Earth’s Lightning Ramps Up With The Solar Wind: Study

Time-lapse photo of several lightning strikes at night. Credit: NOAA Photo Library, NOAA Central Library; OAR/ERL/National Severe Storms Laboratory (NSSL)

As the northern hemisphere enters the hazy days of summer, thunderstorms will freckle many of our nights and days. What causes these sudden bursts of light that flash through the sky? Previous research showed that one cause is cosmic rays from space, generated by supernovas. But a new paper shows that something much closer and powerful is also responsible: solar wind from our own Sun.

First, a quick primer on what the solar wind is. It’s a continuous stream of particles from the Sun, and it tends to pick up when the Sun emits solar flares. These flares are more frequent when sunspots are in greater numbers on the star’s surface, which happens when the Sun’s magnetic activity increases. The Sun’s activity falls and rises on an 11-year cycle, and 2014 happens to be close to the peak of one of those cycles.

“Our main result,” said lead author Chris Scott (of the University of Reading) in a statement, “is that we have found evidence that high-speed solar wind streams can increase lightning rates. This may be an actual increase in lightning or an increase in the magnitude of lightning, lifting it above the detection threshold of measurement instruments.”

The researchers discovered “a substantial and significant increase in lightning rates” for up to 40 days after solar winds hit Earth’s atmosphere. The reasons behind this are still poorly understood, but the researchers say this could be because the air’s electrical charge changes as the particles (which are themselves electrically charged) hit the atmosphere.

If this is proven, this could give a new nuance to weather forecasters who could incorporate information about solar wind streams that are being watched by spacecraft. This stream of particles would change with the sun’s 27-day rotation, and researchers hope this could improve long-range forecasts.

The study is based on UK Met Office lightning strike data in the United Kingdom between 2000 and 2005, more specifically anything that happened within 500 kilometers (310 miles) of central England. They also used data from NASA’s Advanced Composition Explorer (ACE), a spacecraft that examines the solar wind.

After each event, the researchers uncovered an average of 422 lightning strikes in the United Kingdom in the next 40 days, compared to an average of 321 lightning strikes in between these events. (The peak was about 12 to 18 days after an event.)

Artist's impression of the solar wind from the sun (left) interacting with Earth's magnetosphere (right). Credit: NASA
Artist’s impression of the solar wind from the sun (left) interacting with Earth’s magnetosphere (right). Credit: NASA

The researchers pointed out that the magnetic field of Earth does deflect many of these particles, but in the cases observed the particles would have been energetic enough to move into “cloud-forming regions” of the Earth’s atmosphere.

“We propose that these particles, while not having sufficient energies to reach the ground and be detected there, nevertheless electrify the atmosphere as they collide with it, altering the electrical properties of the air and thus influencing the rate or intensity at which lightning occurs,” Scott stated.

You can read more about the paper in Environmental Research Letters.

Source: IOP Publishing

Observing Alert: See Mercury’s Best Evening Show of the Year

Mercury starts its best period of visibility in the evening sky for skywatchers at mid-northern latitudes this weekend. This map shows the sky facing northwest about 40 minutes after sundown. Bright Jupiter also provides a convenient sightline for locating Mercury. Stellarium

Don’t let furtive Mercury slip through your fingers this spring. The next two and a half weeks will be the best time this year  for observers north of the tropics to spot the sun-hugging planet. If you’ve never seen Mercury,  you might be surprised how bright it can be. This is especially true early in its apparition when the planet looks like a miniature ‘full moon’. 

Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth's perspective outside Mercury's orbit. Credit: Bob King
Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth’s perspective outside Mercury’s orbit. Both Mercury and Venus appear largest when nearly lined up between Earth and sun at inferior conjunction. Planets not to scale and phases shown are approximate. Credit: Bob King

Both Venus and Mercury pass through phases identical to those of the moon. When between us and the sun, Mercury’s a thin crescent, when off to one side, a ‘half-moon’ and when on the far side of the sun, a full moon. This apparition of the planet is excellent because Mercury’s path it steeply tilted to the horizon in mid-spring.

We start the weekend with Mercury nearly full and brighter than the star Arcturus. Twilight tempers its radiance, but :

* Find a location with a wide open view to the northwest as far down to the horizon as possible.

* Click HERE to get your sunset time and begin looking for the planet about 30-40 minutes after sunset in the direction of the sunset afterglow.

* Reach your arm out to the northwestern horizon and look a little more than one vertically-held fist  (10-12 degrees) above it for a singular, star-like object. Found it? Congratulations – that’s Mercury!

* No luck? Start with binoculars instead and sweep the bright sunset glow until you find Mercury. Once you know exactly where to look, lower the binoculars from your eyes and you should see the planet without optical aid. And before I forget – be sure to focus the binoculars on a distant object like a cloud or the moon before beginning your sweeps. I guarantee you won’t find Mercury if it’s out of focus.

Through a telescope, Mercury looks like a gibbous moon right now but its phase will lessen as it moves farther to the ‘left’ or east of the sun. Greatest eastern elongation happens on May 24. On and around that date the planet will be farthest from the sun, standing 12-14 degrees high 40 minutes after sundown from most mid-northern locales.

jjjjjjj
Mercury is even better placed on May 19 but fades and begins to drop back down toward the horizon late in the month. Stellarium

The planet fades in late May and become difficult to see by early June. Inferior conjunction, when Mercury passes between the Earth and sun, occurs on June 19. Unlike Venus, which remains brilliant right up through its crescent phase, Mercury loses so much reflective surface area as a crescent that it fades to magnitude +3. Its greater distance from Earth, lack of reflective clouds and smaller size can’t compete with closer, brighter and bigger Venus.

Mercury's path across the solar disk as seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. The transit was visible in eastern Europe and the eastern hemisphere. Credit: NASA.
When a planet crosses the disk of the sun it’s called a transit. Mercury’s path across the solar disk is seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. Credit: NASA.

Mercury’s 7-degree inclined orbit means it typically glides well above or below the sun’s disk at inferior conjunction. But anywhere from 3 up to 13 years in either November or May the planet passes directly between the Earth and sun at inferior conjunction and we witness a transit. This last happened for U.S. observers on Nov. 8, 2006; the next transit occurs exactly two years from today on May 9, 2016. That event will be widely visible across the Americas, Western Europe and Africa. After having so much fun watching the June 2012 transit of Venus I can’t wait.

 

This Was the Best Watched Solar Flare Ever

X1-class solar flare on March 29, 2014 as seen by NASA's IRIS (video screenshot) Some stars emit even stronger "superflares" similar to these, but much brighter. Credit: NASA/IRIS/SDO/Goddard Space Flight Center
X1-class solar flare on March 29, 2014 as seen by NASA's IRIS (video screenshot) Some stars emit even stronger "superflares" similar to these, but much brighter. Credit: NASA/IRIS/SDO/Goddard Space Flight Center

Are giant dragons flying out of the Sun? No, this is much more awesome than that: it’s an image of an X-class flare that erupted from active region 2017 on March 29, as seen by NASA’s Interface Region Imaging Spectrograph (IRIS) spacecraft. It was not only IRIS’s first view of such a powerful flare, but with four other solar observatories in space and on the ground watching at the same time it was the best-observed solar flare ever.

(But it does kind of look like a dragon. Or maybe a phoenix. Ah, pareidolia!)

Check out a video from NASA’s Goddard Space Flight Center below:

In addition to IRIS, the March 29 flare was observed by NASA’s Solar Dynamics Observatory (SDO), NASA’s Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), JAXA and NASA’s Hinode spacecraft, and the National Solar Observatory’s Dunn Solar Telescope in New Mexico.

With each telescope equipped with instruments specially designed to observe the Sun in specific wavelengths almost no detail of this particular flare went unnoticed, giving scientists comprehensive data on the complex behavior of a single solar eruption.

Also, for another look at this flare from SDO and a coronal dimming event apparently associated with it, check out Dean Pesnell’s entry on the SDO is GO! blog here.

Source: NASA/GSFC

Spectacular Aurora Sneaks in Quietly, Rages All Night

Auroral arcs are topped by red rays light up the northeast while the moon and Jupiter shine off to the west in this photo taken last night over a small lake north of Duluth, Minn. Both moon and aurora light are reflected in puddles on the ice. Credit: Bob King

Expect the unexpected when it comes to northern lights. Last night beautifully illustrated nature’s penchant for surprise. A change in the “magnetic direction” of the wind of particles from the sun called the solar wind made all the difference. Minor chances for auroras blossomed into a spectacular, night-long storm for observers at mid-northern latitudes.

 

6-hours of data from NASA's Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you'll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA
6-hours of data from NASA’s Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you’ll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA

Packaged with the sun’s wind are portions of its magnetic field. As that material – called the interplanetary magnetic field (IMF) – sweeps past Earth, it normally glides by, deflected by our protective magnetic field, and we’re no worse for the wear. But when the solar magnetic field points south – called a southward Bz – it can cancel Earth’s northward-pointing field at the point of contact, opening a portal. Once linked, the IMF dumps high-speed particles into our atmosphere to light up the sky with northern lights. 

A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King
A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King

Spiraling down magnetic field lines like firefighters on firepoles, billions of tiny solar electrons strike oxygen and nitrogen molecules in the thin air 60-125 miles up. When the excited atoms return back to their normal rest states, they shoot off niblets of green and red light that together wash the sky in multicolor arcs and rays. Early yesterday evening, the Bz plot in the ACE satellite data dipped sharply southward (above), setting the stage for a potential auroral display.

After an intial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs before erupting again around 11:30 p.m. Credit: Bob King
After an initial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs with subtle rayed textures before erupting again around 11:30 p.m. Credit: Bob King

Nothing in the space weather forecast would have led you to believe northern lights were in the offing for mid-latitude skywatchers last night. Maybe a small possibility of a glow very low on the northern horizon. Instead we got the full-blown show. Nearly every form of aurora put in an appearance from multi-layered arcs spanning the northern sky to glowing red patches, crisp green rays and the bizarre flaming aurora. “Flames” look like waves or ripples of light rapidly fluttering from the bottom to the top of an auroral display. Absolutely unearthly in appearance and yet only 100 miles away.


VLF Auroral Chorus by Mark Dennison

I even broke out a hand-held VLF (very low frequency) radio and listened to the faint but crazy cosmic sounds of electrons diving through Earth’s magnetosphere. When my electron-jazzed brain finally hit the wall at 4 a.m., flames of moderately bright aurora still rippled across the north.

Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT. The whole northern sky lit up with green and red rays earlier this morning. While the green color was easy to see, the red was very pale. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in a camera during a time exposure. Credit: Bob King
Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT this morning. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in time exposures made with a camera. Credit: Bob King
Around 2 o'clock the northern lights displayed flaming when ripples of light pulse from top to bottom. It's very difficult to photograph, but here it is anyway! Credit: Bob King
Around 2 o’clock, flames pulsed from bottom to top in patchy aurora. It’s very difficult to photograph, but here it is anyway! Credit: Bob King

So what about tonight? Just like last night, there’s only a 5% chance of a minor storm. Take a look anyway –  nature always has a surprise or two up her sleeve.

Aurora Alert: Powerful Solar Flare This Weekend Could Spark Show Tomorrow

Extreme ultraviolet light streams out of an X-class solar flare as seen in this image captured on March 29, 2014, by NASA's Solar Dynamics Observatory. This image blends two wavelengths of light: 304 and 171 Angstroms, which help scientists observe the lower levels of the sun's atmosphere. Image Credit: NASA/SDO.

If you sit at a fairly high latitude, you may want to keep an eye out your window Tuesday (April 1) and Wednesday. A powerful X-1 class flare erupted from the sun on Saturday (March 29), sparking an active space weather forecast from the National Oceanic and Atmospheric Administration.

The solar flare erupted from sunspot AR2017 and happened to be aimed at the right direction to bring material to Earth. The associated coronal mass ejections (CMEs) will send streams of particles towards our planet, which could get pulled towards the poles and cause light shows as they interact with molecules in the upper atmosphere.

“NOAA forecasters estimate a 35 percent to 60 percent chance of polar geomagnetic storms on April 1-2 when at least three CMEs are expected to deliver glancing blows to Earth’s magnetic field,” SpaceWeather.com wrote. “The best-guess forecast calls for minor G1-class storms. High-latitude sky watchers should be alert for auroras.”

Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.

At the top of this story, you can view a video of the flare from the Solar Dynamics Observatory, a NASA satellite launched in 2010 to observe the sun’s activity. This not only has applications for aurora watchers, but also for those people concerned about the effect CMEs have on Earth’s satellites, power lines and other sensitive infrastructure.

Below is an older picture from the Solar and Heliospheric Observatory, a joint NASA and European Space Agency mission that also keeps an eye on solar activity. The sun has an 11-year cycle of solar activity, and you can see peak year 2001 at the front of the image along with quieter years 1996 and 2006 near the back. The year 2014 is just off the peak for this solar cycle.

If you catch a light show, be sure to post it on the Universe Today Flickr pool, and we may include it in a future story!

A solar cycle in X-rays. The peak in 2001 is visible at the front, with quietest years 1996 and 2006 near the back. The sun's 11-year-solar cycle sees an increase in sunspots and solar activity at its peak. The year 2014 is close to the peak year for activity, but the cycle has been more muted than the 2001 cycle. Credit: Steele Hill, SOHO, NASA/ESA
A solar cycle in X-rays. The peak in 2001 is visible at the front, with quietest years 1996 and 2006 near the back. The sun’s 11-year-solar cycle sees an increase in sunspots and solar activity at its peak. The year 2014 is close to the peak year for activity, but the cycle has been more muted than the 2001 cycle. Credit: Steele Hill, SOHO, NASA/ESA

Astrophotos: Sun Halo, Crescent Moon and Earthshine

A solar halo was visible neara the Chilidog Observatory in Monterrey, Mexico. Credit and copyright: César Cantú.

Here’s a few great astrophotos for today! Astrophotographer César Cantú from the Chilidog Observatory in Monterrey, Mexico captured this stunning halo around the Sun on March 2, 2014. A solar halo is an optical phenomenon produced by ice crystals creating colored or white arcs and spots in the sky. Conditions in the atmosphere have to be just right, with moisture or ice crystals creating a “rainbow” effect around the Sun. Sometimes the halos surround the Sun completely, other times, they appear as arcs around the Sun creating what is known as sundogs. Basically, sunlight is reflecting off moisture in the atmosphere.

Ice crystals in Earth’s atmosphere can also cause rings around the Moon, and moondogs and even Venus “pillars.”

But make sure you look at the crescent Moon tonight — if you’ve missed seeing the thin crescent the past two evenings, tonight it will still be only 11% illuminated (according to Universe Today’s Phases of the Moon app!). Tonight you still might have the chance to see a little Earthshine — reflected Earthlight visible on the Moon’s night side.

See some great crescent Moon and Earthshine images below!

This image comes from one of our “regulars,” John Chumack, who says, “If you have clear skies, go out again tonight (03-03-2014) and look West between 7:00pm and 8:00pm EST, you will see the crescent Moon with Earthshine!”

Also, just another note from John: between 7:00 pm and 8:00 pm the Planet Uranus is 7.5 degrees below the Crescent Moon just after Sunset, but you will not see Uranus until it gets dark enough. You will need a telescope or binoculars to easily view Uranus at Magnitude 5.9, shortly after 8:15pm Uranus will set in the west and then the Moon follows shortly after that.

The young thin Crescent Moon with Earthshine was hanging low in the west near Tampa, Florida on March 2, 2014. Credit and copyright: John Chumack.
The young thin Crescent Moon with Earthshine was hanging low in the west near Tampa, Florida on March 2, 2014. Credit and copyright: John Chumack.
The Crescent Moon at 2.45 days old on March 3, 2014. Credit and copyright: James Lennie.
The Crescent Moon at 2.45 days old on March 3, 2014. Credit and copyright: James Lennie.
Crescent Moon with Earthshine on March 3, 2014. Credit and copyright: Raymond Gilchrist.
Crescent Moon with Earthshine on March 3, 2014. Credit and copyright: Raymond Gilchrist.

Check out more great images on our Flickr group page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Yesterday’s Mammoth Solar Flare Is The Biggest Of 2014 So Far

NASA's Solar Dynamics Observatory captured these images of a large flare erupting from the sun Feb. 21, 2014. Credit: NASA/SDO

She’s a rainbow! You can see the first moments of a huge flare belching off the sun in the picture above. The so-called X-class flare erupted a few hours ago (at 7:25 p.m. EST Feb. 24, or 12:25 a.m. UTC Feb. 25) and was captured by several spacecraft. If you have a pictures of the sun yourself to share, feel free to post them in the Universe Today Flickr pool.

NASA’s Solar Dynamics Observatory saw the flare growing in at least six different wavelengths of light, which are visible in the image above. This is classified this as an X4.9-class flare, which shows that it is pretty strong. X-flares are the most powerful kind that the sun emits, and each X number is supposed to be twice as intense as the previous one (so an X-2 flare is twice as powerful as X-1, for example).

SpaceWeather.com says this is the most powerful flare of the year so far, emitted from sunspot AR1967 (or more properly speaking, AR1990; sunspots are renamed if they survive a full rotation of the sun, as this one has done twice already!) While solar flares can lead to auroras, in this case it appears the blast was pointed in the wrong direction, the site added.

“Although this flare is impressive, its effects are mitigated by the location of the blast site–near the sun’s southeastern limb, and not facing Earth,” SpaceWeather stated. “Indeed, a bright coronal mass ejection (CME) which raced away from the sun shortly after the flare appears set to miss our planet.”

This image from the Solar and Heliospheric Observatory illustrates increased solar activity between Feb. 18-20, 2014. Credit: ESA/NASA/SOHO/GSFC
This image from the Solar and Heliospheric Observatory illustrates increased solar activity between Feb. 18-20, 2014. Credit: ESA/NASA/SOHO/GSFC

The sun goes through an 11-year cycle of sunspot and solar activity, which is supposed to be at its peak right now. This particular peak has been very muted, but lately things have been picking up. The European Space Agency noted that between Feb. 18 and 20, the sun sent out six CMEs in three days, with most of them moving in different directions.

“This level of activity is consistent with what we might expect as the Sun is near its maximum period of activity in the 11-year solar cycle,” ESA stated.

You can see the sun changing on this SDO page, showing the latest views of the sun in different wavelengths. And for more information on sunspots, check out this NASA page explaining a little more about how they work.

Dazzling New Views of a Familiar Cluster

Credit: ESO

Wow. It’s always amazing to get new views of familiar sky targets. And you always know that a “feast for the eyes” is in store when astronomers turn a world-class instrument towards a familiar celestial object.

Such an image was released this morning from the European Southern Observatory (ESO). Astronomers turned ESO’s 2.2-metre telescope towards Messier 7 in the constellation Scorpius recently, and gave us the star-studded view above.

Also known as NGC 6475, Messier 7 (M7) is an open cluster comprised of over 100 stars located about 800 light years distant. Located in the curved “stinger” of the Scorpion, M7 is a fine binocular object shining at a combined magnitude of about +3.3. M7 is physically about 25 light years across and appears about 80 arc minutes – almost the span of three Full Moons – in diameter from our Earthly vantage point.

One of the most prominent open clusters in the sky, M7 lies roughly in the direction of the galactic center in the nearby astronomical constellation of Sagittarius. When you’re looking towards  M7 and the tail of Scorpius you’re looking just south of the galactic plane in the direction of the dusty core of our galaxy. The ESO image reveals the shining jewels of the cluster embedded against the more distant starry background.

Messier 7 is middle-aged as open clusters go, at 200 million years old. Of course, that’s still young for the individual stars themselves, which are just venturing out into the galaxy. The cluster will lose about 10% of its stellar population early on, as more massive stars live their lives fast and die young as supernovae. Our own solar system may have been witness to such nearby cataclysms as it left its unknown “birth cluster” early in its life.

Loading player…

Other stars in Messier 7 will eventually mature, “join the galactic car pool” in the main sequence as they disperse about the plane of the galaxy.

But beyond just providing a pretty picture, studying a cluster such as Messier 7 is crucial to our understanding stellar evolution. All of the stars in Messier 7 were “born” roughly around the same time, giving researchers a snapshot and a chance to contrast and compare how stars mature over there lives. Each open cluster also has a unique spectral “fingerprint,” a chemical marker that can even be used to identify the pedigree of a star.

For example, there’s controversy that the open cluster Messier 67 may actually be the birth place of our Sun. It is interesting to note that the spectra of stars in this cluster do bear a striking resemblance in terms of metallicity percentage to Sol. Remember, metals in astronomer-speak is any element beyond hydrogen and helium. A chief objection to the Messier 67 “birth-place hypothesis” is the high orbital inclination of the open cluster about the core of our galaxy: our Sun would have had to have undergone a series of improbable stellar encounters to have ended up its current sedate quarter of a billion year orbit about the Milky Way galaxy.

Still, this highlights the value of studying clusters such as Messier 6. It’s also interesting to note that there’s also data in what you can’t see in the above image – dark gaps are thought to be dust lanes and globules in the foreground. Though there is some thought that this dust is debris that may also be related to the cluster and may give us clues as to its overall rotation, its far more likely that these sorts of “dark spirals” related to the cluster have long since dispersed. M7 has completed about one full orbit about the Milky Way since its formation.

Another famous binocular object, the open cluster Messier 6 (M6) also known as the Butterfly Cluster lies nearby. Messier 7 also holds the distinction as being the southernmost object in Messier’s catalog. Compiled from Parisian latitudes, Charles Messier entirely missed southern wonders such as Omega Centauri in his collection of deep sky objects that were not to be mistaken for comets. We also always thought it curious that he included such obvious “non-comets” such as the Pleiades, but missed fine northern sky objects as the Double Cluster in the northern constellation Perseus.

Finding Messier 6: the view from latitude 30 degrees north before dawn in mid-February. Credit: Stellarium.
Finding Messier 6: the view from latitude 30 degrees north before dawn in mid-February. Credit: Stellarium.

Messier 7 is also sometimes called Ptolemy’s Cluster after astronomer Claudius Ptolemy, who first described it in 130 A.D. as the “nebula following the sting of Scorpius.” The season for hunting all of Messier’s objects in an all night marathon is coming right up in March, and Messier 7 is one of the last targets on the list, hanging high due south in the early morning sky.

Interested in catching how Messier 7 will evolve, or might look like up close?  Check out Messier 45 (the Pleiades) and the V-shaped Hyades high in the skies in the constellation Taurus at dusk to see what’s in store as Messier 7 disperses, as well as the Ursa Major Moving Group.

And be sure to enjoy the fine view today of Messier 7 from the ESO!

Got pics of Messier 7 or any other deep sky objects? Send ’em, in to Universe Today!

A Mesmerizing Look at Year 4 of the Solar Dynamics Observatory

Coronal Mass Ejection as viewed by the Solar Dynamics Observatory on June 7, 2011. A similar type of outburst triggered aurorae during a strong geomagnetic storm in February 1872. Image Credit: NASA/SDO
Coronal Mass Ejection as viewed by the Solar Dynamics Observatory on June 7, 2011. A similar type of outburst triggered aurorae during a strong geomagnetic storm in February 1872. Image Credit: NASA/SDO

Four years ago today, the Solar Dynamics Observatory embarked on a five-year mission to boldly go where no Sun-observing satellite has gone before. SDO uses its three instruments to look constantly at the Sun in ten different wavelengths. Called the “Crown Jewel” of NASA’s fleet of solar observatories, SDO is a technologically advanced spacecraft that takes images of the sun every 0.75 seconds. Each day it sends back about 1.5 terabytes of data to Earth — the equivalent of about 380 full-length movies.

SDO launched on Feb. 11, 2010, and it has since captured the amazing views of the ever-changing face of the Sun — the graceful dance of solar material coursing through the Sun’s the corona, massive solar explosions and giant sunspot shows. Enjoy this latest highlight video from year 4 from SDO!

I was priveldged to be able to attend the launch of SDO, and you can read our article about the launch here.

The launch included a little “special effects” that wowed the crowd. The Atlas rocket soared close to a sundog just as the spacecraft reached Max-Q, and a ripple effect was created around the spacecraft. You can watch the launch below to see what happened:

Giant sunspot convulses but all quiet on the aurora front … for now

Sunspot region 1967 is so big it easily popped into view through a "cloud filter" Sunday afternoon Feb. 2. The group is visible with the naked eye properly shielded by a safe solar filter. Details: 350mm lens at f/11, ISO 200 and 1/2000". Credit: Bob King

What a crazy sunspot cycle. Weeks go by with only a few tiny spots freckling the sun, then all at once a monster group big enough to swallow 10 Earths rounds the eastern limb and we’re back in business. I’m happy to report we’ve got another behemoth snapping and crackling with M-class (moderately strong) flares – Active Region 1967, a hunk-a-hunk of burnin’ funk that rounded the solar limb a week ago.

NOAA weather forecasters predict an 80% chance of continued M-flares and a 50% chance over the next 3 days for considerably more powerful X-class flares. This sunspot group has a delta classification magnetic field, the Facebook equivalent of “It’s complicated”.

Sunspots are made of a dark umbra and lighter penumbra. Very tiny spots with no penumbrae are called pores. A close up of the sun's photosphere shows a finely granulated texture. Granules are cells of hot gas about the size of Texas that rise from below, cool and sink. Each lasts from 8 to 20 minutes. Credit: NASA
Sunspots are made of a dark umbra and lighter penumbra. Very tiny spots with no penumbrae are called pores. A close up of the sun’s photosphere shows a finely granulated texture. Granules are cells of hot gas about the size of Texas that rise from below, cool and sink. Each lasts from 8 to 20 minutes. Credit: NASA

Sunspots have two parts: a dark core (or cores) called an umbra surrounded by a paler skirt of magnetic energy, the penumbra. They can look impressive like this one, but it’s hard to call a sunspot a “thing”. It’s really more of a locale on the sun’s bright white photosphere where bundles of powerful magnetic energy bob up from below the surface and insulate a region of the sun’s fiery hydrogen gas from the rest of the flaming globe.

We’re talking insulate as in staying cool. While the photosphere cooks at around 11,000 degrees Fahrenheit, sunspots are some 3,000 degrees cooler. That’s why they appear dark to the eye. If you could rip them away from the sun and see them alone against the sky, they’d be too bright to look at safely.

Close up of AR 1967 photographed by the Solar Dynamics Observatory at 8:45 p.m. CST Feb. 4, 2014. Credit: NASA
Close up of AR 1967 photographed by the Solar Dynamics Observatory at 8:45 p.m. CST Feb. 4, 2014. Credit: NASA

A delta-class spot group has umbrae of both polarities, north and south, corralled within the penumbra. Like bringing opposite poles of a two magnets so close they snap together, something similar can happen inside delta-class groups. Only instead of a snap, a titanic thermonuclear explosion called a flare goes kaboom.The biggest flares release the equivalent of a billion hydrogen bombs.

The huge sunspot group 1967 straddles the center of the solar disk on Feb. 3, 2014. Details: 6-inch reflector with Baader solar filter, 1/2000 exposure, ISO 400. Credit: John Chumack
The huge sunspot group 1967 straddles the center of the solar disk on Feb. 3, 2014. The smaller group, AR 1968, lies to its north. Through a filtered telescope, AR 1967 is packed with fascinating details. Photo made with a 6-inch reflector, Baader solar filter, 1/2000 exposure, ISO 400. Credit: John Chumack

We thank our lucky stars for Earth’s iron heart, which generates our protective magnetic shield, and the 93 million miles that separate us from the sun. AR 1967 has paraded right in front of our noses as it rotated with the sun. Yesterday it squarely faced the Earth – a good thing when it comes to the particle blasts that fire up the northern lights. Let’s hope it showers us with a magnetic goodness in the coming days. I really miss seeing the aurora. You too? NOAA space weather forecasters are calling for a 25% chance of auroras in Arctic latitudes overnight Feb. 4-5. We at mid-latitudes will try to be patient.