Old Equations Shed New Light on Quasars

An artists illustration of the early Universe. Image Credit: NASA

There’s nothing more out of this world than quasi-stellar objects or more simply – quasars. These are the most powerful and among the most distant objects in the Universe. At their center is a black hole with the mass of a million or more Suns. And these powerhouses are fairly compact – about the size of our Solar System. Understanding how they came to be and how — or if — they evolve into the galaxies that surround us today are some of the big questions driving astronomers.

Now, a new paper by Yue Shen and Luis C. Ho – “The diversity of quasars unified by accretion and orientation” in the journal Nature confirms the importance of a mathematical derivation by the famous astrophysicist Sir Arthur Eddington during the first half of the 20th Century, in understanding not just stars but the properties of quasars, too. Ironically, Eddington did not believe black holes existed, but now his derivation, the Eddington Luminosity, can be used more reliably to determine important properties of quasars across vast stretches of space and time.

A quasar is recognized as an accreting (meaning- matter falling upon) super massive black hole at the center of an “active galaxy”. Most known quasars exist at distances that place them very early in the Universe; the most distant is at 13.9 billion light years, a mere 770 million years after the Big Bang. Somehow, quasars and the nascent galaxies surrounding them evolved into the galaxies present in the Universe today.  At their extreme distances, they are point-like, indistinguishable from a star except that the spectra of their light differ greatly from a star’s. Some would be as bright as our Sun if they were placed 33 light years away meaning that  they are over a trillion times more luminous than our star.

An artists illustration of the central engine of a Quasar. These "Quasi-stellar Objects" QSOs are now recognized as the super massive black holes at the center of emerging galaxies in the early Universe. (Photo Credit: NASA)
An artists illustration of the central engine of a quasar. These “Quasi-stellar Objects” QSOs are now recognized as the super massive black holes at the center of emerging galaxies in the early Universe. (Photo Credit: NASA)

The Eddington luminosity  defines the maximum luminosity that a star can exhibit that is in equilibrium; specifically, hydrostatic equilibrium. Extremely massive stars and black holes can exceed this limit but stars, to remain stable for long periods, are in hydrostatic equilibrium between their inward forces – gravity – and the outward electromagnetic forces. Such is the case of our star, the Sun, otherwise it would collapse or expand which in either case, would not have provided the stable source of light that has nourished life on Earth for billions of years.

Generally, scientific models often start simple, such as Bohr’s model of the hydrogen atom, and later observations can reveal intricacies that require more complex theory to explain, such as Quantum Mechanics for the atom. The Eddington luminosity and ratio could be compared to knowing the thermal efficiency and compression ratio of an internal combustion engine; by knowing such values, other properties follow.

Several other factors regarding the Eddington Luminosity are now known which are necessary to define the “modified Eddington luminosity” used today.

The new paper in Nature shows how the Eddington Luminosity helps understand the driving force behind the main sequence of quasars, and Shen and Ho call their work the missing definitive proof that quantifies the correlation of a quasar properties to a quasar’s Eddington ratio.

They used archival observational data to uncover the relationship between the strength of the optical Iron [Fe] and Oxygen[O III] emissions – strongly tied to the physical properties of the quasar’s central engine – a super-massive black hole, and the Eddington ratio. Their work provides the confidence and the correlations needed to move forward in our understanding of quasars and their relationship to the evolution of galaxies in the early Universe and up to our present epoch.

Astronomers have been studying quasars for a little over 50 years. Beginning in 1960, quasar discoveries began to accumulate but only through radio telescope observations. Then, a very accurate radio telescope measurement of Quasar 3C 273 was completed using a Lunar occultation. With this in hand, Dr. Maarten Schmidt of California Institute of Technology was able to identify the object in visible light using the 200 inch Palomar Telescope. Reviewing the strange spectral lines in its light, Schmidt reached the right conclusion that quasar spectra exhibit an extreme redshift and it was due to cosmological effects. The cosmological redshift of quasars meant that they are at a great distance from us in space and time. It also spelled the demise of the Steady-State theory of the Universe and gave further support to an expanding Universe that emanated from a singularity – the Big Bang.

Dr. Maarten Schmidt, Caltech University, with Donald Lynden-Bell, were the first recipients of the Kavli Prize in Astrophysics, “for their seminal contributions to understanding the nature of quasars”. While in high school, this author had the privilege to meet Dr. Schmidt at the Los Angeles Museum of Natural History after his presentation to a group of students. (Photo Credit: Caltech)
Dr. Maarten Schmidt, Caltech, with Donald Lynden-Bell, were the first recipients of the Kavli Prize in Astrophysics, “for their seminal contributions to understanding the nature of quasars”. While in high school, this author had the privilege to meet Dr. Schmidt at the Los Angeles Museum of Natural History after his presentation to a group of students. (Photo Credit: Caltech)

The researchers, Yue Shen and Luis C. Ho are from the Institute for Astronomy and Astrophysics at Peking University working with the Carnegie Observatories, Pasadena, California.

References and further reading:

“The diversity of quasars unified by accretion and orientation”, Yue Shen, Luis C. Ho, Sept 11, 2014, Nature

“What is a Quasar?”, Universe Today, Fraser Cain, August 12, 2013

“Interview with Maarten Schmidt”, Caltech Oral Histories, 1999

“Fifty Years of Quasars, a Symposium in honor of Maarten Schmidt”, Caltech, Sept 9, 2013

Foom! ‘Superflares’ Erupt From Tiny Red Dwarf Star, Surprising Scientists

Artist's impression of a flare erupting from binary star sytem DG CVn. Credit: NASA's Goddard Space Flight Center/S. Wiessinger

Don’t get too close to this little star! In April, a red dwarf star sent out a series of explosions that peaked at 10,000 times as powerful as the largest solar flare ever recorded.

The tiny star packs a powerful punch because its spin is so quick: it rotates in less than a day, or 30 times faster than the Sun does. Astronomers believe that in the distant past, when the Sun was young, it also was a fast turner — and could have produced “superflares”, as NASA terms the explosions, of its own.

“We used to think major flaring episodes from red dwarfs lasted no more than a day, but Swift detected at least seven powerful eruptions over a period of about two weeks,” stated Stephen Drake, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland. “This was a very complex event.”

The surprising activity came from a red dwarf star in a binary system that together is known as DG Canum Venaticorum (DG CVn). Located just 60 light-years away, the two red dwarfs are each about one-third the size and mass of the Sun. Astronomers can’t say for sure which one sent out the eruption because the stars were so close to each other, at about three times the distance of Earth’s average distance to the sun.

The first flare (which sent out a burst of X-rays) caused an alert in NASA’s Swift Space Telescope’s burst alert telescope on April 23. It’s believed to be caused by the same process that creates flares on our Sun — magnetic field lines twisting and then releasing a burst of energy that sends out radiation.

Three hours later came another flare — scientists have seen similar events on the Sun after one active region sets off flares in another — and then came “successively weaker blasts” in the next 11 days, NASA said. Normal X-ray emissions stabilized about 20 days after the first flare. Swift is now monitoring this star for further activity.

Drake presented his results at the August meeting of the American Astronomical Society’s high energy astrophysics division, which was highlighted in a recent release from NASA.

Source: NASA

Behold: 100 Planetary Nebulas

100 colorful planetary nebulae, at apparent size relative to one another. Image processing and collection by Judy Schmidt.

If you like planetary nebulas, you’re in luck. Multimedia artist Judy Schmidt has put together an amazing collection of 100 of these colorful glowing shells of gas and plasma, all at apparent size relative to one another. There’s even a giant-sized 10,000 pixel-wide version available on Flickr.

How many of these planetary nebulae can you identify?

Judy explained her inspiration for putting together this wonderful ‘poster’:

Inspired by insect illustration posters, this is a large collage of planetary nebulas I put together bit by bit as I processed them. All are presented north up and at apparent size relative to one another–I did not rotate or resize them in order to satisfy compositional aesthetics (if you spot any errors, let me know). Colors are aesthetic choices, especially since most planetary nebulas are imaged with narrowband filters.

Planetary nebulae are formed by certain types of stars at the end of their lives, and actually have nothing to do with planets. They were given the confusing name 300 years ago by William Herschel because in early, rudimentary telescopes, the puffed out balls of gas looked like planets.

Our own Sun will likely undergo a similar process, but not for another 5 billion years or so.

You can see more of Judy’s work at her website “Geckzilla” or Flickr page.

Hubble Vision: Galaxy DDO 68 – Young Or Old?

Image credit: NASA & ESA

Only astronomers know for sure… Or do they? In this assembly of images taken with Hubble’s Advanced Camera for Surveys, scientists have utilized both visible and infrared light to survey a most unusual galaxy. When looking for a newly formed galaxy in our “cosmic neighborhood”, they spied DDO 68 (a.k.a. UGC 5340). Normally to witness galactic evolution, we have to look over great distances to see back in time… but this particular collection of gas and stars seems to break the rules!

Researching galactic evolution isn’t a new concept. Over the last few decades astronomers have increased our understanding of how galaxies change with time. One of the most crucial players in this game has been the NASA/ESA Hubble Space Telescope. Through its eyes, scientists can see over almost incomprehensible distances – studying light that has taken billions of years to reach us. We are essentially looking back in time.

While this is great news on its own, studying progressively younger galaxies can sometimes pose more questions than it answers. For example, all the newly created galaxies reside a huge distance from us and thereby appear small and faint when imaged. On the other side of the coin, galaxies which are close to us appear to be far more mature.

Loading player…

This video begins with a ground based view of the night sky, before zooming in on dwarf galaxy DDO 68 as the NASA/ESA Hubble Space Telescope sees it. This ragged collection of stars and gas clouds looks at first glance like a recently-formed galaxy in our own cosmic neighbourhood. But, is it really as young as it looks? Credit: NASA/ESA

DDO 68, imaged here by the NASA/ESA Hubble Space Telescope, would seem to be the best example of a nearby newly-formed galaxy. Just how nearby? Estimates place it at about 39 million light years distant. While this might seem like a very long way, it is still roughly 50 times closer than other galactic examples. Studying galaxies of different ages is important to our understanding of how the Universe works. Astronomers have discovered that young galaxies are quite different than those which have aged. In this case, DDO 68 gives off the appearance of being young. These findings come from examining its structure, appearance and composition. However, researchers question their findings. It is possible this galaxy may be considerably older than initial findings indicate.

“All of the available data are consistent with the fact that DDO 68 is a very rare candidate for young galaxies.” says S. A. Pustilnik (et al). “The bulk of its stars were formed during the recent (with the first encounter about 1 Gyr ago) merger of two very gas-rich disks.”

These common events – mergers and collisions – are part of galactic life and are generally responsible for older galaxies being more bulky. These “senior citizens” are normally laced with a wide variety of stellar types – young, old, large and small. The chemistry is also different, too. Very young galaxies are rich in hydrogen and helium, making them tantalizingly similar in composition to the primordial matter created by the Big Bang. Older galaxies have more experiences. Numerous stellar events have happened within them over their lifetimes, making them rich in heavy elements. This is what makes DDO 68 very exciting! It is the best local candidate found so far to be low in heavier elements.

“DDO 68 (UGC 5340) is the second most metal-poor star-forming galaxy,” explains Pustilnik. “Its peculiar optical morphology and its HI distribution and kinematics are indicative of a merger origin. We use the u, g, r, and i photometry based on the SDSS images of DDO 68 to estimate its stellar population ages.”

Step into the light? You bet. The Hubble observations were meant to examine the properties of this mysterious galaxy’s light – determine whether or not it contains any older stars. If they are discovered, which seems to be the case, this would disprove the theory that DDO 68 is singularly comprised of younger stars. If not, it will validate the unique nature of this nearby neighbor. While more computer modeling and studies are needed, we can still enjoy this incredible look at another cosmic enigma!

Original Story Source: A Galaxy Of Deception – Hubble/ESA

Did Wild Weather — Or A Companion — Cause Eerie Infrared Glow From This Baby Star?

Artist's impression AS 205 N, which is a T Tauri star, and a smaller partner. Credit: P. Marenfeld (NOAO/AURA/NSF)

Watch out! Carbon monoxide gas is likely fleeing the disk of a young star like our Sun, producing an unusual signature in infrared. This could be the first time winds have been confirmed in association with a T Tauri star, or something else might be going on.

Because the observed signature of the star (called AS 205 N) didn’t meet what models of similar stars predicted, astronomers say it’s possible it’s not winds after all, but a companion tugging away at the gas.

“The material in the disk of a T Tauri star usually, but not always, emits infrared radiation with a predictable energy distribution,” stated Colette Salyk, an astronomer with the National Optical Astronomical Observatory who led the research. “Some T Tauri stars, however, like to act up by emitting infrared radiation in unexpected ways.”

View of the Atacama Large Millimeter/submillimeter Array (ALMA) site, which is 5,000 meters (16,400 feet) on the Chajnantor Plateau in the Atacama Desert of northern Chile. Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)
View of the Atacama Large Millimeter/submillimeter Array (ALMA) site, which is 5,000 meters (16,400 feet) on the Chajnantor Plateau in the Atacama Desert of northern Chile. Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)

T Tauri stars are still young enough to be surrounded by dust and gas that could eventually form planets. Winds in the vicinity, however, could make it difficult for enough gas to stick around to form Jupiter-sized gas giants — or could change where planets are formed altogether.

While it’s still unclear what’s going on in AS 205 N, the astronomers plan to follow up their work with observing other T Tauri stars. Maybe with more observations, they reason, they can better understand what these signatures are telling us.

The weird environment was spotted by astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA), a set of 66 radio telescopes in Chile. A paper based on the research was published in the Astrophysical Journal and is also available in preprint version on Arxiv.

Source: National Radio Astronomy Observatory

Wow! Water Ice Clouds Suspected In Brown Dwarf Beyond The Solar System

Artist's conception of brown dwarf WISE J085510.83-071442.5, which may host water ice clouds in its atmosphere. Credit: Rob Gizis (CUNY BMCC / YouTube (screenshot)

What are planetary atmospheres made of? Figuring out the answer to that question is a big step on the road to learning about habitability, assuming that life tends to flourish in atmospheres like our own.

While there is a debate about how indicative the presence of, say, oxygen or water is of life on Earth-like planets, astronomers do agree more study is required to learn about the atmospheres of planets beyond our solar system.

Which is why this latest find is so exciting — one astronomy team says it may have spotted water ice clouds in a brown dwarf (an object between the size of a planet and a star) that is relatively close to our solar system. The find is tentative and also in an object that likely does not host life, but it’s hoped that telescopes may get better at examining atmospheres in the future.

The object is called WISE J085510.83-071442.5, or W0855 for short. It’s the coldest brown dwarf ever detected, with an average temperature between 225 degrees Kelvin (-55 Fahrenheit, or -48 Celsius) and 265 Kelvin (17 Fahrenheit, or -8 Celsius.) It’s believed to be about three to 10 times the mass of Jupiter.

Astronomers looked at W0855 with an infrared mosaic imager on the 6.5-meter Magellan Baade telescope, which is located at Las Campanas Observatory in Chile. The team obtained 151 images across three nights in May 2014.

Astronomers plotted the brown dwarf on a color-magnitude chart, which is a variant of famous Hertzsprung-Russell diagram used to learn more about stars by comparing their absolute magnitude against their spectral types. “Color-Magnitude diagrams are a tool for investigating atmospheric properties of the brown dwarf population as well as testing model predictions,” the authors wrote in their paper.

Based on previous work on brown dwarf atmospheres, the team plotted W0855 and modelled it, discovering it fell into a range that made water ice clouds possible. It should be noted here that water ice is known to exist in all four gas giants of our own Solar System: Jupiter, Saturn, Uranus, and Neptune.

“Non-equilibrium chemistry or non-solar metallicity may change predictions,” the authors cautioned in their paper. “However, using currently available model approaches, this is the first candidate outside our own solar system to have direct evidence for water clouds.”

The research, led by the Carnegie Institution for Science’s Jacqueline Faherty, was published in Astrophysical Journal Letters. A preprint version of the paper is available on Arxiv.

Source: Carnegie Institution for Science

Radio Telescopes Resolve Pleiades Distance Debate

An optical image of the Pleiades. Credit: NOAO / AURA / NSF

Fall will soon be at our doorstep. But before the leaves change colors and the smell of pumpkin fills our coffee shops, the Pleiades star cluster will mark the new season with its earlier presence in the night sky.

The delicate grouping of blue stars has been a prominent sight since antiquity. But in recent years, the cluster has also been the subject of an intense debate, marking a controversy that has troubled astronomers for more than a decade.

Now, a new measurement argues that the distance to the Pleiades star cluster measured by ESA’s Hipparcos satellite is decidedly wrong and that previous measurements from ground-based telescopes had it right all along.

The Pleiades star cluster is a perfect laboratory to study stellar evolution. Born from the same cloud of gas, all stars exhibit nearly identical ages and compositions, but vary in their mass. Accurate models, however, depend greatly on distance. So it’s critical that astronomers know the cluster’s distance precisely.

A well pinned down distance is also a perfect stepping stone in the cosmic distance ladder. In other words, accurate distances to the Pleiades will help produce accurate distances to the farthest galaxies.

With parallax technique, astronomers observe object at opposite ends of Earth's orbit around the Sun to precisely measure its distance. CREDIT: Alexandra Angelich, NRAO/AUI/NSF.
With the parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO / AUI / NSF

But accurately measuring the vast distances in space is tricky. A star’s trigonometric parallax — its tiny apparent shift against background stars caused by our moving vantage point — tells its distance more truly than any other method.

Originally the consensus was that the Pleiades are about 435 light-years from Earth. However, ESA’s Hipparcos satellite, launched in 1989 to precisely measure the positions and distances of thousands of stars using parallax, produced a distance measurement of only about 392 light-years, with an error of less than 1%.

“That may not seem like a huge difference, but, in order to fit the physical characteristics of the Pleiades stars, it challenged our general understanding of how stars form and evolve,” said lead author Carl Melis, of the University of California, San Diego, in a press release. “To fit the Hipparcos distance measurement, some astronomers even suggested that some type of new and unknown physics had to be at work in such young stars.”

If the cluster really was 10% closer than everyone had thought, then the stars must be intrinsically dimmer than stellar models suggested. A debate ensued as to whether the spacecraft or the models were at fault.

To solve the discrepancy, Melis and his colleagues used a new technique known as very-long-baseline radio interferometry. By linking distant telescopes together, astronomers generate a virtual telescope, with a data-gathering surface as large as the distances between the telescopes.

The network included the Very Long Baseline Array (a system of 10 radio telescopes ranging from Hawaii to the Virgin Islands), the Green Bank Telescope in West Virginia, the William E. Gordon Telescope at the Arecibo Observatory in Puerto Rico, and the Effelsberg Radio Telescope in Germany.

“Using these telescopes working together, we had the equivalent of a telescope the size of the Earth,” said Amy Miouduszewski, of the National Radio Astronomy Observatory (NRAO). “That gave us the ability to make extremely accurate position measurements — the equivalent of measuring the thickness of a quarter in Los Angeles as seen from New York.”

After a year and a half of observations, the team determined a distance of 444.0 light-years to within 1% — matching the results from previous ground-based observations and not the Hipparcos satellite.

“The question now is what happened to Hipparcos?” Melis said.

The spacecraft measured the position of roughly 120,000 nearby stars and — in principle — calculated distances that were far more precise than possible with ground-based telescopes. If this result holds up, astronomers will grapple with why the Hipparcos observations misjudged the distances so badly.

ESA’s long-awaited Gaia observatory, which launched on Dec. 19, 2013, will use similar technology to measure the distances of about one billion stars. Although it’s now ready to begin its science mission, the mission team will have to take special care, utilizing the work of ground-based radio telescopes in order to ensure their measurements are accurate.

The findings have been published in the Aug. 29 issue of Science and is available online.

Fingerprint From a First-Generation Star?

SDSS001820.5-093939.2 (seen in white) is a small, second-generation star bearing the chemical imprint of one of the universe's first stars. It shines at an apparent magnitude of 15.8, just south of the celestial equator in the constellation Cetus. Credit: SDSS / NAO

The young universe was composed of a pristine mix of hydrogen, helium, and a tiny trace of lithium. But after hundreds of millions of years, it began to cool and giant clouds of the primordial elements collapsed to form the first stars.

The first “Population III” stars were extremely massive and bright, synthesizing the first batches of heavy elements, and erupting as supernovae after relatively short lifetimes of just a few million years. This cycle of star birth and death has steadily produced and dispersed more heavy elements throughout cosmic history.

Astronomers haven’t spotted any of the first stars still shining today. But now, a team using the 8.2-meter Subaru Telescope has discovered an ancient low-mass star that likely formed from the elements produced in the supernova explosion of a very massive first generation star.

Pop III stars with masses exceeding 100 times that of the Sun would have died in a peculiar explosion that theorists call a pair-instability supernova.

Like its lower-energy comrade, a pair-instability supernova occurs when a massive star no longer produces enough energy to counteract the inward pull of gravity. But with so much mass, the star’s core is squeezed to such a high temperature and pressure that runaway nuclear reactions power a devastating explosion. The whole star is obliterated and no compact remnant, such as a black hole or neutron star, is left behind.

Astronomers have seen hints of these rare events before. But now, Wako Aoiki from the National Astronomical Observatory of Japan and colleagues have approached the search in a different way, by finding a star that bears the chemical fingerprints of these ancient explosions.

The elements we see lacing a star’s surface provide a key to understanding the supernova that preceded the star’s birth. And the star, dubbed SDSS001820.5-093939.2, exhibits a peculiar set of chemical abundance ratios. It has high levels of heavy elements, such as nickel, calcium, and iron, but low levels of light elements, such as carbon, magnesium and cobalt.

Note that the star is still metal poor in the grand scheme of things. Its iron abundance is 1/100 of the solar level. But compared with most metal-poor stars, where the iron abundance can be 1/100,000 or less of the solar level, the star is metal rich.

The chemical abundance ratios (with respect to iron) of SDSS J0018-0939 (red circles) compared with model prediction for explosions of very-massive stars. The black line indicates the model of a pair-instability supernova by a star with 300 solar masses, whereas the blue line shows the model of an explosion caused by a core-collapse of a star with 1000 solar masses. The abundance ratios of sodium (Na) and aluminum (Al), which are not well-reproduced by these models, might be produced during the evolution of stars before the explosion, but that is not included in the current model. (Credit: NAOJ)
The chemical abundance ratios (with respect to iron) of SDSS J0018-0939 (red circles) compared with model prediction for explosions of very-massive stars. The black line indicates the model of a pair-instability supernova by a star with 300 solar masses, whereas the blue line shows the model of an explosion caused by a core-collapse of a star with 1000 solar masses. The abundance ratios of sodium (Na) and aluminum (Al), which are not well-reproduced by these models, might be produced during the evolution of stars before the explosion, but that is not included in the current model. (Credit: NAOJ)

These odd fingerprints suggest the star formed from material seeded by the death of a very massive Pop III star. In fact, the chemical composition of the star matches the elements that pair-instability supernovae are predicted to create.

The team notes that this is the only star of about 500 in the same low-metallicity range that has this peculiar makeup. It is — at the moment — our only window into the early universe and the first generation of stars.

The paper was published Aug. 22 in Science and is available online.

Weird X-Rays: What Happens When Eta Carinae’s Massive Stars Get Close?

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known. Credit: NASA

While the stars appear unchanging when you take a quick look at the night sky, there is so much variability out there that astronomers will be busy forever. One prominent example is Eta Carinae, a star system that erupted in the 19th century for about 20 years, becoming one of the brightest stars you could see in the night sky. It’s so volatile that it’s a high candidate for a supernova.

The two stars came again to their closest approach this month, under the watchful eye of the Chandra X-Ray Observatory. The observations are to figure out a puzzling dip in X-ray emissions from Eta Carinae that happen during every close encounter, including one observed in 2009.

The two stars orbit in a 5.5-year orbit, and even the lesser of them is massive — about 30 times the mass of the Sun. Winds are flowing rapidly from both of the stars, crashing into each other and creating a bow shock that makes the gas between the stars hotter. This is where the X-rays come from.

Here’s where things get interesting: as the stars orbit around each other, their distance changes by a factor of 20. This means that the wind crashes differently depending on how close the stars are to each other. Surprisingly, the X-rays drop off when the stars are at their closest approach, which was studied closely by Chandra when that last occurred in 2009.

Eta Carinae shines brightly in X-rays in this image from the Chandra X-Ray Observatory.
Eta Carinae shines brightly in X-rays in this image from the Chandra X-Ray Observatory.

“The study suggests that part of the reason for the dip at periastron is that X-rays from the apex are blocked by the dense wind from the more massive star in Eta Carinae, or perhaps by the surface of the star itself,” a Chandra press release stated.

“Another factor responsible for the X-ray dip is that the shock wave appears to be disrupted near periastron, possibly because of faster cooling of the gas due to increased density, and/or a decrease in the strength of the companion star’s wind because of extra ultraviolet radiation from the massive star reaching it.”

More observations are needed, so researchers are eagerly looking forward to finding out what Chandra dug up in the latest observations. A research paper on this was published earlier this year in the Astrophysical Journal, which you can also read in preprint version on Arxiv. The work was led by Kenji Hamaguchi, who is with NASA’s Goddard Space Flight Center in Maryland.

Source: Chandra X-Ray Observatory

What Sparked Star Explosion 2014J? NASA Telescope Seeks Clues

Astronomers are gazing closely at supernova 2014J (inset) to see what sort of triggers caused the star explosion. Credit: NASA/SAO/CXC/R. Margutti et al

X marks the spot: after probing the area where a star used to be, in X-rays, astronomers have been able to rule out one cause for the supernova explosion.

Because the Chandra X-Ray Observatory did not detect anything unusual in X-rays, astronomers say this means that a white dwarf was not responsible for pulling off material from a massive star that exploded (from Earth’s vantage point) on Jan. 21, 2014, triggering excitement from professional and amateur astronomers alike.

“While it may sound a bit odd, we actually learned a great deal about this supernova by detecting absolutely nothing,” stated study leader Raffaella Margutti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Massachusetts. “Now we can essentially rule out that the explosion was caused by a white dwarf continuously pulling material from a companion star.”

So what caused it? Possibly two white dwarfs merged instead. Follow-up observations will take place in Messier 88 and the source of the explosion, which was about 12 million light-years from Earth. While that’s a long time by human standards, astronomers point out that is close on the cosmic distance scale.

A study on this work was recently published in The Astrophysical Journal. You can read a preprint version of the article here.

Source: NASA