Sneak Attacks from the Sun

This image combines all of STEREO's wavelengths into one three-dimensional photograph (visible with 3D anaglyph glasses). Credit: NASA

[/caption]

From a Harvard Smithsonian Center for Astrophysics press release:

Our Sun can be a menace when it sends out powerful solar blasts of radiation towards the Earth. Astronomers keenly watch the Sun to learn more about what powers these solar eruptions, in hopes of being able to predict them. New research shows that one-third of the Sun’s blasts are “sneak attacks” that may occur without warning.

“If space weather forecasters rely on some of the traditional danger signs, they’ll miss a significant fraction of solar eruptions,” said Suli Ma of the Harvard-Smithsonian Center for Astrophysics (CfA).

To reach their conclusion, Ma and her colleagues studied 34 solar eruptions over 8 months using the STEREO spacecraft. STEREO allows us to study the Sun from two different angles simultaneously. It consists of two spacecraft, one ahead of Earth in its orbit and the other trailing behind. The researchers used it to ensure that the events leaving the Sun were definitely on the side facing the Earth.

STEREO is ideal for studying coronal mass ejections, or CMEs. A CME is a huge eruption from the Sun that blasts a billion tons of highly charged particles into space at speeds greater than a million miles per hour. When those charged particles reach Earth, they interact with our planet’s magnetic field, potentially creating a geomagnetic storm. Such a storm can interfere with satellite communications, disrupt power grids, or even short out orbiting satellites.

Previous to STEREO, astronomers thought that all Earth-facing CMEs were accompanied by warning signals like flares (smaller explosions accompanied by high-energy radiation), coronal dimmings (darkening of the corona caused by discharge of matter in the CME) or filament eruptions (long ribbons of plasma arching violently out from the solar surface). Therefore, by watching for those signals, we could potentially predict an impending eruption.

This new research found that 11 of the 34 CMEs observed by STEREO were “stealthy,” showing none of the usual signals. As a result, any system designed to watch for such warning signs could miss one-third of all solar blasts.

“Meteorologists can give days of warning for a hurricane, but only minutes for a tornado,” explained Smithsonian astronomer Leon Golub. “Currently, space weather forecasting is more like tornado warnings. We might know an eruption is imminent, but we can’t say exactly when it will happen. And sometimes, they catch us by surprise.”

The team plans to continue looking for subtle clues that might allow us to predict an impending “stealth” CME. They caution that their study occurred during a prolonged minimum of solar activity; conditions may change as solar activity increases over the next few years.

“The Sun is entering its stormy season, ramping up toward its next period of maximum activity in 2013 and 2014,” said Ma. “The more we learn and understand about it now, the better.”

The paper discussing their findings appeared in the Oct. 10, 2010 issue of The Astrophysical Journal. It was authored by Suli Ma, G. Attrill, and Leon Golub (CfA); and J. Lin (Chinese Academy of Sciences).

Spectroscopy in 1881

Instrument for imaging solar spectra on photographic plate. Also contains electric arc lamp which can be focused above solar spectra to allow for comparison.

[/caption]

Presently, I’ve been reading a lot of very old papers and books in astronomy. The work I’m currently reading a portion of, is from 1881, and is a summary of all the findings of the year in all fields of Science. For those that aren’t familiar with that time period in astronomy, the big thing was spectroscopy. It was only ~30 years earlier that chemists and astronomers had begun to work out methods by which to investigate spectra and with the newly developed tools in hand, astronomers were pointing them at anything they could find sufficiently bright to get a spectra. Obviously, this meant the first target was the Sun. This work provides an interesting snapshot at a developing era in astronomical history.

The article describes a brief bit of background, noting that the pioneering work of spectroscopy was done by Fraunhofer, Kirchoff, Angstrom, and Thalen (but manages to leave out Kirchoff’s colleague, Robert Bunsen!). These early explorers noted that, although spectral lines may appear unique, several had lines that would appear in very nearly the same positions.

Another discovery around that time was the phenomenon of emission lines from the Sun’s corona. This had officially been discovered in 1868 during a solar eclipse, but now that astronomers knew about the occurrence, they began to explore it further and discovered that many of the features had no apparent explanation as the chemicals causing them had yet to be discovered on Earth. Incidentally, it would be a year following this publication that helium, one of the chief components of the Sun, would be found and isolated on Earth.

As the astronomers explored the corona, they inspected the various layers and found a bizarre thing: Magnesium appeared higher in the corona than sodium despite magnesium having a higher atomic weight which astronomers realized, should cause it to sink. While this is not explained, I should note that spectra often play tricks like this. It may well have been that magnesium simply emits better at the temperatures in that region given an overestimation of the abundance. This odd behavior, as well as the inconstant nature of the spectra on various portions of the Sun was described as “a great screw loose”.

Another portion of the paper provides another somewhat humorous snapshot of this moment in history as the writer remarks just how different the Sun is from the Earth. He states, “It was difficult to imagine a stronger difference to exist between any two masses of matter than the chemical constitution of the incandescent sun, and of the earth, which is now cooling.” He wonders if perhaps planets evolved from failed stars in which the Sun’s “immense temperature had not allowed a complex evolution of higher complex forms of chemical matter to take place”. While this may seem quaint, the periodic table had only been developed 12 years prior and the creation of heavy elements would not be well understood until the 1950’s.

Similarly, the confusion on the varying spectral lines between stars is apparent although the author shows that the answers were already being developed, although still not fully fleshed out. He cites Angstrom stating: “In increasing successively the temperature I have found that the lines of the spectra vary in intensity in an exceedingly complicated way, and consequently new lines even may present themselves if the temperature is raised sufficiently high.”

In this single flash of insight, Angstrom had predicted a methodology by which astronomers could have begun to classify stars. Unfortunately, the standard of classification had already been set and it would take until the next century for astronomers to begin classifying stars by temperature (thanks to the work of Annie Jump Cannon). However, the author demonstrates that investigation was underway as to the relationship between temperature and line intensity. This work would eventually connect to our modern understanding of stellar temperatures.

Aurora Alert! Solar Flare Heading Our Way

This image shows a three and a half hour (0000 - 0330 UT) time lapse movie of the flare and filament event. Credit: NASA/SDO

An active sunspot (1123) erupted early this morning (Nov. 12th), producing a C4-class solar flare and apparently hurling a filament of material in the general direction of Earth. Coronagraph images from the Solar and Heliospheric Observatory (SOHO) and NASA’s twin STEREO spacecraft show a faint coronal mass ejection emerging from the blast site and heading off in a direction just south of the sun-Earth line. The cloud could deliver a glancing blow to Earth’s magnetic field sometime between Nov. 13th to the 15th. High latitude sky watchers could see auroras on those dates.
Continue reading “Aurora Alert! Solar Flare Heading Our Way”

Solar Explosions Spark Controversy

Solar Prominence

[/caption]

Nowhere in the Solar System are conditions more extreme than the Sun. Every second it converts millions of tons of matter into energy to create the intense levels of heat and light we expect of our local star. Study the Sun in different wavelengths and its violent nature can really become apparent. The STEREO satellite has been studying the Sun at a wavelength of 304Å and the results support a controversial solar theory.

Coronal Mass Ejections (or CMEs) are common on the Sun and they have a very real impact to us here on Earth. The solar explosions expel trillions of trillions of tons of super hot hydrogen gas into space, sometimes in the direction of the Earth. Traveling at speeds up to 2,000 kilometers per second it takes just a day for the magnetized gas to reach us and on arrival it can induce strong electric currents in the Earth’s atmosphere leading not only to the beautiful auroral displays but also to telecommunication outages, GPS system failures and even disturbances to power grids.

Solar flares, to use their other name, were first observed back in 1859 and since then, scientists have been studying them to try to understand the mechanism that causes the eruption. It has been known for some time that the magnetically charged gas or plasma is interacting with the magnetic field of the Sun but the detail has been at best, elusive.

In 2006, the international satellite STEREO was launched with the objective of continuously monitoring and studying the CMEs as they head toward the Earth and its data has helped scientists at the Naval Research Laboratory (NRL) in Washington, D.C., start to understand the phenomenon.

Using this new data, scientists at the NRL compared the observed activity with a controversial theory that was first proposed by Dr James Chen (also from the NRL) in 1989. His theory suggested that the erupting clouds of plasma are giant ‘magnetic flux ropes’, effectively a twisted up magnetic field line shaped like a donut. The Sun being a vast sphere of gas suffers from differential rotation where the polar regions of the Sun and the equatorial regions all rotate at different speeds. As a direct result of this, the plasma ‘drags’ the magnetic field lines around and the Sun and it gets more and more twisted up . Eventually, it bursts through the surface, taking some plasma with it giving us one of the most dramatic yet potentially destructive events in the Universe.

Dr Chen and a Valbona Kunkel, a doctorate student at George Mason University, applied Dr. Chen’s model to the new data from STEREO and found that the theory agrees with the measured trajectories of the ejected material. It therefore looks like his theory, whilst controversial may have been right all along.

Its strange to think that our nearest star, the Sun, still has secrets. Yet thanks to the work of Dr. Chen and his team, this one seems to have been unraveled and understanding the strange solar explosions will perhaps help us to minimise impact to Earth based technologies in years to come.

Mark Thompson is a writer and the astronomy presenter on the BBC One Show. See his website, The People’s Astronomer, and you can follow him on Twitter, @PeoplesAstro

Astrophotos: Halo Around the Sun in South Africa Today

A halo appeared around the Sun on Nov. 1, 2010 in Centurion South Africa. Credit: Alan Buff.

[/caption]

Residents around Johannesburg, South Africa were treated with a rare astronomical (or actually atmospheric) sight — a halo around the Sun. These halos are striking to see, but unlike an eclipse, they can’t be predicted. Conditions in the atmosphere have to be just right, with moisture or ice crystals creating a “rainbow” effect around the Sun. Sometimes the halos surround the Sun completely, other times, they appear as arcs around the solar sphere. Basically, sunlight is reflecting off moisture in the atmosphere. These images were sent in by Alan Buff from Centurion, South Africa. See more below.

Another image of a halo that appeared around the Sun on Nov. 1, 2010 in Centurion South Africa; this one has a building blocking out the Sun itself. Credit: Alan Buff.

In folklore, these halos seen around the Sun or the Moon means precipitation is on the way, which makes sense, since moisture in the atmosphere usually makes it down to the ground. High clouds of ice crystals are called cirrus clouds, and these often form in at the leading edge of warm fronts that bring rain.

Newspaper and internet articles report that Johannesburg was buzzing about the weird halos; however, the explanation was simple and did not include aliens or end-of-the-world scenarios.

A halo appeared around the Sun on Nov. 1, 2010 in Centurion South Africa. Credit: Alan Buff.

Thanks again to Alan Buff for sharing his images with Universe Today.

Sources: eHow, NewsTime, NASA

Spacecraft Calibrations Provide Unique Solar “Artwork”

Sun 'artwork' by the Solar Dynamics Observatory

[/caption]

If you check out the Solar Dynamics Observatory website today to get an update of what the Sun is doing, (which you should -everyday!) you may have noticed a few of the daily images appeared to be “sliding” across the screen. That’s because yesterday the team from the AIA instrument (Atmospheric Imaging Assembly) performed several instrument calibration maneuvers, in which the AIA boresight was moved away from the center of the Sun. When the images are re-centered some of them have lines to the edges of the picture, creating some very nifty solar artwork. Enjoy them now, as this effect will only show up in the “rapid” images shown on their website, and later, they’ll be corrected in the science database. See more below.

More SDO artwork.

SDO takes images of the Sun in several different wavelengths, which highlights different features. On SDO’s Facebook page, the team wrote, “It appears that the re-centering of the images is copying the value at the edge of the field of view rather than zero while the image is being shifted to the center of the picture.”

And even though the images will be fixed, they won’t be able to fix them completely. The information that is missing from images can’t be recovered because the instrument wasn’t pointed at the Sun at the time the image was taken.

More SDO artwork.

Mysterious Ribbon at Edge of Solar System is Changing

A year ago, researchers from the IBEX mission – NASA’s Interstellar Boundary Explorer – announced the discovery of an unexpected bright band or ribbon of surprisingly high energy emissions at the boundary between our solar system and interstellar space. Now, after a year of observations, scientists have seen vast changes, including an unusual knot in the ribbon which appears to have ‘untied.’ Changes in the ribbon — a ‘disturbance in the force,’ so to speak, along with a shrunken heliosphere, may be allowing galactic cosmic rays to leak into our solar system.
Continue reading “Mysterious Ribbon at Edge of Solar System is Changing”

Solar Dynamics Observatory Earns its Stripes

Is this a new object is space that is half Sun and half Jupiter? Sunpiter? Credit: NASA/SDO

[/caption]

“Now we know what it would look like if Jupiter and the sun had a child,” joked Ralph Seguin of the Lockheed-Martin Solar and Astrophysics Lab, trying to explain this weird image. So, just what is it? Some people have been calling it “Sunpiter,” since parts of it looks like the Sun, and other parts look like Jupiter. It really is the Sun, as seen by the Solar Dynamics Observatory, which was having a tough day. Normally, SDO gets a great view of the Sun, but the spacecraft occasionally gets its view blocked by the Earth, in a unusual kind of eclipse. This image is a composite of multiwavelength images and a magnetogram taken by SDO just as the sun was emerging from its daily blackout. “SDO has entered eclipse season,” said Seguin. “Around the time of the equinoxes, the spacecraft, Earth, and sun can line up almost perfectly. Once a day for about an hour, Earth blocks SDO’s view of the sun.” And this is the result.

Magnetograms are computed from a series of images taken over a short time span. The ribbons of color result from Earth’s motion across the sun during the series of exposures. This eclipse season for SDO lasts until October 6, 2010.

You can see a short movie clip here of what SDO sees during an eclipse, which isn’t much.

Source: Spaceweather.com

Amazing Sunspot Image from New Solar Telescope

The most detailed sunspot ever obtained in visible light was seen by new telescope at NJIT's Big Bear Solar Observatory. Credit: Big Bear Solar Observatory

[/caption]

A new type of adaptive optics for solar observations has produced some incredible results, providing the most detailed image of a sunspot ever obtained in visible light. A new telescope built by the New Jersey Institute of Technology’s Big Bear Solar Observatory has seen its ‘first light’ using a deformable mirror, which is able to reduce atmospheric distortions. This is the first facility-class solar observatory built in more than a generation in the U.S.

The New Solar Telescope (NST) is located in the mountains east of Los Angeles. It has 97 actuators that make up the deformable mirror. By the summer of 2011, in collaboration with the National Solar Observatory, BBSO will have upgraded the current adaptive optics system to one utilizing a 349 actuator deformable mirror. The telescope has a 1.6 m clear aperture, with a resolution covering about 50 miles on the Sun’s surface.

The NST will be the pathfinder for an even larger ground-based telescope, the Advanced Technology Solar Telescope to be built over the next decade. Philip R. Goode from NJIT is leading a partnership with the National Solar Observatory (NSO) to develop a new and more sophisticated kind of adaptive optics, known as multi-conjugate adaptive optics. This new optical system will allow the researchers to increase the distortion-free field of view to allow for better ways to study these larger and puzzling areas of the Sun, and a 4-meter aperture telescope will be built in the next decade.

Source: NJIT

Amazing Image: Map of Magnetic Field Lines of the Sun

Magnetic field lines on the Sun, on August 20, 2010. Credit: NASA SDO/Lockheed Martin Space Systems Compan

[/caption]

The Sun’s corona is threaded with a complex network of magnetic fields, and this amazing new image from the Solar Dynamics Observatory shows the magnetic field lines associated with a coronal hole that is now turning to face Earth. This map is from data taken on August 20, 2010 by the Helioseismic and Magnetic Imager instrument (HMI). The magnetic field lines are color coded: white lines show fields that are closed, not releasing solar wind, and gold lines show open fields, letting solar wind escape. Understanding these magnetic fields is important because it is thought that solar storms and flares, which can affect us here on Earth, result from changes in the structure and connections of these fields.

Coronal holes are large regions in the corona that are darker, less dense and cooler than surrounding areas. The open structure of their magnetic field allows a constant flow of high-density plasma to stream out of the holes. There is an increase in the intensity of the solar wind effects on Earth when a coronal hole faces.

During a solar minimum, such as the one from which the Sun is just emerging, coronal holes are mainly found at the Sun’s polar regions, but they can be located anywhere on the sun during solar maximum. The fast-moving component of the solar wind is known to travel along open magnetic field lines that pass through coronal holes.

Scientists are finding out that much of the structure of the Sun’s corona is shaped by the magnetic field. Although it varies over time and from place to place on the Sun, the Sun’s magnetic field can be very strong. Inside sunspots, the magnetic field can be several thousand times the strength of the Earth’s magnetic field.

Learn more about magnetic field lines and how SDO’s HMI instrument will help us to better understand the Sun in this video from SDO:

More info: HMI webpage, SDO website

Sources: @Camilla_SDO Twitpic page, SDO Facebook, Solar Physics page from Montana University