A Complete Guide to the March 20th Total Solar Eclipse

Credit

The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.

Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.

Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .

2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.

Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.

Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…

The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.

Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.

This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.

And speaking of obscure eclipse terminology, check out this neat compendium we came across in research. What’s an Exeligmos? How many Heptons are in a Gregoriana?

The 462 kilometre wide path of the eclipse touches down south of Greenland at 9:13 UT at sunrise, before racing across the North Atlantic towards the pole and departing the Earth at 10:21 UT. The sedate partial phases for the eclipse worldwide start at 7:40 UT, and run out to 11:51 UT.

What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!

Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.

Alas, this unique view from the pole will more than likely go undocumented. A similar eclipse was caught in 2003 from the Antarctic, and a few intrepid eclipse chasers, including author David Levy did manage to make the journey down under to witness totality from the polar continent.

Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com

Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.

Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.

Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.

But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:

Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.

Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.

Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:

Astronomia Practica plans to post photos in near real time of the eclipse from northern Scotland.

-Slooh has plans to broadcast the eclipse from the Faroe Islands.

-And here’s another webcast from the Faroe Islands and the path of totality courtesy of Kringvarp Føroya:

-Here’s another broadcast planned of the partial stages of the eclipse as seen from the UK.

-And our friends over at the Virtual Telescope Project also plans on webcasting the solar eclipse:

… and speaking of which, there’s also an exciting new Kickstarter project entitled Chasing Shadows which is headed to the Arctic to follow veteran eclipse chaser Geoff Sims (@beyond_beneath of Twitter):

And stay tuned, as North America and the Pacific region will witness another total lunar eclipse on April 4th 2015. And we’ve only got one more total solar eclipse across Southeast Asia in 2016 before the total solar eclipse of August 21st 2017 spanning the U.S.

Let the first eclipse season of 2015 begin!

Next… how will the solar eclipse affect the European solar grid? Expect an article on just that soon!

A New Sungrazing Comet May Brighten in the Evening Sky, Here’s How to See It

Photo taken at 20:00 UT (2 pm. CST) Feb. 19 with the SOHO C2 coronagraph, a device that blocks the Sun, allowing a view of the area close by. Credit: NASA/ESA

A newly-discovered comet may soon become bright enough to see from a sky near you. Originally dubbed SOHO-2875, it was spotted in photos taken by the Solar and Heliospheric Observatory (SOHO) earlier this week. Astronomer Karl Battams, who maintains the Sungrazer Project website, originally thought this little comet would dissipate after its close brush with the Sun. To his surprise, it outperformed expectations and may survive long enough to see in the evening sky.

SOHO-2875 seen in a second, wide-field coronograph called LASCO C2 at 2:42 a.m. today Feb. 20. It's already moved a good distance to the west-southwest of the Sun and still displays a short tail. Credit: NASA/ESA
C/2015 D1 (SOHO) seen in a second, wide-field coronograph called LASCO C3 at 2:42 a.m. Feb. 20. Since then it’s well to the east of the Sun into the evening sky. Credit: NASA/ESA

Most sungrazing comets discovered by SOHO are members of the Kreutz family, a group of icy fragments left over from the breakup of a single much larger comet centuries ago. We know they’re all family by their similar orbits. The newcomer, SOHO’s 2,875th comet discovery, is a “non-group” comet or one that’s unrelated to the Kreutz family or any other comet club for that matter. According to Battams these mavericks appear several times a year. As of today (Feb. 24) its official name is C/2015 D1 (SOHO).

Composite of Comet SOHO-2875 crossing the C2 coronagraph field yesterday. Credit: NASA/ESA/Barbara Thompson
Composite of Comet SOHO-2875 crossing the C2 coronagraph field Feb. 19. Credit: NASA/ESA/Barbara Thompson

What’s unusual about #2,875 is how bright it is. At least for now, it appears to have survived the Sun’s heat and gravitational tides and is turning around to the east headed for the evening sky. Before it left SOHO’s field of view on Feb. 21, the comet was still around magnitude +4-4.5.

No one can say for sure whether it has what it takes to hang on, so don’t get your hopes up just yet. Battams and others carefully calculated the comet’s changing position in the SOHO images and sent the data off to the Minor Planet Center, which today published an orbit.

Newly-named Comet C/2015 D1 (SOHO) will share the sky with Venus and Mars at dusk. For the next few nights it will be quite low and nearly impossible to see. Its situation improves over time as the comet moves rapidly northward into Pegasus and Andromeda. Tick marks show the comet's position each evening. Stars are shown to magnitude +6.5. Created with Chris Marriott's SkyMap software
Newly-named Comet C/2015 D1 (SOHO) will share the sky with Venus and Mars at dusk. For the next few nights it will be quite low and nearly impossible to see. Its situation improves over time as the comet moves rapidly northward into Pegasus and Andromeda. Tick marks show the comet’s position each evening. Stars are shown to magnitude +6.5. Created with Chris Marriott’s SkyMap software

Based on this preliminary orbit, I’ve plotted SOHO-2875’s path for the next couple weeks as it tracks up through Pisces and Pegasus during the early evening hours. Given that it’s probably no brighter than magnitude +6 at the moment and very low in the west at dusk, it may still be swamped in twilight’s glow.

Barring an unexpected outburst, there’s no question that the comet will fade in the coming days as its distance from both the Earth and Sun increase. Right now it’s 79 million miles from us and 28 million miles from the Sun. That puts it about 8 million miles closer to the Sun than the planet Mercury.

Comet SOHO-2875 survived its close passage of the Sun and may make an appearance in the evening sky soon. This photo montage was made using the coronagraph (Sun-blocking device) on SOHO. Click to watch a movie of the comet. Credit: NASA/ESA
Comet SOHO-2875 survived its close passage of the Sun and may make an appearance in the evening sky soon. This photo montage was made using the coronagraph (Sun-blocking device) on SOHO. Click to watch a movie of the comet. Credit: NASA/ESA

I drew up the chart for about 75 minutes after sunset in late twilight. Keep in mind that since the comet’s positions were determined via spacecraft imagery, which isn’t as precise as photographing it from ground observatories, its orbit is preliminary. That means it may not be on the precise path shown on the map. Be sure you search up-down and right-left of the plotted locations.

It’s also very possible the comet is in the process of disintegration after perihelion passage, so it may not be a dense, compact object but rather a diffuse cloud of glowing dust. Will it go the way of Comet ISON and fade away to nothing? Who knows? I sure don’t but can’t wait to find out what it’s up to the next clear night.

BTW, if you’ve got a software program that downloads orbital elements for comets to create your own charts, you’ll find the numbers you need in today’s Minor Planet Circular. Be sure to use the “post-perihelion” elements that predict the comet’s location from here on out.

Skywatchers Identify Aircraft as They Pass in Front of the Sun

An Aer Lingus Airbus A320 passes in front of the Sun on Feb. 4, 2015. Credit and copyright: Chris Lyons.

It’s all about timing and location.

You’ve probably seen images we’ve posted on Universe Today of planes crossing in front of the Sun or the Moon. But how do the photographers manage to capture these events? Hint: it’s not random luck.

“I live under a main flight path out of Heathrow,” said photographer Chris Lyons from the UK who took the image above earlier today, “and can easily spot the planes not long after they take off — if it is clear — from when they are about 100 miles away!”

Chris posts many of his images on Universe Today’s Flickr page, and what is great about Chris’ airplane photos is that he includes a handy infographic about the plane in the shot; the type of plane, its takeoff and destination, and more, garnered from online flight trackers.

Chris told Universe Today that he originally started trying to catch planes passing in front of the Moon.

A waxing gibbous Moon with an  American Airlines flyby  on Feb. 2, 2015. Credit and copyright: Chris Lyons.
A waxing gibbous Moon with an American Airlines flyby on Feb. 2, 2015. Credit and copyright: Chris Lyons.

“It went from snapping them near it when just taking Moon shots to wanting to get closer and have them actually passing it,” he said. “Then I got a Solar filter and tried it with the Sun. It is far more difficult than the Moon, as you cannot look at it for long. I limit my viewing (our eyes are precious) and only look through high rated neutral density filters.”

We’ve also featured images from Sebastien Lebrigand who lives about 70 km outside of Paris, France. Lebrigand is prolific: he takes almost daily images of planes passing in front of the Sun and Moon and posts them on Twitter.

A Boeing 777 and a sunspot crosses the Sun on April 17, 2014, as seen from France. Credit and copyright: Sebastien Lebrigand.
A Boeing 777 and a sunspot crosses the Sun on April 17, 2014, as seen from France. Credit and copyright: Sebastien Lebrigand.

Lebrigand is an amateur astronomer but says he especially enjoys “the rare conjunction of the planes passing by the Sun and the Moon.’

He uses a Canon EOS 60D and a telescope to take his photos the pictures. But his work takes hours of time for analyzing when a potential photo opportunity might occur, setting up equipment, waiting for the exact moment, and then perfecting the images.

An Airbus A319 jet flying at 37,800 feet as it passes in front of the Moon, as seen from near Paris, France. Credit and copyright: Sebastien Lebrigand.
An Airbus A319 jet flying at 37,800 feet as it passes in front of the Moon, as seen from near Paris, France. Credit and copyright: Sebastien Lebrigand.

Check out more of Chris Lyons’ work at his Flickr page, and you can see more of Sebastien Lebrigand’s work at his website or his Twitter feed.

Jupiter and the Full Snow Moon Come Together In a Beautiful Conjunction Tonight

A halo rings the bright moon and planet Jupiter (left of moon) Credit: Bob King

The Full Moon celebrates Jupiter’s coming opposition by accompanying the bright planet in a beautiful conjunction tonight.

Even last night Jupiter and the Moon were close enough to attract attention. Tonight they’ll be even more striking. Two reasons for that. The Moon is full this evening and will have crept within 41/2° of the planet. They’ll rise together and roll together all night long.

The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion.  The map shows the scene around 8 o'clock local time. Source: Stellarium
The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion. The map shows the scene around 8 o’clock local time. Source: Stellarium

February’s full moon is aptly named the Full Snow Moon as snowfall can be heavy this month. Just ask the folks in Chicago. The Cherokee Indians called it the “Bone Moon”, named for the tough times experienced by many Native Americans in mid-winter when food supplies ran low. With little left to eat people made use of everything including bones and bone marrow for soup.

Not only is the Full Moon directly opposite the Sun in the sky, rising around sunset and setting around sunrise, but in mid-winter they’re nearly on opposite ends of the celestial seesaw.

Jupiter, like tonight's Full Moon, will be directly opposite the Sun this Friday and in "full moon" phase. Credit: Bob King
Jupiter, like tonight’s Full Moon, will be directly opposite the Sun this Friday and in “full moon” phase. Because both planets are lined up on the same side of the Sun, Jupiter will also be at its closest to us for the year. Credit: Bob King

In early February the Sun is still near its lowest point in the sky (bottom of the seesaw) for the northern half of  the globe. And while daylight is steadily increasing as the Sun moves northward, darkness still has the upper hand this month. Full Moons like tonight’s lie 180° opposite the Sun, placing the Moon near the top of the seesaw. Come early August, the Sun will occupy the Moon’s spot and the Full Moon will have slid down to the Sun’s current position. Yin and Yang folks.

Now here’s the interesting thing. Jupiter will also be in “full moon” phase when it reaches opposition this Friday Feb. 6.  Take a look at the diagram. From our perspective on Earth, Jupiter and the Sun lie on opposite sides of our planet 180° apart. As the Sun sets Friday, Jupiter will rise in the east and remain visible all night until setting around sunrise exactly like a Full Moon.

So in a funny way, we have two Full Moons this week only one’s a planet.

Like me, a lot of you enjoy a good moonrise. That golden-orange globe, the crazy squished appearance at rising and the transition to the bright, white, beaming disk that throws enough light on a winter night to ski in the forest without a headlamp. All good reasons to be alive.

If Jupiter were moved to the Moon's distance it would span about 20 of sky or 40x the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author
If Jupiter were moved to the Moon’s distance it would span about 20 degrees or 40 times the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author

To find when the moon rises for your town, click over to this moonrise calculator. As you step outside tonight to get your required Moon and Jupiter-shine, consider the scene if we took neighboring Jupiter and placed it at the same distance as the Moon. A recent series of such scenes was released by the Russian Federal Space Agency (Roscosmos). I included one here and added the Moon for you to compare. Is Jupiter enormous or what?

What it Would Look Like if the Sun was Replaced with Other Stars?

How our horizon might look if Earth orbited the star Artcurus. Credit: TV Roskosmos.

How would our horizon look if Earth orbited around another star, such as Alfa-Centauri, Sirius, or Polaris? Roscosmos TV has released two new videos that replace our familiar Sun and Moon with other stars and planets. While these are completely fantastical — as Earth would have evolved very differently or not evolved at all in orbit around a giant or binary star — the videos are very well done and they give a new appreciation for the accustomed and comforting views we have. The Sun video is above; the Moon below:

Check out Roscosmos TV You Tube page — they have a great collection of videos, from launches to science to fantastical videos like the ones we featured here.

New Mission: DSCOVR Satellite will Monitor the Solar Wind

Artist's concept of the DSCOVR satellite in orbit. Credit: NOAA

Solar wind – that is, the stream of charged electrons and protons that are released from the upper atmosphere of the Sun – is a constant in our Solar System and generally not a concern for us Earthlings. However, on occasion a solar wind shock wave or Coronal Mass Ejection can occur, disrupting satellites, electronics systems, and even sending harmful radiation to the surface.

Little wonder then why NASA and the National Oceanic and Atmospheric Administration (NOAA) have made a point of keeping satellites in orbit that can maintain real-time monitoring capabilities. The newest mission, the Deep Space Climate Observatory (DSCOVR) is expected to launch later this month.

A collaborative effort between NASA, the NOAA, and the US Air Force, the DSCOVR mission was originally proposed in 1998 as a way of providing near-continuous monitoring of Earth. However, the $100 million satellite has since been re-purposed as a solar observatory.

In this capacity, it will provide support to the National Weather Service’s Space Weather Prediction Center, which is charged with providing advanced warning forecasts of approaching geomagnetic storms for people here on Earth.

Illustration showing the DSCOVR satellite in orbit L1 orbit, located one million miles away from Earth. At this location, the satellite will be in the best position to monitor the constant stream of particles from the sun, known as solar wind, and provide warnings of approaching geomagnetic storms caused by solar wind about an hour before they reach Earth. Credit: NOAA
Illustration showing the DSCOVR satellite in L1 orbit, located 1.5 million km  (930,000 mi) away from Earth. Credit: NOAA

These storms, which are caused by large-scale fluctuations in solar wind, have the potential of disrupting radio signals and electronic systems, which means that everything from telecommunications, aviation, GPS systems, power grids, and every other major bit of infrastructure is vulnerable to them.

In fact, a report made by the National Research Council estimated that recovering from the most extreme geomagnetic storms could take up to a decade, and cost taxpayers in the vicinity of $1 to $2 trillion dollars. Add to the that the potential for radiation poisoning to human beings (at ground level and in orbit), as well as flora and fauna, and the need for alerts becomes clear.

Originally, the satellite was scheduled to be launched into space on Jan. 23rd from the Cape Canaveral Air Force Station, Florida. However, delays in the latest resupply mission to the International Space Station have apparently pushed the date of this launch back as well.

According to a source who spoke to SpaceNews, the delay of the ISS resupply mission caused scheduling pressure, as both launches are being serviced by SpaceX from Cape Canaveral. However, the same source indicated that there are no technical problems with the satellite or the Falcon 9 that will be carrying it into orbit. It is now expected to be launched on Jan. 29th at the latest.

Credit: NOAA
SpaceX will be providing the launch service for DSCOVR, which is now expected to be launched by the end of Jan aboard a Falcon 9 rocket (pictured here). Credit: NOAA

Once deployed, DSCOVR will eventually take over from NASA’s aging Advanced Composition Explorer (ACE) satellite, which has been in providing solar wind alerts since 1997 and is expected to remain in operation until 2024. Like ACE, the DSCOVER will orbit Earth at Lagrange 1 Point (L1), the neutral gravity point between the Earth and sun approximately 1.5 million km (930,000 mi) from Earth.

From this position, DSCOVR will be able to provide advanced warning, roughly 15 to 60 minutes before a solar wind shockwave or CME reaches Earth. This information will be essential to emergency preparedness efforts, and the data provided will also help improve predictions as to where a geomagnetic storm will impact the most.

These sorts of warnings are essential to maintaining the safety and integrity of infrastructure, but also the health and well-being of people here on Earth. Given our dependence on high-tech navigation systems, electricity, the internet, and telecommunications, a massive geomagnetic storm is not something we want to get caught off guard by!

And be sure to check out this video of the DSCOVR mission, courtesy of the NOAA:

Further Reading: NOAA

How Did We Find the Distance to the Sun?

The Sun provides energy for life here on Earth through light and heat. Credit: NASA Goddard Space Flight Center

How far is the Sun? It seems as if one could hardly ask a more straightforward question. Yet this very inquiry bedeviled astronomers for more than two thousand years.

Certainly it’s a question of nearly unrivaled importance, overshadowed in history perhaps only by the search for the size and mass of the Earth. Known today as the astronomical unit, the distance serves as our reference within the solar system and the baseline for measuring all distances in the Universe.

Thinkers in Ancient Greece were among the first to try and construct a comprehensive model of the cosmos. With nothing but naked-eye observations, a few things could be worked out. The Moon loomed large in the sky so it was probably pretty close. Solar eclipses revealed that the Moon and Sun were almost exactly the same angular size, but the Sun was so much brighter that perhaps it was larger but farther away (this coincidence regarding the apparent size of the Sun and Moon has been of almost indescribable importance in advancing astronomy). The rest of the planets appeared no larger than the stars, yet seemed to move more rapidly; they were likely at some intermediate distance. But, could we do any better than these vague descriptions? With the invention of geometry, the answer became a resounding yes. Continue reading “How Did We Find the Distance to the Sun?”

Will You Float Away on Jan. 4th? Nope!

The only people who'll be floating above the floor on January 4th are the astronauts on board the International Space Station. This photo shows onboard the NASA KC-135 that uses a special parabolic pattern to create brief periods of microgravity

When I first heard we were all going to float in the air at 9:47 a.m. PST on January 4th, 2015 I laughed, figuring this latest Internet rumor would prove too silly to spread very far. Boy, was I wrong.  This week the bogus claim has already been shared over a million times on Facebook. Now I’m being asked if it’s true.  It all started on December 15th when the Daily Buzz Live, famous for fake news, published this tweet purportedly from NASA:

Well-crafted but fake tweet created by Daily Buzz Live. Credit: Daily Buzz Live
Well-crafted but fake tweet created by Daily Buzz Live. Credit: Daily Buzz Live

Sure looks real. Even has a cool, doomsday-flavored hashtag #beready. The story attributes the prediction to British astronomy popularizer Patrick Moore, who must be chuckling in his grave because he passed away in 2012. The story goes on.  A rare planetary alignment of Jupiter and Pluto “will mean that the combined gravitational force of the two planets would exert a stronger tidal pull, temporarily counteracting the Earth’s own gravity and making people virtually weightless.”

But when it comes down to it, Zero Gravity Day is just a lot of warmed-over hoo-ha. Let’s sort out what’s fact and what’s fancy in this claim.

Sir Patrick Moore, one of the world's greatest astronomy popularizers. He wrote more than 70 books and was the host of the long-running BBC TV series "The Sky at Night".
Sir Patrick Moore, one of the world’s greatest astronomy popularizers. He wrote more than 70 books and was the host of the long-running BBC TV series “The Sky at Night”.

True: Patrick Moore did make this claim in a BBC radio program on April 1, 1976 … as an April Fools Day joke! The article doesn’t bother to mention this significant detail. Ever so sly, Moore fibbed about the details of the purported alignment. Pluto was in Virgo and Jupiter in Pisces on that date, exactly opposite one another in the sky and as far out of alignment as possible. Gullible to suggestion, hundreds of listeners phoned in to the BBC  saying they’d experienced the decrease in gravity. One woman said she and 11 friends had been “wafted from their chairs and orbited gently around the room”.

Martin Wainwright, who edited the book The Guardian Book of April Fool’s Day (published by the British newspaper The Guardian), described Moore as the ideal presenter with his “weight delivery” lending an added “air of batty enthusiasm that only added to his credibility”. The Daily Buzz updated the joke and gave it even more credibility by wrapping it up in “bacon” — a fake NASA tweet.

False: Jupiter and Pluto will not be in alignment on January 4th. Pluto is hidden the solar glare in Sagittarius at the moment, while Jupiter shines nearly halfway across the zodiac in Leo. Far, far apart.

False: Planetary alignments will not make you weightless. Not even if all the planets and Sun aligned simultaneously. While the gravity of a place is Jupiter is HUGE and will crush you if you could find a surface to stand on, the distance between Earth and Jupiter (and all the other planets for that matter) is enormous. This waters down gravity in a big way. Jupiter tugs on you personally with the same gravitational force as a compact car three feet (1-meter) away. As for Pluto, it’s almost 60 times smaller than Jupiter with a gravitational reach that can only be described as virtually ZERO.

The Moon is by far the dominant extraterrestrial gravity tractor among the planets and moons of the Solar System because it’s relatively close to Earth. According to Phil Plait, author of the Bad Astronomer blog: “Even if you add all of the planets together, they pull on you with a force less than 2% of that of the Moon.”

Total solar eclipse in 1999. The alignment of the nearby Moon and massive Sun, the weightiest body in the Solar System by far, didn't cause anyone to float off the ground. To my knowledge. Credit: Luc  Viatour
Total solar eclipse in 1999. The alignment of the nearby Moon and massive Sun, the weightiest body in the Solar System by far, didn’t cause anyone to float off the ground. To my knowledge. Credit: Luc Viatour

The Sun also has a significant gravitational effect on Earth, but when was the last time you heard of people floating in the air during a total solar eclipse? If our strongest gravitational neighbors can’t loft you off your feet then don’t look to Jupiter and Pluto. Not that I wish this wouldn’t happen as it would provide a fitting physical aspect to what for many is a spiritual phenomenon.

There are countless claims on the Internet that alignments of comets, planets and fill-in-the-blanks produce earthquakes, deadly meteor storms, bad juju and even endless hiccups. It’s all pseudoscientific hogwash. Either deliberately made up by to lead you astray or because someone hasn’t checked the facts and simply passes on what they’ve heard. The stuff spreads like a virus, wasting our time and bandwidth and distracting our attention from the real beauty and bizarreness of the cosmos.

How to stop it? Critical thinking. If this skill were at the top of the list of subjects taught in high school, we’d live on a very different planet. Maybe I’m dreaming. Maybe we’ll always be gullible to snake-oil claims. But I’d like to believe that a basic knowledge of science coupled with the ability to analyze a claim with a critical eye will go a long way toward extinguishing bogus scientific claims before they spread like wildfire.

Come this Sunday at 9:47 a.m. PST allow me to suggest that instead of waiting to float off the ground, tell your family and friends about the amazing Full Wolf Moon that will shine down that evening from the constellation Gemini. If it’s magic you’re looking for, a a walk in winter moonlight might do the trick.

Moonlight Is a Many-Splendored Thing

We see the Moon differently depending upon the wavelength in which we view it. Top row from left:

“By the Light of the Silvery Moon” goes the song. But the color and appearance of the Moon depends upon the particular set of eyes we use to see it. Human vision is restricted to a narrow slice of the electromagnetic spectrum called visible light.

With colors ranging from sumptuous violet to blazing red and everything in between, the diversity of the visible spectrum provides enough hues for any crayon color a child might imagine. But as expansive as the visual world’s palette is, it’s not nearly enough to please astronomers’ retinal appetites.

Visible light is a sliver of light's full range of "colors" which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It's all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA
Visible light is a sliver of light’s full range of “colors” which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It’s all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA

Since the discovery of infrared light by William Herschel in 1800 we’ve been unshuttering one electromagnetic window after another. We build telescopes, great parabolic dishes and other specialized instruments to extend the range of human sight.  Not even the atmosphere gets in our way. It allows only visible light, a small amount of infrared and ultraviolet and selective slices of the radio spectrum to pass through to the ground. X-rays, gamma rays and much else is absorbed and completely invisible.

Earth's atmosphere blocks a good portion of light's diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the atmosphere allowing astronomers to see at least some infrared light that is otherwise absorbed by air at lower elevations. Credit: NASA
Earth’s atmosphere blocks a good portion of light’s diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the denser, lower atmosphere. This expands the viewing “window” into the infrared. Credit: NASA

To peer into these rarified realms, we’ve lofting air balloons and then rockets and telescopes into orbit or simply dreamed up the appropriate instrument to detect them. Karl Jansky’s homebuilt radio telescope cupped the first radio waves from the Milky Way in the early 1930s; by the 1940s  sounding rockets shot to the edge of space detected the high-frequency sizzle of X-rays.  Each color of light, even the invisible “colors”, show us a new face on a familiar astronomical object or reveal things otherwise invisible to our eyes.

So what new things can we learn about the Moon with our contemporary color vision?

Radio Moon
Radio Moon

Radio: Made using NRAO’s 140-ft telescope in Green Bank, West Virginia. Blues and greens represent colder areas of the moon and reds are warmer regions. The left half  of Moon was facing the Sun at the time of the observation. The sunlit Moon appear brighter than the shadowed portion because it radiates more heat (infrared light) and radio waves.

Submillimeter Moon
Submillimeter Moon

Submillimeter: Taken using the SCUBA camera on the James Clerk Maxwell Telescope in Hawaii. Submillimeter radiation lies between far infrared and microwaves. The Moon appears brighter on one side because it’s being heated by Sun in that direction. The glow comes from submillimeter light radiated by the Moon itself. No matter the phase in visual light, both the submillimeter and radio images always appear full because the Moon radiates at least some light at these wavelengths whether the Sun strikes it or not.

Mid-infrared Moon
Mid-infrared Moon

Mid-infrared: This image of the Full Moon was taken by the Spirit-III instrument on the Midcourse Space Experiment (MSX) at totality during a 1996 lunar eclipse. Once again, we see the Moon emitting light with the brightest areas the warmest and coolest regions darkest. Many craters look like bright dots speckling the lunar disk, but the most prominent is brilliant Tycho near the bottom. Research shows that young, rock-rich surfaces, such as recent impact craters, should heat up and glow more brightly in infrared than older, dust-covered regions and craters. Tycho is one of the Moon’s youngest craters with an age of just 109 million years.

Near-infrared Moon
Near-infrared Moon

Near-infrared: This color-coded picture was snapped just beyond the visible deep red by NASA’s Galileo spacecraft during its 1992 Earth-Moon flyby en route to Jupiter. It shows absorptions due to different minerals in the Moon’s crust. Blue areas indicate areas richer in iron-bearing silicate materials that contain the minerals pyroxene and olivine. Yellow indicates less absorption due to different mineral mixes.

Visible light Moon
Visible light Moon

Visible light: Unlike the other wavelengths we’ve explored so far, we see the Moon not by the light it radiates but by the light it reflects from the Sun.

The iron-rich composition of the lavas that formed the lunar “seas” give them a darker color compared to the ancient lunar highlands, which are composed mostly of a lighter volcanic rock called anorthosite.

UV Moon
UV Moon

Ultraviolet: Similar to the view in visible light but with a lower resolution. The brightest areas probably correspond to regions where the most recent resurfacing due to impacts has occurred. Once again, the bright rayed crater Tycho stands out in this regard. The photo was made with the Ultraviolet Imaging Telescope flown aboard the Space Shuttle Endeavour in March 1995.

X-ray Moon
X-ray Moon

X-ray: The Moon, being a relatively peaceful and inactive celestial body, emits very little x-ray light, a form of radiation normally associated with highly energetic and explosive phenomena like black holes. This image was made by the orbiting ROSAT Observatory on June 29, 1990 and shows a bright hemisphere lit by oxygen, magnesium, aluminum and silicon atoms fluorescing in x-rays emitted by the Sun. The speckled sky records the “noise” of distant background X-ray sources, while the dark half of the Moon has a hint of illumination from Earth’s outermost atmosphere or geocorona that envelops the ROSAT observatory.

Gamma ray Moon
Gamma ray Moon

Gamma rays: Perhaps the most amazing image of all. If you could see the sky in gamma rays the Moon would be far brighter than the Sun as this dazzling image attempts to show. It was taken by the Energetic Gamma Ray Experiment Telescope (EGRET).  High-energy particles (mostly protons) from deep space called cosmic rays constantly bombard the Moon’s surface, stimulating the atoms in its crust to emit gamma rays. These create a unique high-energy form of “moonglow”.

Astronomy in the 21st century is like having a complete piano keyboard on which to play compared to barely an octave a century ago. The Moon is more fascinating than ever for it.

NASA’s NuSTAR Scans the Sun with X-ray Vision

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays above particularly active regions (NASA/JPL-Caltech/GSFC)

What if you had x-ray vision like Superman? Or if those funny-looking glasses they advertised in comic books in the 60s actually worked?* Then with those our Sun might look something like this, lighting up with brilliant flares of high-energy x-rays as seen by NASA’s super-sensitive NuSTAR Space Telescope (with a little help from SDO.)

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched aboard a Orbital Sciences Pegasus rocket, on June 13, 2012. (Credit: NASA/Caltech-JPL)

Of course NASA’s orbiting NuSTAR x-ray telescope is not like a typical medical imaging system. Instead of looking for broken bones, NuSTAR (short for Nuclear Spectroscopic Telescope Array) is made to detect high-energy particles blasting across the Universe from exotic objects like supermassive black holes, pulsars, and supernovae.

Read more: Stars Boil Before They Blow Up, Says NuSTAR

But astronomers suggested turning NuSTAR’s gaze upon our own Sun to see what sorts of x-ray activity may be going on there.

“At first I thought the whole idea was crazy,” said Fiona Harrison, a Professor of Physics and Astronomy at Caltech and PI for the NuSTAR mission. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?”

As it turns out NuSTAR was able to reveal some very interesting features on the Sun, showing where the corona is being heated to very high temperatures. The image above shows NuSTAR’s first observations, overlaid onto data acquired by NASA’s Solar Dynamics Observatory.

NuSTAR data is shown in green and blue, revealing high-energy emission around – but not exactly aligned with – active regions on the Sun where solar plasma is being heated to more than 3 million degrees. The red represents ultraviolet light captured by SDO and shows material in the solar atmosphere at a slightly cooler 1 million degrees.

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays near active regions and coronal loops (NASA/JPL-Caltech/GSFC)
The NuSTAR data overlaid on the full disk SDO image, rotated so north on the Sun is up. (NASA/JPL-Caltech/GSFC)

Because the Sun isn’t terribly intense in high energy x-ray output it’s safe to observe it with NuSTAR — it’s not likely to burn out the telescope’s sensors. But what NuSTAR can detect may help astronomers determine the exact mechanisms behind the intense coronal heating that occurs in and above the Sun’s chromosphere. If so-called “nanoflares” — miniature and as-yet-invisible versions of solar flares — are responsible, for instance, NuSTAR might be able to catch them in action for the first time.

Read more: Warm Coronal Loops May Hold the Key to Hot Solar Atmosphere

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said David Smith, solar physicist and member of the NuSTAR team at the University of California, Santa Cruz.

In addition NuSTAR could potentially detect the presence of axions in the Sun’s core — hypothesized particles that may make up dark matter in the Universe.

NuSTAR may not be a “solar telescope” per se, but that won’t stop astronomers from using its unique abilities to learn more about the star we intimately share space with.

“NuSTAR will give us a unique look at the Sun, from the deepest to the highest parts of its atmosphere.”

– David Smith, solar physicist, University of California Santa Cruz

Read more in a JPL article here.

*I never did get my box of 100 army men, either. Then again, I may have ordered a few decades too late.