Sun Releases a Powerful X5 Flare

[/caption]

Active Region 1429 unleashed an X5.4-class solar flare early this morning at 00:28 UT, as seen in this image by NASA’s Solar Dynamics Observatory (AIA 304). The eruption belched out a large coronal mass ejection (CME) into space but it’s not yet known exactly how it will impact Earth — it may just be a glancing blow.

Solar flares are categorized by a scale according to their x-ray brightness. X is the strongest class, followed by M and then C-class. Within each class the numbers 1 through 9 subdivide the flares’ intensity.

A run-in with an X5-class flare is a major geomagnetic event that can cause radio blackouts on Earth and disrupt satellite operations, as well as intensify auroral activity.

The GOES satellite data for the March 7 flare is below:

The CME is expected to impact Earth sometime on the 8th or 9th. Check back here or at Spaceweather.com for updates on the storm (and any subsequent aurora photos!)

Also, check out the video below, assembled by the SDO team. Just after the X5.4-class flare another smaller X1-class flare occurred, sending a visible wave cross the Sun.


Image courtesy NASA, SDO and the AIA science team. And thanks to Camilla Corona SDO for all the updates!

Sun Unleashes Powerful X-Class Solar Flare

The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit Mercury and Venus. Even so, the science team from the Solar Dynamics Observatory says that high-latitude skywatchers should still be alert for auroras in the nights ahead. There was also an M2-class eruption from the same big and active sunspot, Active Region 1429, on March 4th which produced another, wider CME that might yet intersect Earth. The cloud is expected to deliver a glancing blow to our planet’s magnetic field on March 6th at 04:30 UT (+/- 7 hrs).

Check the latest forecast of the CME’s arrival from the NASA Goddard Space Weather Lab, which includes a great animation.

So, what’s the difference in the classes of solar flares and how could they affect us on Earth?
Continue reading “Sun Unleashes Powerful X-Class Solar Flare”

Night Sky Guide: March 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide.

March brings us some wonderful sights to see in the night skies for those who are armed with binoculars, telescopes or just their eyes.

The brightest object in the night sky this month (apart from the Moon) is the Planet Venus. Venus and mighty Jupiter have already been providing a treat n the western skies for naked eye observers, but by the middle of the month the two planets will inch even closer. There are other planetary conjunctions this month as well.

The stars of spring are starting to become more prominent and the mighty constellation of Orion sets earlier in the west as the nights roll on. The constellations of Leo, Coma Berenices and Virgo herald the region of the sky known as the “Realm of the Galaxies” more so as the month moves on.

We have Comet Garradd visible all night long through binoculars, as it starts to fade from 7th to 8th magnitude. You can find it near the north celestial North pole near the star Kochab or Beta Ursa Minoris (The little Bear) on the 6th, and the star Dubhe in the Plough on the 21st. Scan this region with binoculars and you should pick it up as a faint misty patch of light.

The Sun continues to become more active as it approaches “Solar Maximum” in 2013 and this is a time when we need to be on our guard for sudden bursts of activity which can result in aurora for observers in high latitudes. Some large geomagnetic storms in the past have resulted in Aurora being spotted as far south as regions near the Caribbean and Mediterranean. Will we get a show like this soon?

Planets

There are going to be some excellent conjunctions this month, as planets and even sometimes the Moon are close together and appear in the same region of the sky.

Mercury. Keep an eye out for the tiny planet Mercury. This planet (closest one to the Sun) is notoriously difficult to see. The best time to try and catch it is on the 4th, low down near the western horizon shortly after sunset. Make sure the Sun has fully set if you plan to sweep the area with binoculars. Never ever look at the sun directly with binoculars, telescopes or your naked eyes – This will damage your eyes or permanently blind you!

Mercury just after sunset - Beginning of March

Mars reaches what we call ‘opposition’ on the 3rd, when it is directly opposite the Sun in the sky from our point of view here on Earth. This is the best time to view the “Red Planet” with a telescope. Try and see if you can spot its ice caps and dark markings. It will need a clear steady sky and a good magnification to see these well, try different coloured filters and even have a go at webcam imaging this amazing Planet. On the 7th the nearly full Moon lies 10-degrees to the south of the planet Mars. You’ll know its Mars by its distinct orange/pink colour.

Mars

Venus & Jupiter bring us the highlight of the month when they appear to be very close to each other and are just separated by 3 degrees on the 15th of March. The brightest out of the pair will be Venus with Jupiter below it and the pair will be an amazing sight – like a pair of heavenly eyes staring down at us. The two planets will be close to each other either side of the 15th, so there should be plenty of picture-taking opportunities. The Moon joins the Venus and Jupiter on the 25th and 26th and the thin crescent Moon will make the show even more stunning.

Venus Jupiter 15 March

Saturn rises later in the evenings in the constellation of Virgo, the rings are now nicely tilted towards us and the planet looks stunning right throughout the month. If you have never seen Saturn through a telescope before, you must see it! It is the most beautiful of all the planets and one of the reasons so many people get interested in astronomy.

Saturn

Moon phases

  • First Quarter – 1st March
  • Full Moon – 8th March
  • Last Quarter – 15th March
  • New Moon – 22nd March

Constellations

In March Orion is getting lower in the West and setting earlier as the spring constellations of Leo, Coma Berenices and Virgo come into view; this is the “Realm of the Galaxies.”

In the month of March the Earth’s orbit around the Sun means that during the night we see out from our own galaxy the ‘Milky Way’ into the depths of deep space. Because of this, we can see many other galaxies and some similar to our own, each contains hundreds of billions of stars. You will need a good telescope to see these amazing wonders; however a good pair of binoculars will show one or two faint fuzzy patches. Some of these faint fuzzy objects are many millions of light years distant.

A few brighter examples lay in the constellation of Leo the Lion. Have a look for M 95, M96 and M105; these are not far from Mars during March. You will need a dark Moonless night to see them well.

Another trio of galaxies still in the constellation of Leo are M65, M66 and NGC 3628 otherwise known as the ‘Leo Triplet’ A small telescope and a low to medium power should show these objects in the same field of view.

The region of sky within Leo, Coma and Virgo is packed with galaxies and whatever telescope you use, you will be sure to spot something.

For those of you without a telescope, see if you can discern the asterism of the ‘Bowl of Virgo’. This is a chain of five stars in a loose semi-circle pointing towards the ‘tail’ of Leo. The brightest star in the chain is Porrima. South of Porrima lays the brightest star in the constellation, called Spica. Saturn can be found to the east of this.

Credit: Adrian West

A Mardi Gras Moon Crossing

SDO AIA image of the Sun and Moon at 14:11 UT on Feb. 21, 2012

[/caption]

The Sun seems to be glowing in traditional Mardi Gras colors in this image, made from three AIA channels taken today at approximately 14:11 UT (about 9:11 a.m. EST) as the Moon passed between it and the Solar Dynamics Observatory spacecraft. Looks like it’s that time of year again!

During portions of the year, the Moon transits the Sun on a regular basis from the perspective of NASA’s SDO spacecraft, which lies within the Moon’s orbit. When this happens we are treated to an improvised eclipse… and it gives SDO engineers a way to fine-tune the observatory’s calibration as well.

Here are more AIA views of the same event captured in different wavelengths:

Lunar transit on 2-21-12; AIA 304
Lunar transit on 2-21-12; AIA 193
Lunar transit on 2-21-12; AIA 4500

…and here’s an interesting image taken in HMI Dopplergram:

HMI Dopplergram image of transit

While the AIA (Atmospheric Imaging Assembly) images the Sun in light sensitive to different layers of its atmosphere, the Helioseismic and Magnetic Imager (HMI) studies oscillations in the Sun’s magnetic field at the surface layer.

Watch a video of the path of this lunar transit, posted by the SDO team here.

And if you happen to be reading this as of the time of this writing (appx. 10:06 a.m. EST) you can keep up with the latest images coming in on the SDO site at http://sdo.gsfc.nasa.gov/.

It’s Mardi Gras and the Moon doesn’t want to miss out on any of the fun!

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. Hat-tip to Mr. Stu Atkinson who called the AIA alert on Twitter.

Earth-Facing Sunspot Doubles in Size

Animation of AR1416's evolution over the past several days (SDO/HMI)

[/caption]

The latest sunspot region to traverse the face of the Sun has nearly doubled in size as it aims Earthward, as seen in the animation above from NASA’s Solar Dynamics Observatory. (Click image to play the animation.)

This is the second day in a row that the region has been seen expanding.

According to SpaceWeather.com, active region 1416 has the right sort of magnetic energy to potentially send M-class flares our way.

M-class flares are medium-sized solar flares. They can cause brief radio blackouts that affect Earth’s polar regions. Minor radiation storms sometimes follow an M-class flare event.

Sunspot region 1416 on Feb. 11, 2012. The large sunspot on the right is easily the size of Earth. (SDO/HMI Intensitygram)

If AR1416 produces a flare over the next 24 hours we would likely see increased auroral activity in upper latitudes early next week.

Stay tuned to Universe Today and SpaceWeather.com for any news on solar flares, and be sure to visit the SDO site for the latest images and videos of our home star.

Images courtesy NASA/SDO and the AIA and HMI science teams.

____________________

Also, check out Alan Boyle’s article on MSNBC’s Cosmic Log about this and a recent heart-shaped coronal mass ejection that occurred on Friday, sending a cloud of charged particles on a Valentine’s Day date with our magnetosphere.  It should be a Sun-kissed night in northern parts of the world!

 

Freaky Dancing Plasma on the Sun

Normally plasma from the Sun either shoots off into space or loops back on the Sun’s surface. But the Solar Dynamics Observatory captured some plasma that couldn’t make up its mind. Here, darker, cooler plasma slid and shifted back and forth above the Sun’s surface for 30 hours on February 7-8, 2012. The view is shown in extreme ultraviolet light. As a backdrop, an active region just rotating into view shows bright plasma gyrating into streams — normally how the plasma behaves. SDO scientists say the darker particles are being pulled back and forth by competing magnetic forces, tracking along strands of magnetic field lines.

And by the way, tomorrow is SDO’s 2nd anniversary! It launched two years ago on February 11, 2010. Happy anniversary, SDO and thanks for all the great videos and data so far! We wish you many more!

New Computer Simulations Show Earth’s Spaghetti-Like Magnetosphere

Supercomputer simulation showing the tangled magnetosphere surrounding Earth. Credit: OLCF

[/caption]

A new computer simulation is showing Earth’s magnetosphere in amazing detail – and it looks a lot like a huge pile of tangled spaghetti (with the Earth as a meatball). Or perhaps a cosmic version of modern art.

The magnetosphere is formed by the Sun’s magnetic field interacting with Earth’s own magnetic field. When charged particles from a solar storm, also known as a coronal mass ejection (CME), impact our magnetic field, the results can be spectacular, from powerful electrical currents in the atmosphere to beautiful aurorae at high altitudes. Space physicists are using the new simulations to better understand the nature of our magnetosphere and what happens when it becomes extremely tangled.

Using a Cray XT5 Jaguar supercomputer, the physicists can better predict the effects of space weather, such as solar storms, before they actually hit our planet. According to Homa Karimabadi, a space physicist at the University of California-San Diego (UCSD), “When a storm goes off on the sun, we can’t really predict the extent of damage that it will cause here on Earth. It is critical that we develop this predictive capability.” He adds: “With petascale computing we can now perform 3D global particle simulations of the magnetosphere that treat the ions as particles, but the electrons are kept as a fluid. It is now possible to address these problems at a resolution that was well out of reach until recently.”

It helps that the radiation from solar storms can take 1-5 days to reach Earth, providing some lead time to assess the impact and any potential damage.

The previous studies were done using the Cray XT5 system known as Kraken; with the new Cray XT5 Jaguar supercomputer, they can perform simulations three times as large. The earlier simulations contained a “resolution” of about 1 billion individual particles, while the new ones contain about 3.2 trillion, a major improvement.

So next time you are eating that big plate of spaghetti, look up – the universe has its own recipes as well.

The original press release from Oak Ridge National Laboratory is here.

Night Sky Guide: February 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide

This month, the Solar System gives us a lot to observe and we’ll even start to see the ‘spring’ constellations appear later in the evenings. But February still has the grand constellations of winter, with mighty Orion as a centrepiece to long winter nights.

The Sun has finally started to perform as it should as it approaches “Solar Maximum.” This means we get a chance to see the northern lights (Aurora), especially if you live in such places as Scotland, Canada, Scandinavia, or Alaska or the southern light (Aurora Australis) if you live in the southern latitudes of South America, New Zealand and Australia. Over the past few weeks we have seen some fine aurora displays and will we hope to seesome in February!

We have a bit of a treat in store with a comet being this month’s favourite object with binoculars as well, so please read on to find out more about February’s night sky wonders.

You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.

So what sights are there in the February night sky and when and where can we see them?

Aurora

Looking north from the science operations center at Poker Fla,Alaska. Credit: Jason Ahrns.

The Aurora or Northern Lights (Aurora Borealis) have been seen from parts of Northern Europe and North America these last few weeks. This is because the Sun has been sending out huge flares of material, some of which have travelled towards us slamming into our magnetic field. The energetic particles then follow the Earth’s magnetic field lines towards the poles and meet the atoms of our atmosphere causing them to fluoresce, similar to what happens in a neon tube or strip light.

The colours of the aurora depend on the type of atom the charged particles strike. Oxygen atoms for example usually glow with a green colour, with some reds, pinks and blues. So the more active the Sun gets, the more likely we are to see the Northern (or Southern) Lights.

All you need to see aurora is your eyes, with no other equipment is needed. Many people image the aurora with exposures of just a few seconds and get fantastic results. Unfortunately auroras are “space weather” and are almost as difficult to predict as normal terrestrial weather, but thankfully we can be given the heads up of potential geomagnetic storms by satellites monitoring the Sun such as “STEREO” (Solar TErrestrial RElations Observatory).

Spaceweather.com is a great resource for aurora and other space weather phenomenon and the site has real-time information on current aurora conditions and other phenomenon.

Planets

Mercury is too close to the Sun to be seen at the beginning of the month, but will be visible very low in the south west from the 17th onwards. At the end of February Mercury will be quite bright at around mag -0.8 and will be quite a challenge. It can be seen for about 30 minutes after sunset.

Venus will improve throughout the month in the south west and will pass within half a degree of Uranus on the 9th of February. You can see this through binoculars or a small telescope. On the 25th Venus and the slender crescent Moon can be seen together a fabulous sight. At the end of month Venus closes in on Jupiter for a spectacular encounter in March.

Venus

Mars can easily be spotted with the naked eye as a salmon pink coloured “star” and starts off the month in the constellation of Virgo and moves into Leo on the 4th. Mars is at opposition on March 3rd but is also at its furthest from the Sun on the 15th February making this opposition a poor one with respect to observing due to its small apparent size. The planet will still be visually stunning throughout the month.

Mars

Jupiter starts off the month high in the south as darkness falls and is still an incredibly bright star-like object. Through good binoculars or a small telescope you can see its four Galilean moons – a fantastic sight. On the 8th at around 19:50 UT, Europa will transit Jupiter and through a telescope you will see the tiny moons shadow move across its surface. Throughout February, Jupiter moves further west for its close encounter with Venus in March.

Jupiter

Saturn rises around midnight in the constellation of Virgo and appears to be a bright yellowish star. Through a small telescope you will see the moon Titan and Saturn’s rings as well.

Saturn

Uranus is now a binocular or telescope object in the constellation of Pisces. On the 9th Uranus and the planet Venus will be within half a degree of each other.

Uranus

Neptune is not visible this month.

Comets

Comet Garradd Credit: astronomy.com

Comet Garradd is still on show early in the month — if you have binoculars — and as the month progresses the viewing should improve. You can find the comet in the constellation of Hercules not far from the globular cluster M92. It is about a half a degree away or around the same width as the full Moon. The comet is around magnitude 7 or a little fainter than the more famous globular cluster M13 also to be found in Hercules, so you will definitely need binoculars to see it. The comet is heading north over the course of the month which should mean that it will become a little easier to see. At the beginning of the month you will have to get up early to see it, the best time being around 5:30 to 6:30 GMT. By the end of the month though, it should be visible all night long.

Moon phases

  • Full Moon – 7th February
  • Last Quarter – 14th February
  • New Moon – 21st February

Constellations

In February, Orion still dominates the sky but has many interesting constellations surrounding it.

Above and to the left of Orion you will find the constellation of Gemini, dominated by the stars Castor and Pollux, representing the heads of the twins with their bodies moving down in parallel lines of stars with each other.

Legend has it that Castor and Pollux were twins conceived on the same night by the princess Leda. On the night she married the king of Sparta, wicked Zeus (disguised as a swan) invaded the bridal suite, fathering Pollux who was immortal and twin of Castor who was fathered by the king so was mortal.

Castor and Pollux were devoted to each other and Zeus decided to grant Castor immortality and placed Castor with his brother Pollux in the stars.

Gemini has a few deep sky objects such as the famous Eskimo nebula and some are a challenge to see. Get yourself a good map, Planisphere or star atlas and see what other objects you can track down.

Credit: Adrian West

 

“Cool” Gas May Be At The Root Of Sunspots

During the initial stage of sunspot emergence and cooling, the formation of H2 may trigger a temporary "runaway" magnetic field intensification. The magnetic field prevents the flow of energy from inside the sun to the outside, and the sunspot cools as the energy shines into space. They form hydrogen molecules that take half the volume of the atoms, thus dropping pressure and concentrating the magnetic field, and so on. (adapted from Jaeggli, 2011; sunspot image by F. Woeger et al

[/caption]

Although well over 40 years old, the Dunn Solar Telescope at Sunspot, New Mexico isn’t going to be looking at an early retirement. On the contrary, it has been outfitted with the new Facility Infrared Spectropolarimeter (FIRS) and is already making news on its solar findings. FIRS provides simultaneous spectral coverage at visible and infrared wavelengths through the use of a unique dual-armed spectrograph. By utilizing adaptive optics to overcome atmospheric “seeing” conditions, the team took on seven active regions on the Sun – one in 2001 and six during December 2010 to December 2011 – as Sunspot Cycle 23 faded away. The full sunspot sample has 56 observations of 23 different active regions… and showed that hydrogen might act as a type of energy dissipation device which helps the Sun get a magnetic grip on its spots.

“We think that molecular hydrogen plays an important role in the formation and evolution of sunspots,” said Dr. Sarah Jaeggli, a recent University of Hawaii at Manoa graduate whose doctoral research formed a key element of the new findings. She conducted the research with Drs. Haosheng Lin, also from the University of Hawaii at Manoa, and Han Uitenbroek of the National Solar Observatory in Sunspot, NM. Jaeggli now is a postdoctoral researcher in the solar group at Montana State University. Their work is published in the February 1, 2012, issue of The Astrophysical Journal.

You don’t have to be a solar physicist to know about the Sun’s 11 year cycle, or to understand how sunspots are cooler areas of intense magnetism. Believe it or not, even the professionals aren’t quite sure of how all the mechanisms work… especially those which cause sunspot forming areas that retard normal convective motions. Of the things we’ve learned, the spot’s inner temperature has a correlation with its magnetic field strength – with a sharp rise as the temperature cools. “This result is puzzling,” Jaeggli and her colleagues wrote. It implies some undiscovered mechanism inside the spot.

NOAA 11131 sunspot region (Dec. 6, 2010) was the most intense spot measured in this study, but far from the largest the Sun can produce. The two bottom images show the strength of the magnetic field (C) and the contrast between the interior of the spot and the surrounding photosphere (D). The first graph (A) shows how OH starts to appear in the penumbra and continues to rise as the magnetic field strength rises. Because OH forms at a lower temperature than H2, its presence implies the quantity of hydrogen molecules that could be present (B). (adapted from Jaeggli et al, 2012)

One theory is that hydrogen atoms combining into hydrogen molecules may be responsible. As for our Sun, the majority of hydrogen is ionized atoms because the average surface temperature is assessed at 5780K (9944 deg. F). However, since Sol is considered a “cool star”, researchers have found indications of heavy-element molecules in the solar spectrum – including surprising water vapor. These type of findings might prove the umbral regions could allow hydrogen molecules to combine in the surface layers – a prediction of 5% made by the late Professor Per E. Maltby and colleagues at the University of Oslo. This type of shift could cause drastic dynamic changes where gas pressure is concerned.

“The formation of a large fraction of molecules may have important effects on the thermodynamic properties of the solar atmosphere and the physics of sunspots,” Jaeggli wrote.

With direct measurements being beyond our current capabilities, the team then measured a proxy – the hydroxyl radical made of one atom each of hydrogen and oxygen (OH). According to the National Solar Observatory, “OH dissociates (breaks into atoms) at a slightly lower temperature than H2, meaning H2 can also form in regions where OH is present. By coincidence, one of its infrared spectral lines is 1565.2nm, almost the same as the 1565nm line of iron, used for measuring magnetism in a spot and one of the lines FIRS is designed to observe.”

Spectral lines are the unique "fingerprints in light" that all atoms and molecules produce. In the presence of a magnetic field in a hot gas, some lines split, betraying the presence and strength of the magnetic fields. Each line corresponds to electrons giving up energy in discrete amounts, or quanta, as light. Imposing a magnetic field on the atom makes the electrons produce multiple lines instead of one. The spread of these lines is a direct measure of the strength of the magnetic field, and is greater in the red and in the infrared spectrum. This image depicts sunspot spectra taken by FIRS with lines centered at 630.2nm (left) and 1564.8nm (right). Note the broadened area in the color ellipses, indicating line splitting inside a spot, and how the broadening is greater at the longer wavelength. Contrast is adjusted to enhance visibility in the inset boxes.

By combining both old and new data, the team measured magnetic fields across sunspots, and the OH intensity inside spots, judging the H2 concentrations. “We found evidence that significant quantities of hydrogen molecules form in sunspots that are able to maintain magnetic fields stronger than 2,500 Gauss,” Jaeggli commented. She also said its presence leads to a temporary “runaway” intensification of the magnetic field.

As for the anatomy of a sunspot, magnetic flux boils up from the Sun’s interior and slows surface convection – which in turns stops cooler gas which has radiated its heat into space. From there, molecular hydrogen is created, reducing the volume. Because it is more transparent than its atomic counterpart, its energy is also radiated into space allowing the gas to cool even more. At this point the hot gas primed by the flux compresses the cooler region and intensifies the magnetic field. “Eventually it levels out, partly from energy radiating in from the surrounding gas. Otherwise, the spot would grow without bounds. As the magnetic field weakens, the H2 and OH molecules heat up and dissociate back to atoms, compressing the remaining cool regions and keeping the spot from collapsing.”

For now, the team admits that additional computer modeling is required to validate their observations and that most of the active regions so far have been mild ones. They’re hoping that Sunspot Cycle 24 will give them more fuel to be “cool”…

Original Story Source: National Solar Observatory News Release.