Astronomers Find Evidence of a Strange Type of Star

Illustration of the red supergiant Betelgeuse, as seen from a fictional orbiting world. © Digital Drew.

One has never been spotted for sure in the wild jungle of strange stellar objects out there, but astronomers now think they have finally found a theoretical cosmic curiosity: a Thorne-Zytkow Object, or TZO, hiding in the neighboring Small Magellanic Cloud. With the outward appearance of garden-variety red supergiants, TZOs are actually two stars in one: a binary pair where a super-dense neutron star has been absorbed into its less dense supergiant parter, and from within it operates its exotic elemental forge.

First theorized in 1975 by physicist Kip Thorne and astronomer Anna Zytkow, TZOs have proven notoriously difficult to find in real life because of their similarity to red supergiants, like the well-known Betelgeuse at the shoulder of Orion. It’s only through detailed spectroscopy that the particular chemical signatures of a TZO can be identified.

Infrared portrait of the Small Magellanic Cloud, made by NASA's Spitzer Space Telescope
Portrait of the Small Magellanic Cloud, made by NASA’s Spitzer Space Telescope

Observations of the red supergiant HV 2112 in the Small Magellanic Cloud*, a dwarf galaxy located a mere 200,000 light-years away, have revealed these signatures — unusually high concentrations of heavy elements like molybdenum, rubidium, and lithium.

While it’s true that these elements are created inside stars — we are all star-stuff, like Carl Sagan said — they aren’t found in quantity within the atmospheres of lone supergiants. Only by absorbing a much hotter star — such as a neutron star left over from the explosive death of a more massive partner — is the production of such elements presumed to be possible.

“Studying these objects is exciting because it represents a completely new model of how stellar interiors can work,”said Emily Levesque, team leader from the University of Colorado Boulder and lead author on the paper. “In these interiors we also have a new way of producing heavy elements in our universe.”

Definitive detection of a TZO would provide direct evidence for a completely new model of stellar interiors, as well as confirm a theoretically predicted fate for massive star binary systems and the existence of nucleosynthesis environments that offer a new channel for heavy-element and lithium production in our universe.
– E.M. Levesque et al., Discovery of a Thorne-Zytkow object candidate in the Small Magellanic Cloud

One of the original proposers of TZOs, Dr. Anna Zytkow, is glad to see her work resulting in new discoveries.

“I am extremely happy that observational confirmation of our theoretical prediction has started to emerge,” Zytkow said. “Since Kip Thorne and I proposed our models of stars with neutron cores, people were not able to disprove our work. If theory is sound, experimental confirmation shows up sooner or later. So it was a matter of identification of a promising group of stars, getting telescope time and proceeding with the project.”

The findings were first announced in January at the 223rd meeting of the American Astronomical Society. The paper has now been accepted for publication in the Monthly Notices of the Royal Astronomical Society Letters, and is co-authored by Philip Massey, of Lowell Observatory in Flagstaff, Arizona; Anna Zytkow of the University of Cambridge in the U.K.; and Nidia Morrell of the Carnegie Observatories in La Serena, Chile. Read the team’s paper here.

Source: University of Colorado, Boulder. Illustration by ‘Digital Drew.’
__________________________
*In the paper the team notes that it’s not yet confirmed that HV 2112 is part of the SMC and could be associated with our own galaxy. If so it would rule out it being a TZO, but would still require an explanation of its observed spectra.

Discovered: Two New Planets for Kapteyn’s Star

An artist's conception of the planets orbiting Kapteyn's Star (inset) and the stream of stars associated with an ancient galaxy merger. Credit: image courtesy of Victor Robles, James Bullock, and Miguel Rocha at University of California Irvine and Joel Primack at University of California Santa Cruz.

The exoplanet discoveries have been coming fast and furious this week, as astronomers announced a new set of curious worlds this past Monday at the ongoing American Astronomical Society’s 224th Meeting being held in Boston, Massachusetts.

Now, chalk up two more worlds for a famous red dwarf star in our own galactic neck of the woods. An international team of astronomers including five researchers from the Carnegie Institution announced the discovery this week of two exoplanets orbiting Kapteyn’s Star, about 13 light years distant. The discovery was made utilizing data from the HIRES spectrometer at the Keck Observatory in Hawaii, as well as the Planet Finding Spectrometer at the Magellan/Las Campanas Observatory and the European Southern Observatory’s La Silla facility, both located in Chile.

The Carnegie Institution astronomers involved in the discovery were Pamela Arriagada, Ian Thompson, Jeff Crane, Steve Shectman, and Paul Butler. The planets were discerned using radial velocity measurements, a planet-hunting technique which looks for tiny periodic changes in the motion of a star caused by the gravitational tugging of an unseen companion.

“That we can make such precise measurements of such subtle effects is a real technological marvel,” said Jeff Crane of the Carnegie Observatories.

Kapteyn’s Star (pronounced Kapt-I-ne’s Star) was discovered by Dutch astronomer Jacobus Kapteyn during a photographic survey of the southern hemisphere sky in 1898. At the time, it had the highest proper motion of any star known at over 8” arc seconds a year — Kapteyn’s Star moves the diameter of a Full Moon across the sky every 225 years — and held this distinction until the discovery of Barnard’s Star in 1916. About a third the mass of our Sun, Kapteyn’s Star is an M-type red dwarf and is the closest halo star to our own solar system. Such stars are thought to be remnants of an ancient elliptical galaxy that was shredded and subsequently absorbed by our own Milky Way galaxy early on in its history. Its high relative velocity and retrograde orbit identify Kapteyn’s Star as a member of a remnant moving group of stars, the core of which may have been the glorious Omega Centauri star cluster.

The worlds of Kapteyn’s Star are proving to be curious in their own right as well.

“We were surprised to find planets orbiting Kapteyn’s Star,” said lead author Dr. Guillem Anglada-Escude, a former Carnegie post-doc now with the Queen Mary University at London. “Previous data showed some irregular motion, so we were looking for very short period planets when the new signals showed up loud and clear.”

The location of Kapteyn's Star in teh constellation Pictor. Created using Stellarium.
The location of Kapteyn’s Star in the constellation Pictor. Created using Stellarium.

It’s curious that nearby stars such as Kapteyn’s, Teegarden’s and Barnard’s star, though the site of many early controversial claims of exoplanets pre-1990’s, have never joined the ranks of known worlds which currently sits at 1,794 and counting until the discoveries of Kapteyn B and C. Kapteyn’s star is the 25th closest to our own and is located in the southern constellation Pictor. And if the name sounds familiar, that’s because it made our recent list of red dwarf stars for backyard telescopes. Shining at magnitude +8.9, Kapteyn’s star is visible from latitude 40 degrees north southward.

Kapteyn B and C are both suspected to be rocky super-Earths, at a minimum mass of 4.5 and 7 times that of Earth respectively. Kapteyn B orbits its primary once every 48.6 days at 0.168 A.U.s distant (about 40% of Mercury’s distance from our Sun) and Kapteyn C orbits once every 122 days at 0.3 A.U.s distant.

This is really intriguing, as Kapteyn B sits in the habitable zone of its host star. Though cooler than our Sun, the habitable zone of a red dwarf sits much closer in than what we enjoy in our own solar system. And although such worlds may have to contend with world-sterilizing flares, recent studies suggest that atmospheric convection coupled with tidal locking may allow for liquid water to exist on such worlds inside the “snow line”.

And add to this the fact that Kapteyn’s Star is estimated to be 11.5 billion years old, compared with the age of the universe at 13.7 billion years and our own Sun at 4.6 billion years. Miserly red dwarfs measure their future life spans in the trillions of years, far older than the present age of the universe.

A comparison of habitable zones of Sol-like versus Red dwarf stars. Credit: Chewie/Ignacio Javier under a Wikimedia Commons 3.0 license).
A comparison of habitable zones of Sol-like versus red dwarf stars. Credit: Chewie/Ignacio Javier under a Wikimedia Commons 3.0 license).

“Finding a stable planetary system with a potentially habitable planet orbiting one of the very nearest stars in the sky is mind blowing,” said second author and Carnegie postdoctoral researcher Pamela Arriagada. “This is one more piece of evidence that nearly all stars have planets, and that potentially habitable planets in our galaxy are as common as grains of sand on the beach.”

Of course, radial velocity measurements only give you lower mass constraints, as we don’t know the inclination of the orbits of the planets with respect to our line of sight. Still, this exciting discovery could potentially rank as the oldest habitable super-Earth yet discovered, and would make a great follow-up target for the direct imaging efforts or the TESS space telescope set to launch in 2017.

“It does make you wonder what kind of life could have evolved on those planets over such a long time,” added Dr Anglada-Escude. And certainly, the worlds of Kapteyn’s Star have had a much longer span of time for evolution to have taken hold than Earth… an exciting prospect, indeed!

-Read author Alastair Reynolds’ short science fiction piece Sad Kapteyn accompanying this week’s announcement.

New Supernova Pops in Bright Galaxy M106 in the ‘Hunting Dogs’

The new Type II supernova is nestled up to the nucleus of the galaxy in this photo taken May 21 with a 17-inch telescope. Credit: Gianluca Masi, Francesca Nocentini and Patrick Schmeer

A supergiant star exploded 23.5 million years ago in one of the largest and brightest nearby galaxies. This spring we finally got the news. In April, the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search, photographed a faint “new star” very close to the bright core of M106, a 9th magnitude galaxy in Canes Venatici the Hunting Dogs. 

The core of a red or blue supergiant moments before exploding as a supernova looks like an onion with multiple elements "burning" through the fusion process to create the heat to stay the force of gravity. Fusion stops at iron. With no energy pouring from the central core to keep the other elements cooking, the star collapses and the rebounding shock wave tears it apart.
The inner core of a red or blue supergiant moments before exploding as a supernova looks like an onion with multiple elements “burning” through the fusion process to create the heat and pressure that stays the force of gravity. Fusion stops at iron. With no energy pouring from the central core to keep the other elements cooking, the star collapses and the rebounding shock wave tears it apart.

A study of its light curve indicated a Type II supernova – the signature of a rare supergiant star ending its life in the most violent way imaginable. A typical supergiant star is 8 to 12 times more massive than the sun and burns at a much hotter temperature, rapidly using up its available fuel supply as it cooks lighter elements like hydrogen and helium into heavier elements within its core. Supergiant lifetimes are measured in the millions of years (10-100 million) compared to the frugal sun’s 11 billion years. When silicon fuses to create iron, a supergiant reaches the end of the line – iron can’t be fused or cooked into another heavier element – and its internal “furnace” shuts down. Gravity takes over and the whole works collapses in upon itself at speeds up to 45,000 miles per second.

When the outer layers reached the core, they crushed it into a dense ball of subatomic particles and send a powerful shock wave back towards the surface that rips the star to shreds. A supernova is born!  Newly-minted radioactive forms of elements like nickel and cobalt are created by the tremendous pressure and heat of the explosion. Their rapid decay into stable forms releases energy that contributes to the supernova’s light.

This Hubble Space Telescope image shows how spectacular M106 truly is. Its spiral arms are dotted with dark lanes of dust, young star clusters rich with hot, blue stars and tufts of pink nebulosity swaddling newborn stars. The galaxy is the 106th entry in the 18th century French astronomer Charles Messier's famous catalog. Credit: NASA / ESA
This Hubble Space Telescope image shows how spectacular M106 truly is. Dark filaments of dust are silhouetted against billions of unresolved suns. Young star clusters rich with hot, blue stars and tufts of pink nebulosity swaddling newborn stars ornament the galaxy’s spiral arms. A supermassive black hole rumbles at the heart of the galaxy. M106 is the 106th entry in Charles Messier’s famous catalog created in the 18th century. It’s located 23.5 million light years away. Credit: NASA / ESA

For two weeks, the supernova in M106 remained pinned at around magnitude +15, too faint to tease out from the galaxy’s bright, compact nucleus for most amateur telescopes. But a photograph taken by Gianluca Masi and team on May 21 indicate it may have brightened somewhat. They estimated its red magnitude – how bright it appears when photographed through a red filter – at +13.5. A spectrum made of the object reveals the ruby emission of hydrogen light, the telltale signature of a Type II supernova event.

At magnitude +9, M106 visible in almost any telescope and easy to find. Start just above the Bowl of the Big Dipper which stands high in the northwestern sky at nightfall in late May. The 5th magnitude stars 5 CVn (5 Canes Venatici) and 3 CVn lie near the galaxy. Star hop from the Bowl to these stars and then over to M106. Stars plotted to mag. +8. Click to enlarge. Stellarium
At magnitude +9, M106 visible in almost any telescope and easy to find. Start just above the Bowl of the Big Dipper which stands high in the northwestern sky at nightfall in late May. The 5th magnitude stars 5 CVn (5 Canes Venatici) and 3 CVn lie near the galaxy. Star hop from the Bowl to these stars and then over to M106. Stars plotted to mag. +8. Click to enlarge. Stellarium

Visually the supernova will appear fainter because our eyes are more sensitive to light in the middle of the rainbow spectrum (green-yellow) than the reds and purple that bracket either side. I made a tentative observation of the object last night using a 15-inch (37-cm) telescope and hope to see it more clearly tonight from a darker sky. We’ll keep you updated on our new visitor’s brightness as more observations and photographs come in. You can also check Dave Bishop’s Latest Supernovae site for more information and current images.

Even if the supernova never gets bright enough to see in your telescope, stop by M106 anyway. It’s big, easy to find and shows lots of interesting structure. Spanning 80,000 light years in diameter, M106 would be faintly visible with the naked eye were it as close as the Andromeda Galaxy. In smaller scopes the galaxy’s bright nucleus stands out in a mottled haze of pearly light; 8-inch(20-cm) and larger instrument reveal the two most prominent spiral arms. M106 is often passed up for the nearby more famous Whirlpool Galaxy (M51). Next time, take the detour. You won’t be disappointed.

 

These Ultra-Black ‘Cosmic Clumps’ Will Give Birth To Powerful Stars

"Cosmic clumps" seen in NASA's Spitzer Space Telescope throw the deepest shadows scientists have ever seen. Credit: NASA/JPL-Caltech/University of Zurich

When gas and dust squeeze tightly enough together in space, no light can get through and the place is black as pitch. But this dusty cloud seen about 16,000 light-years away from us will eventually generate new stars, with the darkest parts creating powerful O-type stars — a star-type poorly known to scientists.

“The map of the structure of the cloud and its dense cores we have made in this study reveals a lot of fine details about the massive star and star cluster formation process,” stated Michael Butler, a postdoctoral researcher at the University of Zurich in Switzerland who led the study.

The new study, which included observations from NASA’s Spitzer Space Telescope, examined the shadows these clumps cast and concluded this cloud is about 7,000 times more massive than the sun, and about 50 light-years in diameter. Because Spitzer examines the universe in infrared light, this allows it to peer through dusty areas that are difficult or impossible to see in visual light, allowing Spitzer to examine different astronomical phenomena.

Artist's concept of NASA's Spitzer Space Telescope surrounded by examples of exoplanets it has looked at. Credit: NASA/JPL-Caltech
Artist’s concept of NASA’s Spitzer Space Telescope surrounded by examples of exoplanets it has looked at. Credit: NASA/JPL-Caltech

Looking at clouds such as this one are expected to shed more light (so to speak) on how O-type stars are created. This stellar type is at least 16 times as massive as the sun (but can be much more) and is known for its wind and powerful radiation, that clean out the neighborhood of any dust or gas that could have formed other planets or stars.

Once these stars reach the end of their short lives, they explode as supernovas and also create heavier elements that are found in rocky planets and in the case of Earth (as far as we know), living beings. Researchers are still unclear on how the stars are able to pick up mass that is so much more the mass of our sun without breaking apart.

A mission extension for Spitzer was not approved after a NASA Senior Review made public last week, but officials were told to submit a revised budget for consideration in 2016.

You can read more about the study, which was published earlier this year, in Astrophysical Journal Letters.

Source: Jet Propulsion Laboratory

New Supernova Likely Arose From Massive Wolf-Rayet Star

M1-67 is the youngest wind-nebula around a Wolf-Rayet star, called WR124, in our Galaxy. Credit: ESO

They’ve been identified as possible causes for supernovae for a while, but until now, there was a lack of evidence linking massive Wolf-Rayet stars to these star explosions. A new study was able to find a “likely” link between this star type and a supernova called SN 2013cu, however.

“When the supernova exploded, it flash ionized its immediate surroundings, giving the astronomers a direct glimpse of the progenitor star’s chemistry. This opportunity lasts only for a day before the supernovablast wave sweeps the ionization away. So it’s crucial to rapidly respond to a young supernova discovery to get the flash spectrum in the nick of time,” the Carnegie Institution for Science wrote in a statement.

“The observations found evidence of composition and shape that aligns with that of a nitrogen-rich Wolf-Rayet star. What’s more, the progenitor star likely experienced an increased loss of mass shortly before the explosion, which is consistent with model predictions for Wolf-Rayet explosions.”

NGC 3199 - Credit: Ken Crawford
NGC 3199 – Credit: Ken Crawford

The star type is known for lacking hydrogen (in comparison to other stars) — which makes it easy to identify spectrally — and being large (upwards of 20 times more massive than our Sun), hot and breezy, with fierce stellar winds that can reach more than 1,000 kilometres per second. This particular supernova was spotted by the Palomar 48-inch telescope in California, and the “likely progenitor” was found about 15 hours after the explosion.

Researchers also noted that the new technique, called “flash spectroscopy”, allows them to look at stars over a range of about 100 megaparsecs or more than 325 million light years — about five times further than what previous observations with the Hubble Space Telescope revealed.

The research was published in Nature. It was led by Avishay Gal-Yam of the Weizmann Institute of Science in Israel.

Source: Carnegie Institution for Science

Did That Star Eat A Planet? Rocky Elements Could Tell The Tale

Earth scorched by red giant Sun
Artist's impression of the Earth scorched by our Sun as it enters its Red Giant Branch phase. Credit: Wikimedia Commons/Fsgregs

It’s amazing what astronomers can figure out from afar, and this now might include whether a star ate a few planets sometime during its history. Through looking at the predicted elements that make up a star, and any changes, this could be a key to figuring out if any planets were swallowed up by the star.

“Imagine that the star originally formed rocky planets like Earth. Further, imagine that it also formed gas giant planets like Jupiter,” stated Trey Mack, a graduate student in astronomy at Vanderbilt University who led the research.

 

“The rocky planets form in the region close to the star where it is hot and the gas giants form in the outer part of the planetary system where it is cold. However, once the gas giants are fully formed, they begin to migrate inward and, as they do, their gravity begins to pull and tug on the inner rocky planets. If enough rocky planets fall into the star, they will stamp it with a particular chemical signature that we can detect.”

Stars are mostly made up of hydrogen and helium (98%), meaning other elements only make up about 2% of the star. These elements (all of which are heavier than hydrogen and helium) are referred to as metals and when it comes to iron abundance, you will sometimes see the term “metallicity” referred to, concerning the ratio of iron to hydrogen.

To expand on previous studies concerning metallicity and how planets form, Mack examined sun-like stars to see the abundance of 15 elements, especially those such as aluminum, silicon, calcium and iron — considered to be the foundation of rocky planets such as the Earth.

The astronomers examined binary sun-like stars HD 20781 and HD 20782, which started with the same chemical compositions since they both came to be in the same gas and dust cloud. One star hosts two Neptune-sized planets, while the other has a Jupiter-sized planet.

“When they analyzed the spectrum of the two stars, the astronomers found that the relative abundance of the refractory elements was significantly higher than that of the Sun,” Vanderbilt University stated. “They also found that the higher the melting temperature of a particular element, the higher was its abundance, a trend that serves as a compelling signature of the ingestion of Earth-like rocky material.”

One of these stars (the one with the Jupiter-sized  planet) probably ate up 10 Earth masses while the other star ate about 20 Earth masses. Between the star’s chemical composition and the fact that the gas giants are either in close or eccentric orbits, this implies there would be no rocky planets in the systems. More generally, if other stars are found to meet up with these explanations, this could be a clue to finding rocky planets.

“When we find stars with similar chemical signatures, we will be able to conclude that their planetary systems must be very different from our own, and that they most likely lack inner rocky planets,” added Mack. “And when we find stars that lack these signatures, then they are good candidates for hosting planetary systems similar to our own.”

The study was published earlier this month in the Astrophysical Journal.

Source: Vanderbilt University

14 Red Dwarf Stars to View with Backyard Telescopes

An artist's conception of a red dwarf solar system. Credit: NASA/JPL-Caltech.

They’re nearby, they’re common and — at least in the latest exoplanet newsflashes hot off the cyber-press — they’re hot. We’re talking about red dwarf stars, those “salt of the galaxy” stars that litter the Milky Way. And while it’s true that there are more of “them” than there are of “us,” not a single one is bright enough to be seen with the naked eye from the skies of Earth.

A reader recently brought up an engaging discussion of what red dwarfs might be within reach of a backyard telescope, and thus this handy compilation was born.

Of course, red dwarfs are big news as possible hosts for life-bearing planets. Though the habitable zones around these stars would be very close in, these miserly stars will shine for trillions of years, giving evolution plenty of opportunity to do its thing. These stars are, however, tempestuous in nature, throwing out potentially planet sterilizing flares.

Red dwarf stars range from about 7.5% the mass of our Sun up to 50%. Our Sun is very nearly equivalent 1000 Jupiters in mass, thus the range of red dwarf stars runs right about from 75 to 500 Jupiter masses.

For this list, we considered red dwarf stars brighter than +10th magnitude, with the single exception of 40 Eridani C as noted.

The closest stars within 14 light years of our solar system. Credit: Wikimedia Commons, Public Domain graphic.
The closest stars within 14 light years of our solar system. Credit: Wikimedia Commons, Public Domain graphic.

I know what you’re thinking…  what about the closest? At magnitude +11, Proxima Centauri in the Alpha Centauri triple star system 4.7 light years distant didn’t quite make the cut. Barnard’s Star (see below) is the closest in this regard. Interestingly, the brown dwarf pair Luhman 16 was discovered just last year at 6.6 light years distant.

Also, do not confuse red dwarfs with massive carbon stars. In fact, red dwarfs actually appear to have more of an orange hue visually! Still, with the wealth of artist’s conceptions (see above) out there, we’re probably stuck with the idea of crimson looking red dwarf stars for some time to come.

 

Star Magnitude Constellation R.A. Dec
Groombridge 34 +8/11(v) Andromeda 00h 18’ +44 01’
40 Eridani C +11 Eridanus 04h 15’ -07 39’
AX Microscopii/Lacaille 8760 +6.7 Microscopium 21h 17’ -38 52’
Barnard’s Star +9.5 Ophiuchus 17h 58’ +04 42’
Kapteyn’s Star +8.9 Pictor 05h 12’ -45 01’
Lalande 21185 +7.5 Ursa Major 11h 03’ +35 58’
Lacaille 9352 +7.3 Piscis Austrinus 23h 06’ -35 51’
Struve 2398 +9.0 Draco 18h 43’ +59 37’
Luyten’s Star +9.9 Canis Minor 07h 27’ +05 14’
Gliese 687 +9.2 Draco 17h 36’ +68 20’
Gliese 674 +9.9 Ara 17h 29’ -46 54’
Gliese 412 +8.7 Ursa Major 11h 05’ +43 32’
AD Leonis +9.3 Leo 10h 20’ +19 52’
Gliese 832 +8.7 Grus 21h 34’ -49 01’

 

Notes on each:

Groombridge 34: Located less than a degree from the +6th magnitude star 26 Andromedae in the general region of the famous galaxy M31, Groombridge 34 was discovered back in 1860 and has a large proper motion of 2.9″ arc seconds per year.

Locating Groombridge 34. Created using Stellarium.
Locating Groombridge 34. Created using Stellarium.

40 Eridani C:  Our sole exception to the “10th magnitude or brighter” rule for this list, this multiple system is unique for containing a white dwarf, red dwarf and a main sequence K-type star all within range of a backyard telescope.  In sci-fi mythos, 40 Eridani is also the host star for the planet Richese in Dune and the controversial location for Vulcan of Star Trek fame.

Locating 40 Eridani. Created using Stellarium.
Locating 40 Eridani. Created using Stellarium.

AX Microscopii: Also known as Lacaille 8760, AX Microscopii is 12.9 light years distant and is the brightest red dwarf as seen from the Earth at just below naked eye visibility at magnitude +6.7.

A 20 year animation showing the proper motion of  Barnard's Star. Credit: Steve Quirk, images in the Public Domain.
A 20 year animation showing the proper motion of Barnard’s Star. Credit: Steve Quirk, images in the Public Domain.

Barnard’s Star: the second closest star system to our solar system next to Alpha Centuari and the closest solitary red dwarf star at six light years distant, Barnard’s Star also exhibits the highest proper motion of any star at 10.3” arc seconds per year. The center of many controversial exoplanet claims in the 20th century, it’s kind of a cosmic irony that in this era of 1790 exoplanets and counting, planets have yet to be discovered around Barnard’s Star!

Kapteyn’s Star: Discovered by Jacobus Kapteyn in 1898, this red dwarf orbits the galaxy in a retrograde motion and is the closest halo star to us at 12.76 light years distant.

Lalande 21185: currently 8.3 light years away, Lalande 21185 will pass 4.65 light years from Earth and be visible to the naked eye in just under 20,000 years.

Lacaille 9352: 10.7 light years distant, this was the first red dwarf star to have its angular diameter measured by the VLT interferometer in 2001.

Struve 2398: A binary flare star system consisting of two +9th magnitude red dwarfs orbiting each other 56 astronomical units apart and 11.5 light years distant.

Luyten’s Star: 12.36 light years distant, this star is only 1.2 light years from the bright star Procyon, which would appear brighter than Venus for any planet orbiting Luyten’s Star.

Gliese 687: 15 light years distant, Gliese 687 is known to have a Neptune-mass planet in a 38 day orbit.

Gliese 674: Located 15 light years distant, ESO’s HARPS spectrograph detected a companion 12 times the mass of Jupiter that is either a high mass exoplanet or a low mass brown dwarf.

Gliese 412: 16 light years distant, this system also contains a +15th magnitude secondary companion 190 Astronomical Units from its primary.

AD Leonis: A variable flare star in the constellation Leo about 16 light years distant.

Gliese 832: Located 16 light years distant, this star is known to have a 0.6x Jupiter mass exoplanet in a 3,416 day orbit.

The closest stars to our solar system over the next 80,000 years. Credit:  FrancescoA under a Creative Commons Attribution Share-Alike 3.0 Unported license.
The closest stars to our solar system over the next 80,000 years. Credit: FrancescoA under a Creative Commons Attribution Share-Alike 3.0 Unported license.

Consider this list a teaser, a telescopic appetizer for a curious class of often overlooked objects. Don’t see you fave on the list? Want to see more on individual objects, or similar lists of quasars, white dwarfs, etc in the range of backyard telescopes in the future? Let us know. And while it’s true that such stars may not have a splashy appearance in the eyepiece, part of the fun comes from knowing what you’re seeing. Some of these stars have a relatively high proper motion, and it would be an interesting challenge for a backyard astrophotographer to build an animation of this over a period of years. Hey, I’m just throwing that out project out there, we’ve got lots more in the files…

 

 

 

 

Can Super-Fast Stars Unveil Dark Matter’s Secrets?

Artist's conception of a hyperveloctiy star heading out from a spiral galaxy (similar to the Milky Way) and moving into dark matter nearby. Credit: Ben Bromley, University of Utah

Zoom! A star was recently spotted speeding at 1.4 million miles an hour (2.2 million km/hr), which happened to be the closest and second-brightest of the so-called “hypervelocity” stars found so far.

Now that about 20 of these objects have been found, however, astronomers are now trying to use the stars beyond classifying them. One of those ways could be probing the nature of dark matter, the mysterious substance thought to bind together much of the universe.

LAMOST-HVS1 (as the object is called, after the Chinese Large Sky Area Multi-Object Fiber Spectroscopic Telescope that discovered it) is about three times faster than most other stars found. It’s in a cluster of similar hypervelocity stars above the Milky Way’s disk and from its motion, scientists suspect it actually came from our galaxy’s center.

What’s interesting about the star, besides its pure speed, is it is travelling in a “dark matter” halo surrounding our galaxies, the astronomers said.

The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in  pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA
The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA

“The hypervelocity star tells us a lot about our galaxy – especially its center and the dark matter halo,” stated Zheng Zheng, an astronomy researcher at the University of Utah who led the study.

“We can’t see the dark matter halo, but its gravity acts on the star. We gain insight from the star’s trajectory and velocity, which are affected by gravity from different parts of our galaxy.”

The star is about 62,000 light years from the galaxy’s center (much further than the sun’s 26,000 light years) and is about four times hotter and 3,400 times brighter than our own sun. Astronomers estimate it is 32 million years old, which makes it quite young compared to the sun’s 4.5 billion years.

Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Image via Vanderbilt University.
Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Image via Vanderbilt University.

Readers of Universe Today may also recall a “runaway star cluster” announced a few weeks ago, which shows you that the universe is replete with speeding objects.

“If you’re looking at a herd of cows, and one starts going 60 mph, that’s telling you something important,” stated Ben Bromley, a fellow university professor who was not involved with Zheng’s study. “You may not know at first what that is. But for hypervelocity stars, one of their mysteries is where they come from – and the massive black hole in our galaxy is implicated.”

The study was recently published in Astrophysical Journal Letters.

Source: University of Utah

Found! Sun’s ‘Sibling’ Likely Formed From Same Gas Cloud, Astronomers Say

Location chart for HD 162826, considered a sibling to the sun. Credit: Ivan Ramirez/Tim Jones/McDonald Observatory

Peer about 110 light-years away from our solar system, and you might catch a glimpse of how our own neighborhood came together. The recent discovery that HD 162826 — a star bright enough to be seen in binoculars — could be a “sibling” of our sun could shed more light on the solar system’s formation, astronomers said.

“We want to know where we were born,” stated Ivan Ramirez, an astronomer at the University of Texas at Austin who led the research. “If we can figure out in what part of the galaxy the sun formed, we can constrain conditions on the early solar system. That could help us understand why we are here.”

The star is called a “sibling” because it could have formed from the same gas and dust cloud in which our own solar system was formed, some 4.5 billion years ago. Since life is in our own solar system, a natural next question is whether HD 162826 could also have life-bearing planets. There is a tiny reason for “yes”, the astronomers said.

Basically, the argument goes that when the stars were first born and close together, chunks of matter could have been knocked off protoplanets and travelled between the two solar systems. There’s a small chance that this could have brought primitive life to Earth, although of course there’s a long way to go before that could even be proved.

This artist's conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave
This artist’s conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave

That said, no planets have yet been found around HD 162826. (The star was known before, but just recently identified as a “sibling.”) Separate studies by the University of Texas and University of South Wales said there are likely no “hot Jupiters” (Jupiter-sized planets close to the star) nor Jupiter-sized planet in the solar system even further away. Smaller terrestrial planets, however, would have escaped the notice of this particular study.

The star is about 15 percent more massive than our sun and was selected from a list of 30 candidates based on its chemistry and orbit. There could also be more siblings out there to find, with one potential big help coming soon: the Gaia survey from the European Space Agency launched in December, which will chart the Milky Way in three dimensions.

Because Gaia will showcase the distance and motions of a billion stars, this will allow astronomers to look for these “solar siblings” as far in as the galaxy’s center, increasing the number of stars studied by a factor of 10,000. The exciting thing, the astronomers add, is with enough stars pinpointed as siblings to our sun, their orbits can then be traced back to the origin point — showing the location in the cosmos where the sun first came to be.

More information will be available in the June 1 issue of the Astrophysical Journal. A preprint version is available on Arxiv.

Source: University of Texas at Austin

Star Trail Photo Hints at Hidden Polestars

A 45-minute time exposure of the southern sky taken in early May shows trailed stars. The fat, bright streak is the planet Mars. Credit: Bob King

A week ago I made a 45-minute time exposure of the southern sky featuring the planet Mars. As the Earth rotated on its axis, the stars trailed across the sky. But take a closer look at the photo and you’ll see something interesting going on. 

The trails across the diagonal (upper right to lower left) are straight, those in the top third arc upward or north while those in the bottom third curve downward or south.

I've drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth's equator see the celestial equator pass directly overhead. From mid-northern latitudes, it's about halfway up in the southern sky. From mid-southern latitudes, it's halfway up in the northern sky. Credit: Bob King
I’ve drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth’s equator see the celestial equator pass directly overhead. From mid-northern latitudes, it’s about halfway up in the southern sky. From mid-southern latitudes, it’s halfway up in the northern sky. Credit: Bob King

I suspect you know what’s happening here. Mars happens to lie near the celestial equator, an extension of Earth’s equator into the sky. The celestial equator traces a great circle around the celestial sphere much as the equator completely encircles the Earth.

On Earth, cities north of the equator are located in the northern hemisphere, south of the equator in the southern hemisphere. The same is true of the stars. Depending on their location with respect to the celestial equator they belong either to the northern or southern halves of the sky.

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Illustration: Bob King

Next, let’s take a look at Earth’s axis and where each end points. If you live in the northern hemisphere, you know that the axis points north to the North Star or Polaris. As the Earth spins, Polaris appears fixed in the north while all the stars in the northern half of the sky describe a circle around it every 24 hours (one Earth spin). The closer a star is to Polaris, the tighter the circle it describes.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Likewise, from the southern hemisphere, all the southern stars circle about the south pole star, an obscure star named Sigma in the constellation of Octans, a type of navigational instrument. Again, as with Polaris, the closer a star lies to Sigma Octantis, the smaller its circle.

Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz
Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz

But what about stars on or near the celestial equator? These gems are the maximum distance of 90 degrees from either pole star just as Earth’s equator is 90 degrees from the north and south poles. They “tread the line” between both hemispheres and make circles so wide they appear not as arcs – as the other stars do in the photo – but as straight lines. And that’s why stars appear to be heading in three separate directions in the photograph.

A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium
A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium

In so many ways, we see aspects of our own planet in the stars above.