When stars blow up, they tend to release their energy in a roughly spherical shape. But much after the initial blast, the resulting shock waves can sometimes be elongated in one direction. A team of theorists used laboratory lasers to identify the potential culprit: magnetic fields.
Continue reading “Supernovae shockwaves aren’t spherical”Detecting the Neutrinos From a Supernova That’s About to Explode
Neutrinos are puzzling things. They’re tiny particles, almost massless, with no electrical charge. They’re notoriously difficult to detect, too, and scientists have gone to great lengths to detect them. The IceCube Neutrino Observatory, for instance, tries to detect neutrinos with strings of detectors buried down to a depth of 2450 meters (8000 ft.) in the dark Antarctic ice.
How’s that for commitment.
Continue reading “Detecting the Neutrinos From a Supernova That’s About to Explode”Astronomers Might Have Seen a Star Just Disappear. Turning Straight to a Black Hole Without a Supernova
Large stars have violent deaths. As they run out of hydrogen to fuse, the star’s weight squeezes its core to make it increasingly hot and dense. The star fuses heavier elements in a last-ditch effort to keep from collapsing. Carbon to Silicon to Iron, each step generating heat and pressure. But soon it’s not enough. The fusion even heavier elements don’t give the star more energy, and the core quickly collapses. The protons and neutrons of nuclei collide so violently that the resulting shock wave rips the star about. The outer layers of the star are thrown outward, becoming a brilliant supernova. For a brief time, the star shines brighter than its entire galaxy, and its core collapses into a neutron star or black hole. It was thought that all large stars end with a supernova, but new research finds that might not be the case.
Continue reading “Astronomers Might Have Seen a Star Just Disappear. Turning Straight to a Black Hole Without a Supernova”A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients
For the child inside all of us space-enthusiasts, there might be nothing better than discovering a new type of explosion. (Except maybe bigger rockets.) And it looks like that’s what’s happened. Three objects discovered separately—one in 2016 and two in 2018—add up to a new type of supernova that astronomers are calling Fast Blue Optical Transients (FBOT).
Continue reading “A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients”Super-Supernova Released Ten Times More Energy than a Regular Supernova
It’s easy to run out of superlatives and adjectives when your puny human language is trying to describe humongously-energetic events in the Universe. So now it’s down to this: a really powerful supernova is a “super-supernova.”
But whatever name we give it, it’s a monster. A monsternova.
Continue reading “Super-Supernova Released Ten Times More Energy than a Regular Supernova”It Looks Like Betelgeuse was Dimming Because it was Dusty After All
It’s been said that dust built the Universe. And it turns out dust may be the culprit for building up what are likely false hopes of soon witnessing a massive supernova for the star Betelgeuse.
Continue reading “It Looks Like Betelgeuse was Dimming Because it was Dusty After All”Riding the Wave of a Supernova to Go Interstellar
When it comes to the challenges posed by interstellar travel, there are no easy answers. The distances are immense, the amount of energy needed to make the journey is tremendous, and the time scales involved are (no pun!) astronomical. But what if there was a way to travel between stars using ships that take advantage of natural phenomena to reach relativistic velocities (a fraction of the speed of light).
Already, scientists have identified situations where objects in our Universe are able to do this – including hypervelocity stars and meteors accelerated by supernovae explosions. Delving into this further, Harvard professors Manasvi Lingam and Abraham Loeb recently explored how interstellar spacecraft could harness the waves produced by a supernova explosion in the same way that sailing ships harness the wind.
Continue reading “Riding the Wave of a Supernova to Go Interstellar”The Brightest Supernova Ever Seen was Caused by a White Dwarf Spiraling into a Red Giant
Super-luminous supernovae are the brightest explosions in the Universe. In just a few months, a super-luminous supernova can release as much energy as our Sun will in its entire lifespan. And at its peak, it can be as bright as an entire galaxy.
One of the most-studied super-luminous supernovae (SLSN) is called SN 2006gy. Its origin is uncertain, but now Swedish and Japanese researchers say they might have figured out what caused it: a cataclysmic interaction between a white dwarf and its massive partner.
Continue reading “The Brightest Supernova Ever Seen was Caused by a White Dwarf Spiraling into a Red Giant”Forget Betelgeuse, the Star V Sagittae Should Go Nova Within this Century
The star V Sagittae is the next candidate to explode in stellar pyrotechnics, and a team of astronomers set the year for that cataclysmic explosion at 2083, or thereabouts. V Sagittae is in the constellation Sagitta (latin for arrow,) a dim and barely discernible constellation in the northern sky. V Sagittae is about 1100 light years from Earth.
Continue reading “Forget Betelgeuse, the Star V Sagittae Should Go Nova Within this Century”This Galaxy Has Been Home to 5 Supernovae in the Last 20 Years
When stars die, they don’t die quietly but prefer to go out with a bang! This is known as a supernova, which occurs when a star has expended all of its fuel and undergoes gravitational collapse. In the process, the outer layers of the star will be blown off in a massive explosion visible from billions of light-years away. For decades, NASA has been monitoring galaxies beyond the Milky Way and detected numerous supernova taking place.
For instance, over the past 20 years, the Hubble Space Telescope has been monitoring the galaxy NGC 5468 – an intermediate spiral galaxy located roughly 130 million light-years from Earth in the constellation Virgo. In that time, this galaxy has experienced 5 supernovae and, thanks to its orientation (perpendicular to our own), astronomers have been able to study this galaxy and its supernovae in glorious detail.
Continue reading “This Galaxy Has Been Home to 5 Supernovae in the Last 20 Years”