Ever since astronomers first began using telescopes to get a better look at the heavens, they have struggled with a basic conundrum. In addition to magnification, telescopes also need to be able to resolve the small details of an object in order to help us get a better understanding of them. Doing this requires building larger and larger light-collecting mirrors, which requires instruments of greater size, cost and complexity.
However, scientists working at NASA Goddard’s Space Flight Center are working on an inexpensive alternative. Instead of relying on big and impractical large-aperture telescopes, they have proposed a device that could resolve tiny details while being a fraction of the size. It’s known as the photon sieve, and it is being specifically developed to study the Sun’s corona in the ultraviolet.
Basically, the photon sieve is a variation on the Fresnel zone plate, a form of optics that consist of tightly spaced sets of rings that alternate between the transparent and the opaque. Unlike telescopes which focus light through refraction or reflection, these plates cause light to diffract through transparent openings. On the other side, the light overlaps and is then focused onto a specific point – creating an image that can be recorded.
The photon sieve operates on the same basic principles, but with a slightly more sophisticated twist. Instead of thin openings (i.e. Fresnel zones), the sieve consists of a circular silicon lens that is dotted with millions of tiny holes. Although such a device would be potentially useful at all wavelengths, the Goddard team is specifically developing the photon sieve to answer a 50-year-old question about the Sun.
Essentially, they hope to study the Sun’s corona to see what mechanism is heating it. For some time, scientists have known that the corona and other layers of the Sun’s atmosphere (the chromosphere, the transition region, and the heliosphere) are significantly hotter than its surface. Why this is has remained a mystery. But perhaps, not for much longer.
As Doug Rabin, the leader of the Goddard team, said in a NASA press release:
“This is already a success… For more than 50 years, the central unanswered question in solar coronal science has been to understand how energy transported from below is able to heat the corona. Current instruments have spatial resolutions about 100 times larger than the features that must be observed to understand this process.”
With support from Goddard’s Research and Development program, the team has already fabricated three sieves, all of which measure 7.62 cm (3 inches) in diameter. Each device contains a silicon wafer with 16 million holes, the sizes and locations of which were determined using a fabrication technique called photolithography – where light is used to transfer a geometric pattern from a photomask to a surface.
However, in the long-run, they hope to create a sieve that will measure 1 meter (3 feet) in diameter. With an instrument of this size, they believe they will be able to achieve up to 100 times better angular resolution in the ultraviolet than NASA’s high-resolution space telescope – the Solar Dynamics Observatory. This would be just enough to start getting some answers from the Sun’s corona.
In the meantime, the team plans to begin testing to see if the sieve can operate in space, a process which should take less than a year. This will include whether or not it can survive the intense g-forces of a space launch, as well as the extreme environment of space. Other plans include marrying the technology to a series of CubeSats so a two-spacecraft formation-flying mission could be mounted to study the Sun’s corona.
In addition to shedding light on the mysteries of the Sun, a successful photon sieve could revolution optics as we know it. Rather than being forced to send massive and expensive apparatus’ into space (like the Hubble Space Telescope or the James Webb Telescope), astronomers could get all the high-resolution images they need from devices small enough to stick aboard a satellite measuring no more than a few square meters.
This would open up new venues for space research, allowing private companies and research institutions the ability to take detailed photos of distant stars, planets, and other celestial objects. It would also constitute another crucial step towards making space exploration affordable and accessible.
NASA has spotted an enormous black blotch growing on the surface of the Sun. It looks eerie, but this dark region is nothing to fear, though it does signal potential disruption to satellite communications.
The dark region is called a coronal hole, an area on the surface of the Sun that is cooler and less dense than the surrounding areas. The magnetic fields in these holes are open to space, which allows high density plasma to flow out into space. The lack of plasma in these holes is what makes them appear dark. Coronal holes are the origin of high-speed solar winds, which can cause problems for satellite communications.
The images were captured by the Solar Dynamics Observatory (SDO) on July 11th. Tom Yulsman at Discover’s ImaGeo blog created a gif from several of NASA’s images.
High-speed solar winds are made up of solar particles which are travelling up to three times faster than the solar wind normally does. Though satellites are protected from the solar wind, extremes like this can still cause problems.
Coronal holes may look like a doomsday warning; an enormous black hole on the surface of our otherwise placid looking Sun is strange looking. But these holes are a part of the natural life of the Sun. And anyway, they only appear in extreme ultraviolet and x-ray wavelengths.
The holes tend to appear at the poles, due to the structure of the Sun’s magnetosphere. But when they appear in more equatorial regions of the Sun, they can cause intermittent problems, as the high-speed solar wind they generate is pointed at the Earth as the Sun rotates.
In June 2012, a coronal hole appeared that looked Big Bird from Sesame Street.
The Big Bird hole was the precursor to an extremely powerful solar storm, the most powerful one in 150 years. Daniel Baker, of the University of Colorado’s Laboratory of Atmospheric and Space Physics, said of that storm, “If it had hit, we would still be picking up the pieces.” We were fortunate that it missed us, as these enormous storms have the potential to damage power grids on the surface of the Earth.
It seems unlikely that any solar wind that reaches Earth as a result of this current coronal hole will cause any disruption to us here on Earth. But it’s not out of the question. In 1989 a solar storm struck Earth and knocked out power in the province of Quebec in Canada.
It may be that the only result of this coronal hole, and any geomagnetic storms it creates, are more vivid auroras.
Those are something everyone can appreciate and marvel at. And you don’t need an x-ray satellite to see them.
You may have heard the saying at some point in your life: “The Sun will still rise in the east and set in the west tomorrow.” You get the point, it means it’s not the end of the world. But have you ever wondered why the Sun behaves this way? Why does – and always has, for that matter – the Sun rise in the east and set in the west? What mechanics are behind this?
Naturally, ancient people took the passage of the Sun through the sky as a sign that it was revolving around us. With the birth of modern astronomy, we have come to learn that its actually the other way around. The Sun only appears to be revolving around us because our planet not only orbits it, but also rotates on its axis as it is doing so. From this, we get the familiar passage of the Sun through the sky, and the basis for our measurement of time.
Earth’s Rotation:
As already noted, the Earth rotates on its axis as it circles the Sun. If viewed from above the celestial north, the Earth would appear to be rotating counter-clockwise. Because of this, to those standing on the Earth’s surface, the Sun appears to be moving around us in a westerly direction at a rate of 15° an hour (or 15′ a minute). This is true of all celestial objects observed in the sky, with an “apparent motion” that takes them from east to west.
This is also true of the majority of the planets in the Solar System. Venus is one exception, which rotates backwards compared to its orbit around the Sun (a phenomena known as retrograde motion). Uranus is another, which not only rotates westward, but is inclined so much that it appears to be sitting on its side relative to the Sun.
Pluto also has a retrograde motion, so for those standing on its surface, the Sun would rise in the west and set in the east. In all cases, a large impact is believed to be the cause. In essence, Pluto and Venus were sent spinning in the other direction by a large impact, while another struck Uranus and knocked it over on its side!
With a rotational velocity of 1,674.4 km/h (1,040.4 mph), the Earth takes 23 hours, 56 minutes and 4.1 seconds to rotate once on its axis. This means, in essence, that a sidereal day is less than 24 hours. But combined with its orbital period (see below), a solar day – that is, the time it takes for the Sun to return to the same place in the sky – works out to 24 hours exactly.
Earth’s Orbit Around the Sun:
With an average orbital velocity of 107,200 km/h (66,600 mph), the Earth takes approximately 365.256 days – aka. a sidereal year – to complete a single orbit of the Sun. This means that every four years (in what is known as a Leap Year), the Earth calendar must include an extra day.
Viewed from the celestial north, the motion of the Earth appears to orbit the Sun in a counterclockwise direction. Combined with its axial tilt – i.e. the Earth’s axis is tilted 23.439° towards the ecliptic – this results in seasonal changes. In addition to producing variations in terms of temperature, this also results in variations in the amount of sunlight a hemisphere receives during the course of a year.
Basically, when the North Pole is pointing towards the Sun, the northern hemisphere experiences summer and the southern hemisphere experiences winter. During the summer, the climate warms up and the sun appears earlier in the morning sky and sets at a later hour in the evening. In the winter, the climate becomes generally cooler and the days are shorter, with sunrise coming later and sunset happening sooner.
Above the Arctic Circle, an extreme case is reached where there is no daylight at all for part of the year – up to six months at the North Pole itself, which is known as a “polar night”. In the southern hemisphere, the situation is exactly reversed, with the South Pole experiencing a “midnight sun” – i.e. a day of 24 hours.
And last, but not least, seasonal changes also result in changes in the Sun’s apparent motion across the sky. During summer in the northern hemisphere, the Sun appears to move from east to west directly overhead, while moving closer to the southern horizon during winter. During summer in the southern hemisphere, the Sun appears to move overhead; while in the winter, it appears to be closer to the northern horizon.
In short, the Sun rises in the east and sets in the west because of our planet’s rotation. During the course of the year, the amount of daylight we experience is mitigated by our planet’s tilted axis. If, like Venus, Uranus and Pluto, a large enough asteroid or celestial object were to strike us just right, the situation might be changed. We too could experience what it is like to watch the Sun rise in the west, and set in the east.
The dynamic relationship between Earth and the Sun two sides. The warmth from the Sun makes life on Earth possible, but the rest of the Sun’s intense energy pummels the Earth, and could destroy all life, given the chance. But thanks to our magnetosphere, we are safe.
The magnetosphere is our protective shield. It’s created by the rotation of the molten outer core of the Earth, composed largely of iron and nickel. It absorbs and deflects plasma from the solar wind. The interactions between the magnetosphere and the solar wind are what create the beautiful auroras at Earth’s poles.
In the inner regions of Earth’s magnetosphere are the Van Allen belts, named after their discoverer James Van Allen. They consist of charged particles, mostly from the Sun, and are held in place by the magnetosphere. Usually, there are two such belts.
But the output from the Sun is not stable. There are periods of intense energy output from the Sun, and when that happens, a third, transient belt can be created. Up until now, the nature of this third belt has been a puzzle. New research from the University of Alberta has shown how this phenomena can happen.
Researchers have shown how a so-called “space tsunami” can create this third belt. Intense ultra-low frequency plasma waves can transport the outer part of the radiation belt into interplanetary space, and create the third, transient belt.
The lead author for this study is physics professor Ian Mann from the University of Alberta, and former Canada Research Chair in Space Physics. “Remarkably, we observed huge plasma waves,” said Mann. “Rather like a space tsunami, they slosh the radiation belts around and very rapidly wash away the outer part of the belt, explaining the structure of the enigmatic third radiation belt.”
This new research also sheds light on how these “tsunamis” help reduce the threat of radiation to satellites during other space storms. “Space radiation poses a threat to the operation of the satellite infrastructure upon which our twenty-first century technological society relies,” adds Mann. “Understanding how such radiation is energized and lost is one of the biggest challenges for space research.”
It’s not just satellites that are at risk of radiation though. When solar wind is most active, it can create extremely energetic space storms. They in turn create intense radiation in the Van Allen belts, which drive electrical currents that could damage our power grids here on Earth. These types of storms have the potential to cause trillions of dollars worth of damage.
A better understanding of this space radiation, and an ability to forecast it, are turning out to be very important to our satellite operations, and to our exploration of space.
The Van Allen belts were discovered in 1958, and classified into an inner and an outer belt.
In 2013, probes reported a third belt which had never before been seen. It lasted a few weeks, then vanished, and its cause was not known. Thanks to Mann and his team, we now know what was behind that third belt.
“We have discovered a very elegant explanation for the dynamics of the third belt,” says Mann. “Our results show a remarkable simplicity in belt response once the dominant processes are accurately specified.”
An understanding of the radiation in and around Earth and the Van Allen belts is of growing importance to us, as we expand our presence in space. Our technological society relies increasingly on satellite communications, and on GPS satellites. Radiation in the form of high-energy electrons can wreak havoc on satellites. In fact, this type of radiation is sometimes referred to as a satellite killer. Satellites require robust design to be protected from them.
Organizations like the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) and the International Living with a Star (ILWS) Program are attempts to address the threat that radiation poses to our system of satellites.
Strange plumes in Mars’ atmosphere first recorded by amateur astronomers four year ago have planetary scientists still scratching their heads. But new data from European Space Agency’s orbiting Mars Express points to coronal mass ejections from the Sun as the culprit.
On two occasions in 2012 amateurs photographed cloud-like features rising to altitudes of over 155 miles (250 km) above the same region of Mars. By comparison, similar features seen in the past haven’t exceeded 62 miles (100 km). On March 20th of that year, the cloud developed in less than 10 hours, covered an area of up to 620 x 310 miles (1000 x 500 kilometers), and remained visible for around 10 days.
Back then astronomers hypothesized that ice crystals or even dust whirled high into the Martian atmosphere by seasonal winds might be the cause. However, the extreme altitude is far higher than where typical clouds of frozen carbon dioxide and water are thought to be able to form.
Indeed at those altitudes, we’ve entered Mars’ ionosphere, a rarified region where what air there is has been ionized by solar radiation. At Earth, charged particles from the Sun follow the planet’s global magnetic lines of force into the upper atmosphere to spark the aurora borealis. Might the strange features observed be Martian auroras linked to regions on the surface with stronger-than-usual magnetic fields?
Once upon a very long time ago, Mars may have had a global magnetic field generated by electrical currents in a liquid iron-nickel core much like the Earth’s does today. In the current era, the Red Planet has only residual fields centered over regions of magnetic rocks in its crust.
Instead of a single, planet-wide field that funnels particles from the Sun into the atmosphere to generate auroras, Mars is peppered with pockets of magnetism, each potentially capable of connecting with the wind of particles from the Sun to spark a modest display of the “northern lights.” Auroras were first discovered on Mars in 2004 by the Mars Express orbiter, but they’re faint compared to the plumes, which were too bright to be considered auroras.
Still, this was a step in the right direction. What was needed was some hard data of a possible Sun-Earth interaction which scientists ultimately found when they looked into plasma and solar wind measurements collected by Mars Express at the time. David Andrews of the Swedish Institute of Space Physics, lead author of a recent paper reporting the Mars Express results, found evidence for a large coronal mass ejection or CME from the Sun striking the martian atmosphere in the right place and at around the right time.
CMEs are enormous explosions of hot solar plasma — a soup of electrons and protons — entwined with magnetic fields that blast off the Sun and can touch off geomagnetic storms and auroras when they encounter the Earth and other planets.
“Our plasma observations tell us that there was a space weather event large enough to impact Mars and increase the escape of plasma from the planet’s atmosphere,” said Andrews. Indeed, the plume was seen along the day–night boundary, over a region of known strong crustal magnetic fields.
But again, a Mars aurora wouldn’t be expected to shine so brightly. That’s why Andrews thinks that the CME prompted a disturbance in the ionosphere large enough to affect dust and ice grains below:
“One idea is that a fast-traveling CME causes a significant perturbation in the ionosphere resulting in dust and ice grains residing at high altitudes in the upper atmosphere being pushed around by the ionospheric plasma and magnetic fields, and then lofted to even higher altitudes by electrical charging,” according to Andrews.
With enough dust and ice twinkling high above the planet’s surface, it might be possible for observers on Earth to see the result as a wispy plume of light. Plumes appear to be rare on Mars as a search through the archives has revealed. The only other, seen by the Hubble Space Telescope in May 1997, occurred when a CME was hitting the Earth at the same time. Unfortunately, there’s no information from Mars orbiters at the time about its effect on that planet.
Observers on Earth and orbiters zipping around the Red Planet continue to monitor Mars for recurrences. Scientists also plan to use the webcam on Mars Express for more frequent coverage. Like a dog with a bone, once scientists get a bite on a tasty mystery, they won’t be letting go anytime soon.
It is an well-known fact that all stars have a lifespan. This begins with their formation, then continues through their Main Sequence phase (which constitutes the majority of their life) before ending in death. In most cases, stars will swell up to several hundred times their normal size as they exit the Main Sequence phase of their life, during which time they will likely consume any planets that orbit closely to them.
However, for planets that orbit the star at greater distances (beyond the system’s “Frost Line“, essentially), conditions might actually become warm enough for them to support life. And according to new research which comes from the Carl Sagan Institute at Cornell University, this situation could last for some star systems into the billions of years, giving rise to entirely new forms of extra-terrestrial life!
In approximately 5.4 billion years from now, our Sun will exit its Main Sequence phase. Having exhausted the hydrogen fuel in its core, the inert helium ash that has built up there will become unstable and collapse under its own weight. This will cause the core to heat up and get denser, which in turn will cause the Sun to grow in size and enter what is known as the Red Giant-Branch (RGB) phase of its evolution.
This period will begin with our Sun becoming a subgiant, in which it will slowly double in size over the course of about half a billion years. It will then spend the next half a billion years expanding more rapidly, until it is 200 times its current size and several thousands times more luminous. It will then officially be a red giant star, eventually expanding to the point where it reaches beyond Mars’ orbit.
As we explored in a previous article, planet Earth will not survive our Sun becoming a Red Giant – nor will Mercury, Venus or Mars. But beyond the “Frost Line”, where it is cold enough that volatile compounds – such as water, ammonia, methane, carbon dioxide and carbon monoxide – remain in a frozen state, the remain gas giants, ice giants, and dwarf planets will survive. Not only that, but a massive thaw will set in.
In short, when the star expands, its “habitable zone” will likely do the same, encompassing the orbits of Jupiter and Saturn. When this happens, formerly uninhabitable places – like the Jovian and Cronian moons – could suddenly become inhabitable. The same holds true for many other stars in the Universe, all of which are fated to become Red Giants as they near the end of their lifespans.
However, when our Sun reaches its Red Giant Branch phase, it is only expected to have 120 million years of active life left. This is not quite enough time for new lifeforms to emerge, evolve and become truly complex (i.e. like humans and other species of mammals). But according to a recent research study that appeared in The Astrophysical Journal – titled “Habitable Zone of Post-Main Sequence Stars” – some planets may be able to remain habitable around other red giant stars in our Universe for much longer – up to 9 billion years or more in some cases!
To put that in perspective, nine billion years is close to twice the current age of Earth. So assuming that the worlds in question also have the right mix of elements, they will have ample time to give rise to new and complex forms of life. The study’s co-author, Professor Lisa Kaltennegeris, is also the director of the Carl Sagan Institute. As such, she is no stranger to searching for life in other parts of the Universe. As she explained to Universe Today via email:
“We found that planets – depending on how big their Sun is (the smaller the star, the longer the planet can stay habitable) – can stay nice and warm for up to 9 Billion years. That makes an old star an interesting place to look for life. It could have started sub-surface (e.g. in a frozen ocean) and then when the ice melts, the gases that life breaths in and out can escape into the atmosphere – what allows astronomers to pick them up as signatures of life. Or for the smallest stars, the time a formerly frozen planet can be nice and warm is up to 9 billion years. Thus life could potentially even get started in that time.”
Using existing models of stars and their evolution – i.e. one-dimensional radiative-convective climate and stellar evolutionary models – for their study, Kaltenegger and Ramirez were able to calculate the distances of the habitable zones (HZ) around a series of post-Main Sequence (post-MS) stars. Ramses M. Ramirez – a research associate at the Carl Sagan Institute and the lead author of the paper – explained the research process to Universe Today via email:
“We used stellar evolutionary models that tell us how stellar quantities, mainly the brightness, radius, and temperature all change with time as the star ages through the red giant phase. We also used a climate model to then compute how much energy each star is outputting at the boundaries of the habitable zone. Knowing this and the stellar brightness mentioned above, we can compute the distances to these habitable zone boundaries.”
At the same time, they considered how this kind of stellar evolution could effect the atmosphere of the star’s planets. As a star expands, it loses mass and ejects it outward in the form of solar wind. For planets that orbit close to a star, or those that have low surface gravity, they may find some or all of their atmospheres blasted away. On the other hand, planets with sufficient mass (or positioned at a safe distance) could maintain most of their atmospheres.
“The stellar winds from this mass loss erodes planetary atmospheres, which we also compute as a function of time,” said Ramirez. “As the star loses mass, the solar system conserves angular momentum by moving outwards. So, we also take into account how the orbits move out with time.” By using models that incorporated the rate of stellar and atmospheric loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases of star, they were able to determine how this would play out for planets that ranged in size from super-Moons to super-Earths.
What they found was that a planet can stay in a post-HS HZ for eons or more, depending on how hot the star is, and figuring for metallicities that are similar to our Sun’s. As Ramirez explained:
“The main result is that the maximum time that a planet can remain in this red giant habitable zone of hot stars is 200 million years. For our coolest star (M1), the maximum time a planet can stay within this red giant habitable zone is 9 billion years. Those results assume metallicity levels similar to those of our Sun. A star with a higher percentage of metals takes longer to fuse the non-metals (H, He..etc) and so these maximum times can increase some more, up to about a factor of two.”
Within the context of our Solar System, this could mean that in a few billion years, worlds like Europa and Enceladus (which are already suspected of having life beneath their icy surfaces) might get a shot at becoming full-fledged habitable worlds. As Ramirez summarized beautifully:
“This means that the post-main-sequence is another potentially interesting phase of stellar evolution from a habitability standpoint. Long after the inner system of planets have been turned into sizzling wastelands by the expanding, growing red giant star, there could be potentially habitable abodes farther away from the chaos. If they are frozen worlds, like Europa, the ice would melt, potentially unveiling any preexisting life. Such pre-existing life may be detectable by future missions/telescopes looking for atmospheric biosignatures.”
But perhaps the most exciting take-away from their research study was their conclusion that planets orbiting within their star’s post-MS habitable zones would be doing so at distances that would make them detectable using direct imaging techniques. So not only are the odds of finding life around older stars better than previously thought, we should have no trouble in spotting them using current exoplanet-hunting techniques!
It is also worth noting that Kaltenegger and Dr. Ramirez have submitted a second paper for publication, in which they provide a list of 23 red giant stars within 100 light-years of Earth. Knowing that these stars, all of which are in our stellar neighborhood, could have life-sustaining worlds within their habitable zones should provide additional opportunities for planet hunters in the coming years.
And be sure to check out this video from Cornellcast, where Prof. Kaltenegger shares what inspires her scientific curiosity and how Cornell’s scientists are working to find proof of extra-terrestrial life.
On May 9, 2016, Mercury passed directly between the Sun and Earth. No one had a better view of the event than the space-based Solar Dynamics Observatory, as it had a completely unobstructed view of the entire seven-and-a-half-hour event! This composite image, above, of Mercury’s journey across the Sun was created with visible-light images from the Helioseismic and Magnetic Imager on SDO, and below is a wonderful video of the transit, as it includes views in several different wavelenths (and also some great soaring music sure to stir your soul).
Mercury transits of the Sun happen about 13 times each century, however the next one will occur in only about three and a half years, on November 11, 2019. But then it’s a long dry spell, as the following one won’t occur until November 13, 2032.
Simple choices can sometimes lead to dramatic turns of events in our lives. Before turning in for the night last night, I opened the front door for one last look at the night sky. A brighter-than-normal auroral arc arched over the northern horizon. Although no geomagnetic activity had been forecast, there was something about that arc that hinted of possibility.
It was 11:30 at the time, and it would have been easy to go to bed, but I figured one quick drive north for a better look couldn’t hurt. Ten minutes later the sky exploded. The arc subdivided into individual pillars of light that stretched by degrees until they reached the zenith and beyond. Rhythmic ripples of light – much like the regular beat of waves on a beach — pulsed upward through the display. You can’t see a chill going up your spine, but if you could, this is what it would look like.
Auroras can be caused by huge eruptions of subatomic particles from the Sun’s corona called CMEs or coronal mass ejections, but they can also be sparked by holes in the solar magnetic canopy. Coronal holes show up as blank regions in photos of the Sun taken in far ultraviolet and X-ray light. Bright magnetic loops restrain the constant leakage of electrons and protons from the Sun called the solar wind. But holes allow these particles to fly away into space at high speed. Last night’s aurora traces its origin back to one of these holes.
The subatomic particles in the gusty wind come bundled with their own magnetic field with a plus or positive pole and a minus or negative pole. Recall that an ordinary bar magnet also has a “+” and “-” pole, and that like poles repel and opposite poles attract. Earth likewise has magnetic poles which anchor a large bubble of magnetism around the planet called the magnetosphere.
Field lines in the magnetosphere — those invisible lines of magnetic force around every magnet — point toward the north pole. When the field lines in the solar wind also point north, there’s little interaction between the two, almost like two magnets repelling one another. But if the cloud’s lines of magnetic force point south, they can link directly into Earth’s magnetic field like two magnets snapping together. Particles, primarily electrons, stream willy-nilly at high speed down Earth’s magnetic field lines like a zillion firefighters zipping down fire poles. They crash directly into molecules and atoms of oxygen and nitrogen around 60-100 miles overhead, which absorb the energy and then release it moments later in bursts of green and red light.
So do great forces act on the tiniest of things to produce a vibrant display of northern lights. Last night’s show began at nightfall and lasted into dawn. Good news! The latest forecast calls for another round of aurora tonight from about 7 p.m. to 1 a.m. CDT (0-6 hours UT). Only minor G1 storming (K index =5) is expected, but that was last night’s expectation, too. Like the weather, the aurora can be tricky to pin down. Instead of a G1, we got a G3 or strong storm. No one’s complaining.
So if you’re looking for that perfect last minute Mother’s Day gift, take your mom to a place with a good view of the northern sky and start looking at the end of dusk for activity. Displays often begin with a low, “quiet” arc and amp up from there.
Aurora or not, tomorrow features a big event many of us have anticipated for years — the transit of Mercury. You’ll find everything you’ll need to know in this earlier story, but to recap, Mercury will cross directly in front of the Sun during the late morning-early evening for European observers and from around sunrise (or before) through late morning-early afternoon for skywatchers in the Americas. Because the planet is tiny and the Sun deadly bright, you’ll need a small telescope capped with a safe solar filter to watch the event. Remember, never look directly at the Sun at any time.
If you’re greeted with cloudy skies or live where the transit can’t be seen, be sure to check out astronomer Gianluca Masi’s live stream of the event. He’ll hook you up starting at 11:00 UT (6 a.m. CDT) tomorrow.
The table below includes the times across the major time zones in the continental U.S. for Monday May 9:
Be sure to mark your calendar for May 9. On that day, the Solar System’s most elusive planet will pass directly in front of the Sun. The special event, called a transit, happens infrequently. The last Mercury transit occurred more than 10 years ago, so many of us can’t wait for this next. Remember how cool it was to see Venus transit the Sun in 2008 and again in 2012? The views will be similar with one big difference: Mercury’s a lot smaller and farther away than Venus, so you’ll need a telescope. Not a big scope, but something that magnifies at least 30x. Mercury will span just 10 arc seconds, making it only a sixth as big as Venus.
If I might make a suggestion, consider buying a sheet of Baader AstroSolar aluminized polyester film and cutting it to size to make your own filter. Although the film’s crinkly texture might make you think it’s flimsy or of poor optical quality, don’t be deceived by appearances.
The material yields both excellent contrast and a pleasing neutral-colored solar image. You can purchase any of several different-sized films to suit your needs either from Astro-Physicsor on Amazon.com. Prices range from $40-90.
Nov. 8, 2006 Transit of Mercury by Dave Kodama
With filter material in hand, just follow these instructions to make your own, snug-fitting telescopic solar filter. Even I can do it, and I kid you not that I’m a total klutz when it comes to building things. If for whatever reason you can’t get a filter, go to Plan B. Put a low power eyepiece in your scope and project an image of the Sun onto a sheet of white paper a foot or two behind the eyepiece.
Since May 9th is a Monday, I’ve a hunch a few of you will be taking the day off. If you can’t, pack a telescope and set it up during lunch hour to share the view with your colleagues. Mercury will spend a leisurely 7 1/2 hours slowly crawling across the Sun’s face, traveling from east to west. The entire transit will be visible across the eastern half of the U.S., most of South America, eastern and central Canada, western Africa and much of western Europe. For the western U.S., Alaska and Hawaii the Sun will rise with the transit already in progress.
Time Zone
Eastern (EDT)
Central (CDT)
Mountain (MDT)
Pacific (PDT)
Transit start
7:12 a.m.
6:12 a.m.
5:12 a.m.
Not visible
Mid-transit
10:57 a.m.
9:57 a.m.
8:57 a.m.
7:57 a.m.
Transit end
2:42 p.m.
1:42 p.m.
12:42 p.m.
11:42 a.m.
At first glance, the planet might look like a small sunspot, but if you look closely, you’ll see it’s a small, perfectly circular black dot compared to the out-of-round sunspots which also possess the classic two-part umbra-penumbra structure. Oh yes, it also moves. Slowly to be sure, but much faster than a typical sunspot which takes nearly two weeks to cross the Sun’s face. With a little luck, a few sunspots will be in view during transit time; compared to midnight Mercury their “black” umbral cores will look deep brown.
I want to alert you to four key times to have your eye glued to the telescope; all occur during the 3 minutes and 12 seconds when Mercury enters and exits the Sun. They’re listed below in Universal Time or UT. To convert UT to EDT, subtract 4 hours; CDT 5 hours; MDT 6 hours, PDT 7 hours, AKDT 8 hours and HST 10 hours.
First contact (11:12 UT): Watch for the first hint of Mercury’s globe biting into the Sun just south of the due east point on along the edge of disk’s edge. It’s always a thrill to see an astronomical event forecast years ago happen at precisely the predicted time.
Second contact (11:15 UT): Three minutes and 12 seconds later, the planet’s trailing edge touches the inner limb of the Sun at second contact. Does the planet separate cleanly from the solar limb or briefly remain “connected” by a narrow, black “line”, giving the silhouette a drop-shaped appearance?
This “black drop effect”is caused primarily by diffraction, the bending and interfering of light waves when they pass through the narrow gap between Mercury and the Sun’s edge. You can replicate the effect by bringing your thumb and index finger closer and closer together against a bright backdrop. Immediately before they touch, a black arc will fill the gap between them.
Third contact (18:39 UT): A minute or less before Mercury’s leading edge touches the opposite limb of the Sun at third contact, watch for the black drop effect to return.
Fourth contact (18:42 UT): The moment the last silhouetted speck of Mercury exits the Sun. Don’t forget to mark your calendar for November 11, 2019, date of the next transit, which also favors observers in the Americas and Europe. After that one, the next won’t happen till 2032.
Other interesting visuals to keep an eye out for is a bright ring or aureole that sometimes appears around the planet caused when our brain exaggerates the contrast of an object against a backdrop of a different brightness. Another spurious optical-brain effect keen-eyed observers can watch for is a central bright spot inside Mercury’s black disk. Use high power to get the best views of these obscure but fascinating phenomena seen by many observers during Mercury transits.
While I’ve been talking all “white light” observation, the proliferation of relatively inexpensive and portable hydrogen-alpha telescopes in recent years makes them another viewing option with intriguing possibilities. These instruments show solar phenomena beyond the Sun’s limb, including the flaming prominences normally seen only during a total eclipse. That makes it possible to glimpse Mercury minutes in advance of the transit (or minutes after transit end) silhouetted against a prominence or nudging into the rim furry ring of spicules surrounding the outer limb. Wow!
One final note. Be careful never to look directly at the Sun even for a moment during the transit. Keep your eyes safe! When aiming a telescope, the safest and easiest way to center the Sun in the field of view is to shift the scope up and down and back and forth until the shadow the tube casts on the ground is shortest. Try it.
I hope the weather gods smile on you on May 9, but it they don’t or if you live where the transit won’t be visible, Italian astrophysicist Gianluca Masi will stream it live on his Virtual Telescope websitestarting at 11:00 UT (6 a.m CDT).
Our seemly placid host star is just full of surprises.
Just one week ago, it looked like we were set to enter the first spotless stretch of 2016, as the Earthward face of Sol presented one lonely sunspot group going ’round the limb, headed towards the solar far side. Continue reading “Huge Sunspot Turns Earthward”