is a little too small to start nuclear fusion and be a star — shows that it could have been as hot as a star in the ancient past.
The object is one of a handful of brown dwarfs that are called “Y dwarfs”. This is the coolest kind of star or star-like object we know of. These objects have been observed at least as far back as 2008, although they were predicted by theory before.
A group of scientists observed the object, called WISE J0304-2705, with NASA’s space-based Wide-field Infrared Survey Explorer (WISE). Looking at the spectrum of light it had emitted, which shows the object’s composition, has scientists saying that what the brown dwarf is made of suggests it is rather old — billions of years old.
“Our measurements suggest that this Y dwarf may have a composition … or age characteristic of one of the galaxy’s older members,” stated David Pinfield at the University of Hertfordshire, who led the research.
“This would mean its temperature evolution could have been rather extreme – despite starting out at thousands of degrees, this exotic object is now barely hot enough to boil a cup of tea.”
Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).
While the object started out hot, its interior never was quite enough to fuse hydrogen. That led to the extreme cooling visible today.
Models suggest the object would have begun its life shining at 2,800 degrees Celsius (5,072 Fahrenheit), for a phase that would have lasted for 20 million years. In the next 100 million years, its temperature would have almost halved to 1,500 Celsius (2,730 Fahrenheit).
And it would have kept cooling, with a temperature of 1,000 Celsius (1,832 Fahrenheit) after a billion years, and after billions of more years, the temperature we see today — somewhere between 100 Celsius (212 Fahrenheit) and 150 Celsius (302 Fahrenheit).
The paper will be published shortly in the Monthly Notices of the Royal Astronomical Society. The research is available in preprint version on Arxiv. One limitation of the research is the small number of Y dwarfs discovered, only about 20, which means that more observations will be needed to see if other objects could have had this same evolution.
LDN 673, a molecular cloud complex in the constellation Aquila. Credit and copyright: Callum Hayton.
What a stunning view of this dark region of space! This image, by astrophotographer Callum Hayton shows LDN 673, a molecular cloud complex that lies in the constellation Aquila. This region is massive — around 67 trillion kilometers (42 trillion miles across), and it is between 300-600 light years from Earth. Observers in the northern hemisphere can find this region in the summer skies near the bright star Altair and the Summer Triangle.
Because the cloud lies on the galactic plane, the dark dust is back-lit by millions of stars in the Milky Way galaxy. This dusty cloud likely contains enough raw material to form hundreds of thousands of stars. Hayton explained on Flickr how the dust gets “eroded” away by stellar formation:
“When some of these clouds reach a certain mass they begin to collapse and fragment creating protostars,” Hayton wrote. “As the temperature and pressure at the centre of the protostar rises, sometimes it becomes so great that nuclear fusion begins and a star is born. In this image you can see where at least two young stars have eroded the dust around them and are now above the clouds casting light down on to the dust below.”
Gorgeous!
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Artist's conception of pulsar J1023 before (top) and after the radio beacon (visible in green) disappeared. Credit:
NASA's Goddard Space Flight Center
Another snapshot of our strange universe: astronomers recently caught a pulsar — a particular kind of dense star — switch off its radio beacon while powerful gamma rays brightened fivefold.
“It’s almost as if someone flipped a switch, morphing the system from a lower-energy state to a higher-energy one,” stated lead researcher Benjamin Stappers, an astrophysicist at the University of Manchester, England.
“The change appears to reflect an erratic interaction between the pulsar and its companion, one that allows us an opportunity to explore a rare transitional phase in the life of this binary.”
The binary system includes pulsar J1023+0038 and another star that has a fifth of the mass of the sun. They’re close orbiting, spinning around each other every 4.8 hours. This means the companion’s days are numbered, because the pulsar is pulling it apart.
In NASA’s words, here is what is going on:
In J1023, the stars are close enough that a stream of gas flows from the sun-like star toward the pulsar. The pulsar’s rapid rotation and intense magnetic field are responsible for both the radio beam and its powerful pulsar wind. When the radio beam is detectable, the pulsar wind holds back the companion’s gas stream, preventing it from approaching too closely. But now and then the stream surges, pushing its way closer to the pulsar and establishing an accretion disk.
Gas in the disk becomes compressed and heated, reaching temperatures hot enough to emit X-rays. Next, material along the inner edge of the disk quickly loses orbital energy and descends toward the pulsar. When it falls to an altitude of about 50 miles (80 km), processes involved in creating the radio beam are either shut down or, more likely, obscured.
The inner edge of the disk probably fluctuates considerably at this altitude. Some of it may become accelerated outward at nearly the speed of light, forming dual particle jets firing in opposite directions — a phenomenon more typically associated with accreting black holes. Shock waves within and along the periphery of these jets are a likely source of the bright gamma-ray emission detected by Fermi.
In this image from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile young stars huddle together against a backdrop of clouds of glowing gas and lanes of dust. The star cluster, known as NGC 3293, would have been just a cloud of gas and dust itself about ten million years ago, but as stars began to form it became the bright group we see here. Clusters like this are celestial laboratories that allow astronomers to learn more about how stars evolve.
Credit:
ESO/G. Beccari
Any human being knows the awe-inspiring wonder of a splash of stars against a dark backdrop. But it takes a skilled someone to truly appreciate a distant object viewed through an eyepiece. Your gut tightens as you realize that the tiny fuzzy blob is really thousands of light-years away.
That wave of amazement is encouraged by understanding and knowledge.
Stunning photographs of the cosmos further convey the beauty that arises from the simple interplay of dust, light and gas on absolutely massive and distant scales. The striking image above from ESO’s La Silla Observatory in Chile is but one example.
Stars are born in enormous clouds of gas and dust. Small pockets in these clouds collapse under the pull of gravity, eventually becoming so hot that they ignite nuclear fusion. The result is a cluster of tens to hundreds of thousands of stars bound together by their mutual gravitational attraction.
Every star in a cluster is roughly the same age and has the same chemical composition. They’re the closest thing astronomers have to a controlled laboratory environment.
This chart shows the location of the bright open star cluster NGC 3293 (marked by a red circle) in the southern constellation of Carina. Image Credit: ESO / IAU / Sky & Telescope
The star cluster, NGC 3293, is located 8000 light-years from Earth in the constellation of Carina. It was first spotted by the French astronomer Nicolas-Louis de Lacaille during his stay in South Africa in 1751. Because it stands as one of the brightest clusters in the southern sky, de Lacaille was able to site it in a tiny telescope with an aperture of just 12 millimeters.
The cluster is less than 10 million years old, as can be seen by the abundance of hot, blue stars. Despite some evidence suggesting that there is still some ongoing star formation, it is thought that most, if not all, of the nearly 50 stars were born in one single event.
But even though these stars are all the same age, they do not all have the dazzling appearance of stars in their infancy. Some look positively elderly. The reason is simple: stars of different size, evolve at different speeds. More massive stars speed through their evolution, dying quickly, while less massive stars can live tens of billions of years.
Take the bright orange star at the bottom right of the cluster. Stars initially draw their energy from burning hydrogen into helium deep within their cores. But this star ran out of hydrogen fuel faster than its neighbors, and quickly evolved into a cool and bright, giant star with a contracted core but an extended atmosphere.
It’s now a cool, red giant, in a new stage of evolution, while its neighbors remain hot, young stars.
Eventually the star will collapse under its own gravity, throwing off its outer layers in a supernova explosion, and leaving behind a neutron star or a black hole. The peppering shock waves will likely initiate further star formation in the ever-changing laboratory.
A collection of images from the Chandra X-Ray Observatory marking its 15th anniversary in space. Top, from left: the crab Nebula, supernova remnant G292.0+1.8 and the Crab Nebula. At bottom, supernova remnant 3C58. Credit: NASA/CXC/SAO
It’s well past the Fourth of July, but you can still easily find fireworks in the sky if you look around. The Chandra X-Ray Observatory has been doing just that for the past 15 years, revealing what the universe looks like in these longer wavelengths that are invisible to human eyes.
Just in time for the birthday, NASA released four pictures that Chandra took of supernova (star explosion) remnants it has observed over the years. The pictures stand as a symbol of what the telescope has shown us so far.
“Chandra changed the way we do astronomy. It showed that precision observation of the X-rays from cosmic sources is critical to understanding what is going on,” stated Paul Hertz, NASA’s Astrophysics Division director, in a press release. “We’re fortunate we’ve had 15 years – so far – to use Chandra to advance our understanding of stars, galaxies, black holes, dark energy, and the origin of the elements necessary for life.”
The telescope launched into space in 1999 aboard the space shuttle and currently works at an altitude as high as 86,500 miles (139,000 miles). It is named after Indian-American astrophysicist Subrahmanyan Chandrasekhar; the name “Chandra” also means “moon” or “luminous” in Sanskrit.
And there’s more to come. You can learn more about Chandra’s greatest discoveries and its future in this Google+ Hangout, which will start at 3 p.m. EDT (7 p.m. EDT) at this link.
Interior of Jupiter. Image Credit: NASA / R. J. Hall
It’s likely that Jupiter-like planets’ origins root back to either the rapid collapse of a dense cloud or small rocky cores that glom together until the body is massive enough to accrete a gaseous envelope.
Although these two competing theories are both viable, astronomers have, for the first time, seen the latter “core accretion” theory in action. By studying the exoplanet’s host star they’ve shed light on the composition of the planet’s rocky core.
“Our results show that the formation of giant planets, as well as terrestrial planets like our own Earth, leaves subtle signatures in stellar atmospheres”, said lead author and PhD student Marcelo Tucci Maia from University of São Paulo, Brazil, in a press release.
Maia and colleagues pointed the 3.5-meter Canada-France-Hawaii Telescope toward the constellation Cygnus, in order to take a closer look at two Sun-like stars in the distant 16 Cyg triple-star system. Both stars, having formed together from the same gaseous disk over 10 billion years ago and having reached the same mass, are nearly solar twins.
But only one star, 16 Cygni B, hosts a giant planet. By decomposing the light from the two stars into their wavelengths and looking at the difference between the two stars, the team was able to detect signatures left from the planet formation process on 16 Cygni B.
It’s the perfect laboratory to study the formation of giant planets.
Difference in chemical composition between the stars 16 Cyg A and 16 Cyg B, versus the condensation temperature of the elements in the proto-planetary nebula. Image Credit: M. Tucci Maia, J. Meléndez, I. Ramírez.
Maia and colleagues found that the star 16 Cygni A is enhanced in all chemical elements relative to 16 Cygni B. Hence, the metals removed from 16 Cygni B were most likely removed from the protoplanetary disk in order to form the planet.
On top of the overall deficiency in all elements, 16 Cygni B has an added deficiency in the refractory elements — those with high condensation temperatures that form dust grains more easily — such as iron, aluminum, nickel, magnesium, scandium, and silicon. This helps verify what astronomers have expected all along: rocky cores are rich in refractory elements.
The team was able to decipher that these missing elements likely created a rocky core with a mass of about 1.5 to 6 Earth masses, which is similar to the estimate of Jupiter’s core.
“16 Cyg is a remarkable system, but certainly not unique,” said coauthor Ivan Ramírez from the University of Texas. “It is special because it is nearby; however, there are many other binary stars with twin components on which this experiment could be performed. This could help us find planet-host stars in binaries in a much more straightforward manner compared to all other planet-finding techniques we have available today.”
The results were accepted for publication in The Astrophysical Journal Letters and are available online.
There’s no doubt the term “Earth-like” is a bit of a misnomer. It requires only that a planet is both Earth-size (less than 1.25 times Earth’s girth and less than twice Earth’s mass) and circles its host star within the habitable zone.
But defining a “Sun-like” star may be just as difficult. A solar twin should have a temperature, mass, age, radius, metallicity, and spectral type similar to the Sun. Although measuring most of these factors isn’t easy, aging a star is extremely difficult, and astronomers tend to ignore it when concluding if a star is Sun-like or not.
This is less than ideal, given that our Sun and all stars change over time. Thankfully a technique — gyrochronology — is allowing astronomers to measure stellar ages based only on spin and find true solar analogues.
“We have found stars with properties that are close enough to those of the Sun that we can call them ‘solar twins,'” said lead author Jose Dias do Nascimento from the Harvard-Smithsonian Center for Astrophysics (CfA) in a press release.
do Nascimento and colleagues measured the spin of 75 stars by looking for changes in brightness caused by dark star spots, rotating in and out of view. Although this difference is minute, clocking in at a few percent or less, NASA’s Kepler spacecraft excels at extracting such small changes in brightness.
On average, the sampled stars spin once every 19 days, compared to the 25-day rotation period of the Sun. This makes most of the stars slightly younger than the Sun, as younger stars spin faster than older ones.
The relationship between stellar spin and age was determined in previous research by Soren Meibom (CfA) and colleagues, who measured the rotation rates for stars in a one-billion-year-old cluster. Since the stars already had a known age, the team could measure their spin rates and calibrate the previous relationship.
Using this method, do Nascimento and colleagues found 22 true solar analogues within their data set of 75 stars.
“With solar twins we can study the past, present, and future of stars like our Sun,” said do Nascimento. “Consequently, we can predict how planetary systems like our solar system will be affected by the evolution of their central stars.”
The results were accepted for publication in The Astrophysical Journal Letters and are available online.
In this new Hubble image shows two galaxies (yellow, center) from the cluster SDSS J1531+3414 have been found to be merging into one and a "chain" of young stellar super-clusters are seen winding around the galaxies'?? nuclei. The galaxies are surrounded by an egg-shaped blue ring caused by the immense gravity of the cluster bending light from other galaxies beyond it. Credit: NASA/ESA/Grant Tremblay
On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future heavyweight adorned with a dazzling string of super-sized star clusters.
The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.
A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)
Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.
Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.
The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. What look like stars around M87 are really globular star clusters. Credit: NASA/ESA
But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.
Close up of the two elliptical galaxies undergoing a merger. The blue blobs are giant star clusters forming from gas colliding and collapsing into stars during the merger. Click to read the scientific paper on the topic. Credit: NASA/ESA/Grant Tremblay
Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.
The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.
Simulation of the Milky Way-Andromeda collision 4 billion years from now
Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.