Big Sunspot; Little Chinese Space Station

First image of a solar transit of Tiangong-1, the first module of the Chinese space station, taken from Southern France on May 11th 2012. Credit: Thierry Legault. Used by permission.

[/caption]

Astrophotographer extraordinaire Thierry Legault has made a name for himself with his images of spacecraft transiting across the face of the Sun. He has done it again by capturing the first-ever image of the Tiangong-1 space station transiting the Sun. The monster sunspot, AR 1476 absolutely dwarfs the Chinese space station (inside the circle), but you can see incredible details of the Tiangong-1 below in a zoomed-in version. Legault had less than a second to capture the event, with the Tiangong traveling at 7.4km/s (26500 km/h or 16500 mph,) the transit duration was only 0.9 seconds! The size of the station is pretty small — as without solar panels the first module of the Tiangong measures just 10.3 x 3.3 meters.

Zoomed and cropped version of the first image of a solar transit of Tiangong-1, the first module of the Chinese space station, taken from Southern France on May 11th 2012. Credit: Thierry Legault. Used by permission. Inset: CNSA.

Legault’s equipment was a Takahashi FSQ-106 refractor, a Baader Herschel prism and Canon 5D Mark II camera. Exposure of 1/8000s at 100 ISO.

As Legault told us in an interview earlier this year, in order to capture such images he studies maps, uses CalSky software, and has a radio synchronized watch to know very accurately when the transit event will happen.

“My camera has a continuous shuttering for 4 seconds, so I begin the sequence 2 seconds before the calculated time,” he said. “I don’t look through the camera – I never see the space station when it appears, I am just looking at my watch!”

For a transit event, he gets a total of 16 images – 4 images every second, and only after he enlarges the images will he know if he succeeded or not.

“There is a kind of feeling that is short and intense — an adrenaline rush!” Legault said. “I suppose it is much like participating in a sport, but the feeling is addictive.”

Thanks to Thierry for sharing his latest success, and you can see larger versions of these images, and much more at his website.

Super Moon? How About a Super Sun!

[/caption]

On May 5, 2012, while everyone else was waiting for the “Super Moon” astrophotographer Alan Friedman was out capturing this super image of a super Sun from his back yard in Buffalo, NY!

Taken with a specialized telescope that can image the Sun in hydrogen alpha light, Alan’s photo shows the intricate detail of our home star’s chromosphere — the layer just above its “surface”, or photosphere.

Prominences can be seen rising up from the Sun’s limb in several places, and long filaments — magnetically-suspended  lines of plasma — arch across its face. The “fuzzy” texture is caused by smaller features called spicules and fibrils, which are short-lived spikes of magnetic fields that rapidly rise up from the surface of the Sun.

On the left side it appears that a prominence may have had just detached from the Sun’s limb, as there’s a faint cloud of material suspended there.

Alan masterfully captures the Sun’s finer details in his images on a fairly regular basis… see more of his solar (and lunar, and… vintage headwear) photography on his blog site here.

Image © Alan Friedman. All rights reserved.

Chaos and Education at 120,000 feet for Camilla the Rubber Chicken

The helium balloon pops at the apex of the flight on March 10, 2012. Credit: Earth to Sky-Bishop CA

[/caption]

In my travels, I’ve had the pleasure of regularly meeting up with Camilla the Rubber Chicken, the social media maven and mascot for NASA’s Solar Dynamics Observatory. But lately I’ve been seeing here virtually everywhere — on television, splashed across all sorts of websites, and even in my local newspaper. What Camilla does is try to capture the imagination of students and get them interested in space and science. With her latest adventures she’s done just that, and now captured the attention of people all around the world, too.

What did she do? She flew to the stratosphere — about 36,000 meters (120,000 ft) up — on a helium balloon right into the throes of one of the most intense solar radiation storms since 2003.

“I am still glowing,” Camilla joked.

Inflating Camilla's ride. Image courtesy Bishop Union High School.

Students from Bishop Union High School’s Earth to Sky group spearheaded the flights, as Camilla actually flew twice — once on March 3 before the radiation storm and again on March 10 while the storm was in full swing. This would give the students a basis for comparison of the radiation environment.

On board with Camilla was a payload of four cameras, a cryogenic thermometer two GPS trackers, radiation detectors, Seven insects and two-dozen sunflower seeds (fittingly, the variety known as “Sunspot” — Helianthus annuus) all inside a modified department store lunchbox.

“We equipped Camilla with sensors to measure the radiation,” says Sam Johnson, 16, of Bishop Union High School’s Earth to Sky student group. “At the apex of our flight, the payload was above 99 percent of Earth’s atmosphere.”

Camilla made it back in one piece, but unfortunately, the insects died.

“This story is really about STEM (science, technology, engineering and math) and about these kids from Bishop, California who have worked really hard in developing the mission, planning it, and then executing it,” Camilla told Universe Today. “They had to overcome set-backs, review their processes, come up with better solutions and implement them. For them it was a great hands-on learning experience and they are and can be proud of their accomplishments.”

NASA knows that these kinds of programs, where kids can get involved in hands-on research, are very important for introducing and keeping students interested in STEM subjects, important areas of study for future NASA scientists and engineers.

“As you know, I not only want to educate about our Sun and space weather, but I want to inspire and show kids (and adults) how much fun science and engineering really is,” Camilla said via email. “Team SDO’s goal has always been to encourage more girls into STEM careers and seeing that this team had several girls on the team was just the most rewarding.”

Students prepare Camilla for her ride into the stratosphere. Image courtesy Bishop Union High School.

The video of the balloon popping and part of Camilla’s flight:

During the two-and-a-half-hour flights, Camilla spent approximately 90 minutes in the stratosphere where temperatures ( -40 to -60 C, -40 to -76 F) and air pressures (1 percent sea level) are akin to those on the planet Mars. The balloon popped, as planned, at an altitude of about 40 km (25 miles) and Camilla parachuted safely back to Earth. The entire payload was recovered intact from a landing site in the Inyo Mountains.

The fifth grade students who assisted with the flight have planted the sunflower seeds to see if radiated seeds produce flowers any different from seeds that stayed behind on Earth. They also pinned the corpses of the insects to a black “Foamboard of Death,” a rare collection of bugs that have been to the edge of space.

Meanwhile, Camilla’s radiation badges have been sent to a commercial laboratory for analysis.

The students say they are looking forward to the data and perhaps sending Camilla back for more.

“I truly believe that text books will always be around,” Camilla said, “but real-life hands-on projects like these are wonderful, and will become more popular.”

Here’s a video of an X-class flare from sunspot AR1429, which unleashed more than 50 solar flares during the first two weeks of March:

Read more about Camilla’s adventures, or our previous article, How a Rubber Chicken is Spreading the Word About NASA’s Space Missions and Science.

NASA’s STEREO Spots a New Nova

STEREO-B image of Sagittarii 2012 (STEREO/SECCHI/NASA/NRL)


While on duty observing the Sun from its position in solar orbit, NASA’s STEREO-B spacecraft captured the sudden appearance of a distant bright object. This flare-up turned out to be a nova — designated Sagittarii 2012 — the violent expulsion of material and radiation from a re-igniting white dwarf star.

Unlike a supernova, which is the cataclysmic collapse and explosion of a massive star whose core has finally fused its last, a nova is the result of material falling onto the surface of a white dwarf that’s part of a binary pair. The material, typically hydrogen and helium gas, is drawn off the white dwarf’s partner which has expanded into a red giant.

Eventually the white dwarf cannot contain all of the material that it has sucked in from its neighbor… material which has been heated to tremendous temperatures on its surface as it got compressed further and further by the white dwarf’s incredibly strong gravity. Fusion occurs on the dwarf’s outermost layers, blasting its surface out into space in an explosion of light and energy.

This is a nova — so called because, when witnessed in the night sky, one could suddenly appear as a “new star” in the heavens — sometimes even outshining all other visible stars!

An individual nova will soon fade, but a white dwarf can produce many such flares over time. It all depends on how rapidly it’s accreting material (and how much there is available.)

Over the course of 4 days, Sagittarii 2012 reached a magnitude of about 8.5… still too dim to be seen with the unaided eye, but STEREO-B was able to detect it with its SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument, which is sensitive to extreme ultraviolet wavelengths.

The video above was made from images acquired from April 20 – 24, 2012.

It’s not known yet how far away Sagittarii 2012 is but rest assured it poses no threat to Earth. The energy expelled by a nova is nowhere near that of a supernova, and although you wouldn’t want to have a front-row seat to such an event we’re well away from the danger zone.

What this does show is that STEREO-B is not only a super Sun-watching sentinel, but also very good at observing much more distant stars as well!

Thanks to @SungrazerComets for the heads-up on this novel nova!

[/caption]

 

Question About Space Weather? NASA Scientists Have Answers

What’s the difference between a solar flare and a coronal mass ejection? What causes such energetic space events? Worried that the current solar cycle could harm our planet? Here’s part one of a two-part series of common questions people have about the Sun, space weather, and how they affect the Earth. (Part 2 will come out tomorrow.)

There’s also a great webpage from Goddard Space Flight Center that provides video answer to 25 questions on this this topic, such as “could a CME strip off the Earth’s magnetic field?” Check them all out!

How Big Was Monday’s CME?

Solar flares pose a major hazard to electronics and infrastructure in Low Earth Orbit, but they may have played a role in kick-starting life on Earth. Credit: NASA/SDO/J. Major

April 16's M-class solar flare erupted with a CME that could dwarf the Earth, shown here to scale. (NASA/SDO/J. Major)

This big! The M1.7-class flare that erupted from active region 1461 on Monday, April 16 let loose an enormous coronal mass ejection many, many times the size of Earth, making this particular writer very happy that our planet was safely tucked out of aim at the time… and 93 million miles away.

The image above was obtained by NASA’s Solar Dynamics Observatory’s AIA 304 imaging instrument on Monday during the height of the event. I rotated the disk of the Sun 90 degrees to get a landscape look over the eastern limb, cropped it down and then added an Earth image to scale — just to show how fantastically huge our home star really is.

(Read “Watch it Rain on the Sun”)

Some minor editing was done to increase contrast and heighten detail in the eruption.

The CME was not directed our way, but it was aimed at NASA’s STEREO-B spacecraft, which will encounter the ejected material full-on.

Read more about this event in a previous Universe Today post here, and check out hi-def videos of the CME from SDO here.

Image credit: NASA/SDO and the AIA science team. Edited by Jason Major.

Watch it Rain on the Sun

The big solar flare and coronal mass ejection earlier this week created an unusual event on the Sun: it rained. Not water drops of course, but coronal rain. After the eruption, blobs of plasma fell back to the surface of the Sun, sometimes making ‘splashes’ where they hit. Coronal rain is plasma gas that condenses in the corona and then descends back to the surface. It has long been a mystery and its motion has perplexed solar physicists. For some reason, coronal rain falls much slower than is expected for plasma falling due to the huge gravitational pull of the Sun. Many times, rather than falling straight down — as it would if gravity was the only force pulling on it — the plasma rain follows invisible magnetic field lines, which can be detected by instruments on board watchful spacecraft.

This video was produced from data from the Solar Optical Telescope on NASA/JAXA’s Hinode spacecraft of the big M1/7 class flare that erupted on April 16 from Active Region 1461. Scientists say thanks to spacecraft like Hinode and the Solar Dynamic Observatory, this phenomenon can be studied in much more detail so that they can better understand this unusual event.

Big Blast from the Sun

The CME we reported on earlier today was obviously just a warm up to the latest blast: A beautiful prominence eruption producing a larger CME off the east limb (left side) of the sun on April 16, 2012 at about 17:45 UTC (1:45 pm EDT). The event, which also produced an M1.7-class solar flare, was not Earth-directed, say scientists from the Solar Dynamics Observatory. But SpaceWeather.com says the blast confirms suspicions that a significant active region is rotating onto the Earth-side of the sun.

The Sun Spits Out a Coronal Mass Ejection

A CME from the Sun on April 15, 2012. Credit: Solar Dynamics Observatory

Ever squirted water out of your mouth when playing in a swimming pool or lake? This Coronal Mass Ejection (CME) release by the Sun on April 15, 2012 looks reminiscent of such water spouting. But this burst of solar plasma being hurled from the eastern limb of the Sun is more like an explosion, as such CMEs can release up to 100 billion kg (220 billion lb) of material, and the speed of the ejection can reach 1000 km/second (2 million mph) in some flares. Scientists at the Solar Dynamics Observatory say some of the explosions approach the power in one billion hydrogen bombs! In this video, the Sun hurled a cloud of plasma towards the STEREO B spacecraft and SDO captured the event in a couple of different wavelengths.

Coronal Mass Ejections (CMEs) are balloon-shaped bursts of solar wind rising above the solar corona, expanding as they climb. Solar plasma is heated to tens of millions of degrees, and electrons, protons, and heavy nuclei are accelerated to near the speed of light. The super-heated electrons from CMEs move along the magnetic field lines faster than the solar wind can flow. Rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CME loop.

[/caption]

Watch Mercury Get Smacked By CMEs

mercuryandsun.thumbnail.jpg

The bright object in the center of this video sequence is the planet Mercury, seen by NASA’s STEREO-B spacecraft as it was pummeled by wave after wave of solar material ejected from the Sun during the week of March 25 – April 2, 2012.

The video above was released by NASA’s Goddard Space Flight Center earlier today. The Sun is located just off-frame to the left, while Earth would be millions of miles to the right.

Proof that it’s not easy being first rock from the Sun!

Video credit: NASA/GSFC/STEREO