M87 Galaxy Reconstructed in Thrilling 3D

A photo of the huge elliptical galaxy M87 [left] is compared to its three-dimensional shape as gleaned from meticulous observations made with the Hubble and Keck telescopes [right]. Image Credit: NASA, ESA, J. Olmsted (STScI), F. Summers (STScI)C. Ma (UC Berkeley); CC BY 4.0

In astronomy, we speak casually of extremely large numbers and extremely vast distances as if they’re trivial. A supermassive black hole can have several billion solar masses, a distant quasar is 500 million light-years away, etc. Objects like galaxies that are mere tens of millions of light years away start to seem familiar.

But even though our Wikipedia pages are full of data on distant objects, there’s a deceptive lack of understanding of some of their basic properties. Take Messier 87, for example, a galaxy often talked about and seen in images. It’s noteworthy for being home to the first black hole ever imaged.

It’s so far away that astronomers have no real idea what its three-dimensional shape is.

Continue reading “M87 Galaxy Reconstructed in Thrilling 3D”

Twinkling Stars Supply the Dust That Leads to Life

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

When low to medium-mass stars exhaust their supply of hydrogen, they exit their main sequence phase and expand to become red giants – what is known as the Asymptotic Giant Branch (AGB) phase. Stars in this phase of their evolution become variable (experiences changes in brightness) to shed their outer lays, spreading dust throughout the interstellar medium (ISM) that is crucial to the development of planetary nebulas and protoplanetary systems. For decades, astronomers have sought to better understand the role Red Giant stars play.

Studying interstellar and protoplanetary dust is difficult because it is so faint in visible light. Luckily, this dust absorbs light and radiates brightly in the infrared (IR), making it visible to IR telescopes. Using archival data from now-retired Akari and Wide-field Infrared Survey Explorer (WISE) missions, a team of Japanese astronomers conducted the first long-period survey of dusty AGBs and observed that the variable intensity of these stars coincides with the amount of dust they produce. Since this dust plays an important role in the formation of planets, this study could shed light on the origins of life.

Continue reading “Twinkling Stars Supply the Dust That Leads to Life”

Hypervelocity Stars Teach us About Black Holes and Supernovae

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

Hypervelocity stars (HVS) certainly live up to their name, traveling thousands of kilometers per second or a fraction of the speed of light (relativistic speeds). These speed demons are thought to be the result of galactic or black hole mergers, globular clusters kicking out members, or binary pairs where one star is kicked out when the other goes supernova. Occasionally, these stars are fast enough to escape our galaxy and (in some cases) take their planetary systems along for the ride. This could have drastic implications for our theories of how life could be distributed throughout the cosmos (aka. panspermia theory).

There are thousands of these stars in our galaxy, and tracking them has become the task of cutting-edge astrometry missions (like the ESA’s Gaia Observatory). In previous research, astronomers suggested that these stars could be used to determine the mass of the Milky Way. In a recent study from Leiden University in the Netherlands, Ph.D. candidate Fraser Evans showed how data on HVS could be used to probe the mysteries of the most extreme objects in our Universe – supermassive black holes (SMBHs) and the violent supernovae of massive stars.

Continue reading “Hypervelocity Stars Teach us About Black Holes and Supernovae”

Prelude to a Supernova: The James Webb Captures a Rare Wolf-Rayet Star

The luminous, hot star Wolf-Rayet 124 (WR 124) is prominent at the centre of the NASA/ESA/CSA James Webb Space Telescope’s composite image combining near-infrared and mid-infrared wavelengths of light. Image Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

Massive stars are sprinters. It might seem counterintuitive that stars 100 or 200 times more massive than our Sun could only survive for as few as 10 million years. Especially since smaller stars like our Sun can last 10 billion years. Massive stars have huge reservoirs of hydrogen to burn through, but their massive size means fusion eats through their hydrogen much more quickly.

These massive stars are destined to reach the finish line quickly and explode as supernovae. There’s no other conclusion for them. But before they explode, some of them become Wolf-Rayet stars. That stage doesn’t last long, and the James Webb Space Telescope caught one in the act.

Continue reading “Prelude to a Supernova: The James Webb Captures a Rare Wolf-Rayet Star”

Even the Calmest Red Dwarfs are Wilder than the Sun

An artist's conception of a violent flare erupting from the red dwarf star Proxima Centauri. Such flares can obliterate atmospheres of nearby planets. Credit: NRAO/S. Dagnello.
An artist's conception of a violent flare erupting from the red dwarf star Proxima Centauri. Such flares can obliterate atmospheres of nearby planets. Credit: NRAO/S. Dagnello.

There’s something menacing about red dwarfs. Human eyes are accustomed to our benevolent yellow Sun and the warm light it shines on our glorious, life-covered planet. But red dwarfs can seem moody, ill-tempered, and even foreboding.

For long periods of time, they can be calm, but then they can flare violently, flashing a warning to any life that might be gaining a foothold on a nearby planet.

Continue reading “Even the Calmest Red Dwarfs are Wilder than the Sun”

Speedrunning Star Formation in the Cygnus X Region

Cygnus X is a massive star formation region about 4600 light-years away. New research shows star formation occurring very rapidly. Image Credit: By NASA - http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15253.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19475200

Stars are born in molecular clouds, massive clouds of hydrogen that can contain millions of stellar masses of material. But how do molecular clouds form? There are different theories and models of that process, but the cloud formation is difficult to observe.

A new study is making some headway, and showing how the process occurs more rapidly than thought.

Continue reading “Speedrunning Star Formation in the Cygnus X Region”

The Mass of a Single Star (other than the Sun) has Been Directly Measured for the First Time

How do you measure an object’s weight from a distance? You could guess at its distance and therefore derive its size. Maybe you could further speculate about its density, which would eventually lead to an estimated weight. But these are far from the exact empirical studies that astrophysicists would like to have when trying to understand the weight of stars. Now, for the first time ever, scientists have empirically discovered the weight of a distant single star, and they did so using gravitational lensing.

Continue reading “The Mass of a Single Star (other than the Sun) has Been Directly Measured for the First Time”

Hubble’s New View of the Tarantula Nebula

A snapshot of the Tarantula Nebula (also known as 30 Doradus) is the most recent Picture of the Week from the NASA/ESA Hubble Space Telescope. Image Credit: ESA/Hubble & NASA, C. Murray, E. Sabbi; Acknowledgment: Y. -H. Chu

The Tarantula Nebula, also called 30 Doradus, is the brightest star-forming region in our part of the galaxy. It’s in the Large Magellanic Cloud (LMC) and contains the most massive and hottest stars we know of. The Tarantula Nebula has been a repeat target for the Hubble since the telescope’s early years.

Continue reading “Hubble’s New View of the Tarantula Nebula”

This Binary System is Destined to Become a Kilonova

This is an artist’s impression of the first confirmed detection of a star system that will one day form a kilonova — the ultra-powerful, gold-producing explosion created by merging neutron stars. Image Credit: CTIO/NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani

Kilonovae are extraordinarily rare. Astronomers think there are only about 10 of them in the Milky Way. But they’re extraordinarily powerful and produce heavy elements like uranium, thorium, and gold.

Usually, astronomers spot them after they’ve merged and emitted powerful gamma-ray bursts (GRBs.) But astronomers using the SMARTS telescope say they’ve spotted a kilonova progenitor for the first time.

Continue reading “This Binary System is Destined to Become a Kilonova”

Binary Dwarf Stars Found Orbiting Each Other Every 20 Hours. They Were Once Almost Touching

Astronomers have spotted a pair of ultra-cool dwarf stars in a tight binary configuration. They rotate around one another in less than one Earth day. Image Credit: NASA/JPL Caltech

A team of astrophysicists has discovered a binary pair of ultra-cool dwarfs so close together that they look like a single star. They’re remarkable because they only take 20.5 hours to orbit each other, meaning their year is less than one Earth Day. They’re also much older than similar systems.

Continue reading “Binary Dwarf Stars Found Orbiting Each Other Every 20 Hours. They Were Once Almost Touching”