Images of the Crab Nebula are always a treat because it has such intriguing and varied structure. Also, just knowing that this stellar explosion was witnessed and recorded by people on Earth more than 900 years ago (with the supernova visible to the naked eye for about two years) gives this nebula added fascination.
A new image just might be the biggest Crab Nebula treat ever, as five different observatories combined forces to create an incredibly detailed view, with stunning details of the nebula’s interior region.
Data from the five telescopes span nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope’s crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope.
The Crab is 6,500 light-years from Earth and spans about 10 light-years in diameter. The supernova that created it was first witnessed in 1054 A. D. At its center is a super-dense neutron star that is as massive as the Sun but with only the size of a small town. This pulsar rotates every 33 milliseconds, shooting out spinning lighthouse-like beams of radio waves and light. The pulsar can be seen as the bright dot at the center of the image.
Scientists say the nebula’s intricate shape is caused by a complex interplay of the pulsar, a fast-moving wind of particles coming from the pulsar, and material originally ejected by the supernova explosion and by the star itself before the explosion.
For this new image, the VLA, Hubble, and Chandra observations all were made at nearly the same time in November of 2012. A team of scientists led by Gloria Dubner of the Institute of Astronomy and Physics (IAFE), the National Council of Scientific Research (CONICET), and the University of Buenos Aires in Argentina then made a thorough analysis of the newly revealed details in a quest to gain new insights into the complex physics of the object. They are reporting their findings in the Astrophysical Journal (see the pre-print here).
About the central region, the team writes, “The new HST NIR [near infrared] image of the central region shows the well-known elliptical torus around the pulsar, composed of a series of concentric narrow features of variable intensity and width… The comparison of the radio and the X-ray emission distributions in the central region suggests the existence of a double-jet system from the pulsar, one detected in X-rays and the other in radio. None of them starts at the pulsar itself but in its environs.”
“Comparing these new images, made at different wavelengths, is providing us with a wealth of new detail about the Crab Nebula. Though the Crab has been studied extensively for years, we still have much to learn about it,” Dubner said.
When your ordinary citizen learns there’s a supermassive black hole with a mass of 4 million suns sucking on its teeth in the center of the Milky Way galaxy, they might kindly ask exactly how astronomers know this. A perfectly legitimate question. You can tell them that the laws of physics guarantee their existence or that people have been thinking about black holes since 1783. That year, English clergyman John Michell proposed the idea of “dark stars” so massive and gravitationally powerful they could imprison their own light.
Michell wasn’t making wild assumptions but taking the idea of gravity to a logical conclusion. Of course, he had no way to prove his assertion. But we do. Astronomers now routinely find bot stellar mass black holes — remnants of the collapse of gas-guzzling supergiant stars — and the supermassive variety in the cores of galaxies that result from multiple black hole mergers over grand intervals of time.
Some of the galactic variety contain hundreds of thousands to billions of solar masses, all of it so to speak “flushed down the toilet” and unavailable to fashion new planets and stars. Famed physicist Stephen Hawking has shown that black holes evaporate over time, returning their energy to the knowable universe from whence they came, though no evidence of the process has yet been found.
So how do we really know a massive, dark object broods at the center of our sparkling Milky Way? Astronomers use radio, X-ray and infrared telescopes to peer into its starry heart and see gas clouds and stars whirling about the center at high rates of speed. Based on those speeds they can calculate the mass of what’s doing the pulling.
In the case of the galaxy M87 located 53.5 million light years away in the Virgo Cluster, those speeds tell us that something with a mass of 3.6 billion suns is concentrated in a space smaller than our Solar System. Oh, and it emits no light! Nothing fits the evidence better than a black hole because nothing that massive can exist in so small a space without collapsing in upon itself to form a black hole. It’s just physics, something that Mr. Scott on Star Trek regularly reminded a panicky Captain Kirk.
So it is with the Milky Way, only our black hole amounts to a piddling 4 million-solar-mass light thief confined within a spherical volume of space some 27 million miles in diameter or just shy of Mercury’s perihelion distance from the Sun. This monster hole resides at the location of Sagittarius A* (pronounced A- star), a bright, compact radio source at galactic center about 26,000 light years away.
Video showing a 14-year-long time lapse of stars orbiting Sgr A*
The time-lapse movie, compiled over 14 years, shows the orbits of several dozen stars within the light year of space centered on Sgr A*. We can clearly see the star moving under the influence of a massive unseen body — the putative supermassive black hole. No observations of Sgr A* in visible light are possible because of multiple veils of interstellar dust that lie across our line of sight. They quench its light to the tune of 25 magnitudes.
Merging black holes (the process look oddly biological!). Credit: SXS
How do these things grow so big in the first place? There are a couple of ideas, but astronomers don’t honestly know for sure. Massive gas clouds around early in the galaxy’s history could have collapsed to form multiple supergiants that evolved into black holes which later then coalesced into one big hole. Or collisions among stars in massive, compact star clusters could have built up stellar giants that evolved into black holes. Later, the clusters sank to the center of the galaxy and merged into a single supermassive black hole.
Whichever you chose, merging of smaller holes may explain its origin.
On a clear spring morning before dawn, you can step out to face the constellation Sagittarius low in the southern sky. When you do, you’re also facing in the direction of our galaxy’s supermassive black hole. Although you cannot see it, does it not still exert a certain tug on your imagination?
30 years ago today, a supernova explosion was spotted in the southern hemisphere skies. The exploding star was located in the Large Magellanic Cloud — a satellite galaxy of the Milky Way – and Supernova 1987A was the brightest and nearest supernova explosion for modern astronomers to observe. This has provided an amazing opportunity to study the death of a star.
Telescopes around the world and in space have been keeping an eye on this event, and the latest images show the blast wave from the original explosion is still expanding, and it has plowed into a ring expelled by the pre-supernova star. The latest images and data reveal the blast is now moving past the ring.
Got a 3-D printer? You can print out your own version of SN1987A! Find the plans here.
Below is the latest image of this supernova, as seen by the Hubble Space Telescope. You can see it in the center of the image among a backdrop of stars, and the supernova is surrounded by gas clouds.
Hubble launched in 1990, just three years after the supernova was detected, so Hubble has a long history of observations. In addition, the Chandra X-ray telescope – launched in 1999 – has been keeping an eye on the explosion too.
Here are a few animations and images of SN1987A over the years:
Astronomers estimate that the ring material was was ejected about 20,000 years before the actual explosion took place. Then, the initial blast of light from the supernova illuminated the rings. They slowly faded over the first decade after the explosion, until the shock wave of the supernova slammed into the inner ring in 2001, heating the gas to searing temperatures and generating strong X-ray emission.
The observations by Hubble, Chandra and telescopes around the world has shed light on how supernovae can affect the dynamics and chemistry of their surrounding environment, and continue to shape galactic evolution.
Supernovae are extremely energetic and dynamic events in the universe. The brightest one we’ve ever observed was discovered in 2015 and was as bright as 570 billion Suns. Their luminosity signifies their significance in the cosmos. They produce the heavy elements that make up people and planets, and their shockwaves trigger the formation of the next generation of stars.
There are about 3 supernovae every 100 hundred years in the Milky Way galaxy. Throughout human history, only a handful of supernovae have been observed. The earliest recorded supernova was observed by Chinese astronomers in 185 AD. The most famous supernova is probably SN 1054 (historic supernovae are named for the year they were observed) which created the Crab Nebula. Now, thanks to all of our telescopes and observatories, observing supernovae is fairly routine.
But one thing astronomers have never observed is the very early stages of a supernova. That changed in 2013 when, by chance, the automated Intermediate Palomar Transient Factory (IPTF) caught sight of a supernova only 3 hours old.
Spotting a supernovae in its first few hours is extremely important, because we can quickly point other ‘scopes at it and gather data about the SN’s progenitor star. In this case, according to a paper published at Nature Physics, follow-up observations revealed a surprise: SN 2013fs was surrounded by circumstellar material (CSM) that it ejected in the year prior to the supernova event. The CSM was ejected at a high rate of approximately 10 -³ solar masses per year. According to the paper, this kind of instability might be common among supernovae.
SN 2013fs was a red super-giant. Astronomers didn’t think that those types of stars ejected material prior to going supernova. But follow up observations with other telescopes showed the supernova explosion moving through a cloud of material previously ejected by a star. What this means for our understanding of supernovae isn’t clear yet, but it’s probably a game changer.
Catching the 3-hour-old SN 2013fs was an extremely lucky event. The IPTF is a fully-automated wide-field survey of the sky. It’s a system of 11 CCD’s installed on a telescope at the Palomar Observatory in California. It takes 60 second exposures at frequencies from 5 days apart to 90 seconds apart. This is what allowed it to capture SN 2013fs in its early stages.
Our understanding of supernovae is a mixture of theory and observed data. We know a lot about how they collapse, why they collapse, and what types of supernovae there are. But this is our first data point of a SN in its early hours.
SN 2013fs is 160 million light years away in a spiral-arm galaxy called NGC7610. It’s a type II supernova, meaning that it’s at least 8 times as massive as our Sun, but not more than 50 times as massive. Type II supernovae are mostly observed in the spiral arms of galaxies.
A supernova is the end state of some of the stars in the universe. But not all stars. Only massive stars can become supernova. Our own Sun is much too small.
Stars are like dynamic balancing acts between two forces: fusion and gravity.
As hydrogen is fused into helium in the center of a star, it causes enormous outward pressure in the form of photons. That is what lights and warms our planet. But stars are, of course, enormously massive. And all that mass is subject to gravity, which pulls the star’s mass inward. So the fusion and the gravity more or less balance each other out. This is called stellar equilibrium, which is the state our Sun is in, and will be in for several billion more years.
But stars don’t last forever, or rather, their hydrogen doesn’t. And once the hydrogen runs out, the star begins to change. In the case of a massive star, it begins to fuse heavier and heavier elements, until it fuses iron and nickel in its core. The fusion of iron and nickel is a natural fusion limit in a star, and once it reaches the iron and nickel fusion stage, fusion stops. We now have a star with an inert core of iron and nickel.
Now that fusion has stopped, stellar equilibrium is broken, and the enormous gravitational pressure of the star’s mass causes a collapse. This rapid collapse causes the core to heat again, which halts the collapse and causes a massive outwards shockwave. The shockwave hits the outer stellar material and blasts it out into space. Voila, a supernova.
The extremely high temperatures of the shockwave have one more important effect. It heats the stellar material outside the core, though very briefly, which allows the fusion of elements heavier than iron. This explains why the extremely heavy elements like uranium are much rarer than lighter elements. Only large enough stars that go supernova can forge the heaviest elements.
In a nutshell, that is a type II supernova, the same type found in 2013 when it was only 3 hours old. How the discovery of the CSM ejected by SN 2013fs will grow our understanding of supernovae is not fully understood.
Supernovae are fairly well-understood events, but their are still many questions surrounding them. Whether these new observations of the very earliest stages of a supernovae will answer some of our questions, or just create more unanswered questions, remains to be seen.
In 2013, the Cherenkov Telescope Array (CTA) was established with the intention of building the world’s largest and most sensitive high-energy gamma ray observatory. Consisting of over 1350 scientists from 210 research institutes in 32 countries, this observatory will use 100 telescopes across the northern and southern hemispheres to explore the high-energy Universe.
Key to their efforts is a prototype dual-mirror Schwarzschild-Couder telescope, known as the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI). Since it was first created in 2014, this prototype has been undergoing tests at the Serra La Nave Observing Station on Mount Etna, Sicily. And as of October of 2016, it passed its most important test to date, demonstrating a constant point-spread function across its full field of view.
The ASTRI telescope is essentially a revolutionary kind of Imaging Atmospheric Cherenkov Telescope (IACT). These ground-based telescopes are used by astronomers to detect cosmic high-energy gamma rays. These rays are produced by the most energetic objects in the universe (i.e. pulsars, supernovae, regions around black holes), and are only detectable because of the Cherenkov Effect, which they undergo once they pass into our atmosphere.
This effect occurs when particles of light achieve speeds greater than the phase velocity of light in their particular medium. In this case, the effect is produced when light particles pass from the vacuum of space into our atmosphere, temporarily exceeding the speed of light in air and producing a glow in the blue to UV range. In the case of very-high-energy gamma rays, indirect observations of this Cherenkov radiation is the only way to detect them.
Typically, Cherenkov telescopes use a mirror to collect light and focus it on a camera. The ASTRI telescope is something quite different, in that it is based on the Schwarzschild-Couder model. As Giovanni Pareschi, an astronomer at the INAF-Brera Astronomical Observatory and the principal investigator of the ASTRI project, told Universe Today via email:
“The ASTRI telescope for the first time is based on a two mirror imaging configuration (while in general Cherenkov telescopes work with in single mirror configuration, i.e. just a big primary mirror with the camera put in the Newtonian focus and a f-number close to 1). ASTRI is a prototype of the telescopes of the Small Size Telescope sub-array of the CTA Observatory. The sub-array is devoted to detect the gamma rays with the highest energy (up to 100 Tev). In order to properly work, the sub-array has to be based on a large number of telescopes (70 units) with a distance from each other of a 250 m distributed and with a large field (10 deg x 10 deg) of view with a constant angular resolution of a few arc minutes across the field of view.
This idea for such a telescope was first proposed in 1905 by German astronomer Karl Schwarzschild, but remained dormant for almost a century since it was deemed too difficult and too expensive to construct. It was not until 2007 that it was considered as a viable means for creating a new type of IACT. And in 2014, the INAF-Brera Astronomical Observatory commissioned the first of its kind to be built.
“[W]e have for the first time adopted a two reflection design based on the Schwarzschild-Couder configuration never realized before (also for telescopes operating in the visible band),” added Pareschi. “This configuration allows us to optimize the angular resolution across the field of view and to use focal plane cameras of small dimensions (thanks to this property, we could use new solid-state technology based Silicon photomultiplier sensors instead of the “old” classical photomultiplier tubes used so far in Cherenkov astronomy).”
These advantages, and the advances they allow for, will make ASTRI telescope approximately ten times more sensitive than current instruments. And with this latest test – which demonstrating a constant point-spread function of a few arc minutes over a large field of view of 10 degrees – the team behind it now has proof that it will work. As Pareschi explained:
“The test demonstrated for the first time that a telescope based on the Schwarzschild-Couder configuration correctly works and that a two-mirror configuration can be adopted for making Cherenkov telescopes for gamma ray astronomy. In addition, the ASTRI prototype has been completely characterized and validated from the opto-mechanical point of view, demonstrating that we can now proceed with the construction of the Small-Sized Telescopes (SSTs) of the array based on the ASTRI design.”
With this important test complete, the INAF-Brera team hopes to spend the next few months prepping the telescope. This will include mounting the Cherenkov camera onto the prototype and testing its gamma-ray performance. Then they will start to produce the first set of ASTRI telescopes to create a mini-array, which will serve as a precursor to the planned CTA sub-array that is scheduled to be built in Chile.
Once the camera is tested and mounted, the ASTRI team will conduct their first observations of gamma-rays at very high energies. These observations will allow scientists to determine the direction of gamma-ray photons that are the result of celestial sources, such as neutron stars, pulsars, supernovae, and black holes, tracing them back to their respective sources.
And with the planned construction of 100 SSTs to be spread out over the northern and southern hemispheres, the CTA array will outnumber all other telescopes in the world. The wide coverage and large number of these telescopes, spread over a wide area, will improve astronomers chances of detecting very high-energy gamma rays as they pass into our atmosphere.
Our sky is blanketed in a sea of stellar ghosts; all potential phantoms that have been dead for millions of years and yet we don’t know it yet. That is what we will be discussing today. What happens to the largest of our stars, and how that influences the very makeup of the universe we reside in.
We begin this journey by observing the Crab Nebula. Its beautiful colors extend outward into the dark void; a celestial tomb containing a violent event that occurred a millennia ago. You reach out and with the flick of your wrist, begin rewinding time and watch this beautiful nebulae begin to shrink. As the clock winds backwards, the colors of the nebula begin to change, and you notice that they are shrinking to a single point. As the calendar approaches July 5, 1054, the gaseous cloud brightens and settles onto a single point in the sky that is as bright as the full moon and is visible during the day. The brightness fades and eventually there lay a pinpoint of light; a star that we don’t see today. This star has died, however at this moment in time we wouldn’t have known that. To an observer before this date, this star appeared eternal, as all the other stars did. Yet, as we know from our privileged vantage point, this star is about to go supernova and birth one of the most spectacular nebulae that we observe today.
Stellar ghosts is an apt way of describing many of the massive stars we see scattered throughout the universe. What many don’t realize is that when we look out deep into the universe, we are not only looking across vast distances, but we are peering back into time. One of the fundamental properties of the universe that we know quite well is that light travels at a finite speed: approximately 300,000,000 m/s (roughly 671,000,000 mph). This speed has been determined through many rigorous tests and physical proofs. In fact, understanding this fundamental constant is a key to much of what we know about the universe, especially in respect to both General Relativity and Quantum Mechanics. Despite this, knowing the speed of light is key to understanding what I mean by stellar ghosts. You see, information moves at the speed of light. We use the light from the stars to observe them and from this understand how they operate.
A decent example of this time lag is our own sun. Our sun is roughly 8 light-minutes away. Meaning that the light we see from our star takes 8 minutes to make the journey from its surface to our eyes on earth. If our sun were to suddenly disappear right now, we wouldn’t know about it for 8 minutes; this doesn’t just include the light we see, but even its gravitational influence that is exerted on us. So if the sun vanished right now, we would continue in our orbital path about our now nonexistent star for 8 more minutes before the gravitational information reached us informing us that we are no longer gravitationally bound to it. This establishes our cosmic speed limit for how fast we can receive information, which means that everything we observe deep into the universe comes to us as it was an ‘x’ amount of years ago, where ‘x’ is its light distance from us. This means we observe a star that is 10 lightyears away from us as it was 10 years ago. If that star died right now, we wouldn’t know about it for another 10 years. Thus, we can define it as a “stellar ghost”; a star that is dead from its perspective at its location, but still alive and well at ours.
As covered in a previous article of mine (Stars: A Day in the Life), the evolution of a star is complex and highly dynamic. Many factors play an important role in everything from determining if the star will even form in the first place, to the size and thus the lifetime of said star. In the previous article mentioned above, I cover the basics of stellar formation and the life of what we call main sequence stars, or rather stars that are very similar to our own sun. Whereas the formation process and life of a main sequence star and the stars we will be discussing are fairly similar, there are important differences in the way the stars we will be investigating die. Main sequence star deaths are interesting, but they hardly compare to the spacetime-bending ways that these larger stars terminate.
As mentioned above, when we were observing the long gone star that lay at the center of the Crab Nebula, there was a point in which this object glowed as bright as the full moon and could be seen during the day. What could cause something to become so bright that it would be comparable to our nearest celestial neighbor? Considering the Crab Nebula is 6,523 lightyears away, that meant that something that is roughly 153 billion times farther away than our moon was shining as bright as the moon. This was because the star went supernova when it died, which is the fate of stars that are much larger than our sun. Stars larger than our sun will end up in two very extreme states upon its death: neutron stars and black holes. Both are worthy topics that could span weeks in an astrophysics course, but for us today, we will simply go over how these gravitational monsters form and what that means for us.
A star’s life is a story of near runaway fusion contained by the grip of its own gravitational presence. We call this hydrostatic equilibrium, in which the outward pressure from the fusing elements in the core of a star equals that of the inward gravitational pressure being applied due to the star’s mass. In the core of all stars, hydrogen is being fused into helium (at first). This hydrogen came from the nebula that the star was born from, that coalesced and collapsed, giving the star its first chance at life. Throughout the lifetime of the star, the hydrogen will be used up, and more and more helium “ash” will condense down in the center of the star. Eventually, the star will run out of hydrogen, and the fusion will briefly stop. This lack of outward pressure due to no fusion taking place temporarily allows gravity to win and it crushes the star downwards. As the star shrinks, the density, and thus the temperature in the core of the star increases. Eventually, it reaches a certain temperature and the helium ash begins to fuse. This is how all stars proceed throughout the main portion of its life and into the first stages of its death. However, this is where sun-sized stars and the massive stars we are discussing part ways.
A star that is roughly near the size of our own sun will go through this process until it reaches carbon. Stars that are this size simply aren’t big enough to fuse carbon. Thus, when all the helium has been fused into oxygen and carbon (via two processes that are too complex to cover here), the star cannot “crush” the oxygen and carbon enough to start fusion, gravity wins and the star dies. But stars that have sufficiently more mass than our sun (about 7x the mass) can continue on past these elements and keep shining. They have enough mass to continue this “crush and fuse” process that is the dynamic interactions at the hearts of these celestial furnaces.
These larger stars will continue their fusion process past carbon and oxygen, past silicon, all the way until they reach iron. Iron is the death note sung by these blazing behemoths, as when iron begins to fill their now dying core, the star is in its death throws. But these massive structures of energy do not go quietly into the night. They go out in the most spectacular of ways. When the last of the non-iron elements fuse in their cores, the star begins its decent into oblivion. The star comes crashing in upon itself as it has no way to stave off gravity’s relentless grip, crushing the subsequent layers of left over elements from its lifetime. This inward free-fall is met at a certain size with an impossible force to breach; a neutron degeneracy pressure that forces the star to rebound outwards. This massive amount of gravitational and kinetic energy races back out with a fury that illuminates the universe, outshining entire galaxies in an instant. This fury is the life-blood of the cosmos; the drum beats in the symphony galactic, as this intense energy allows for the fusion of elements heavier than iron, all the way to uranium. These new elements are blasted outwards by this amazing force, riding the waves of energy that casts them deep into the cosmos, seeding the universe with all the elements that we know of.
But what is left? What is there after this spectacular event? That all depends again on the mass of the star. As mentioned earlier, the two forms that a dead massive star takes are either a Neutron Star or a Black Hole. For a Neutron Star, the formation is quite complex. Essentially, the events that I described occurs, except after the supernovae all that is left is a ball of degenerate neutrons. Degenerate is simply a term we apply to a form that matter takes on when it is compressed to the limits allowed by physics. Something that is degenerate is intensely dense, and this holds very true for a neutron star. A number you may have heard tossed around is that a teaspoon of neutron star material would weigh roughly 10 million tons, and have an escape velocity (the speed needed to get away from its gravitational pull) at about .4c, or 40% the speed of light. Sometimes the neutron star is left spinning at incredible velocities, and we label these as pulsars; the name derived from how we detect them.
These types of stars generate a LOT of radiation. Neutron stars have an enormous magnetic field. This field accelerates electrons in their stellar atmospheres to incredible velocities. These electrons follow the magnetic field lines of the neutron star to its poles, where they can release radio waves, X-Rays, and gamma rays (depending on what type of neutron star it is). Since this energy is being concentrated to the poles, it creates a sort of lighthouse effect with high energy beams acting like the beams of light out of a lighthouse. As the star rotates, these beams sweep around many times per second. If the Earth, and thus our observation equipment, happens to be oriented favorably with this pulsar, we will register these “pulses” of energy as the stars’ beams wash over us. For all the pulsars we know about, we are much too far away for these beams of energy to hurt us. But if we were close to one of these dead stars, this radiation washing over our planet continuously would spell certain extinction for life as we know it.
What of the other form that a dead star takes; a black hole? How does this occur? If degenerate material is as far as we can crush matter, how does a black hole appear? Simply put, black holes are the result of an unimaginably large star and thus a truly massive amount of matter that is able to “break” this neutron degeneracy pressure upon collapse. The star essentially falls inward with such force that it breaches this seemingly physical limit, turning in upon itself and wrapping up spacetime into a point of infinite density; a singularity. This amazing event occurs when a star has roughly 18x the amount of mass that our sun has, and when it dies, it is truly the epitome of physics gone to the extreme. This “extra bit of mass” is what allows it to collapse this ball of degenerate neutrons and fall towards infinity. It is both terrifying and beautiful to think about; a point in spacetime that is not entirely understood by our physics, and yet something that we know exists. The truly remarkable thing about black holes is that it is like the universe working against us. The information we need to fully understand the processes within a black hole are locked behind a veil that we call the event horizon. This is the point of no return for a black hole, for which anything beyond this point in spacetime has no future paths that lead out of it. Nothing escapes at this distance from the collapsed star at its core, not even light, and thus no information ever leaves this boundary (at least not in a form we can use). The dark heart of this truly astounding object leaves a lot to be desired, and tempts us to cross into its realm in order to try and know the unknowable; to grasp the fruit from the tree of knowledge.
Now it must be said, there is much in the way of research with black holes to this day. Physicists such as Professor Stephen Hawking, among others, have been working tirelessly on the theoretical physics behind how a black hole operates, attempting to solve the paradoxes that frequently appear when we try to utilize the best of our physics against them. There are many articles and papers on such research and their subsequent findings, so I will not dive into their intricacies for both wishing to preserve simplicity in understanding, and to also not take away from the amazing minds that are working these issues. Many suggest that the singularity is a mathematical curiosity that does not completely represent what physically happens. That the matter inside an event horizon can take on new and exotic forms. It is also worth noting that in General Relativity, anything with mass can collapse to a black hole, but we generally hold to a range of masses as creating a black hole with anything less than is in that mass range is beyond our understanding of how that could happen. But as someone who studies physics, I would be remiss to not mention that as of now, we are at an interesting cross section of ideas that deal very intimately with what is actually going on within these specters of gravity.
All of this brings me back to a point that needs to be made. A fact that needs to be recognized. As I described the deaths of these massive stars, I touched on something that occurs. As the star is being ripped apart from its own energy and its contents being blown outwards into the universe, something called nucleosynthesis is occurring. This is the fusion of elements to create new elements. From hydrogen up to uranium. These new elements are being blasted outwards an incredible speeds, and thus all of these elements will eventually find their way into molecular clouds. Molecular clouds (Dark Nebulae) are the stellar nurseries of the cosmos. This is where stars begin. And from star formation, we get planetary formation.
As a star forms, a cloud of debris that is made up of the molecular cloud that birthed said star begins to spin around it. This cloud, as we now know, contains all those elements that were cooked up in our supernovae. The carbon, the oxygen, the silicates, the silver, the gold; all present in this cloud. This accretion disk about this new star is where planets form, coalescing out of this enriched environment. Balls of rock and ice colliding, accreting, being torn apart and then reformed as gravity works its diligent hands to mold these new worlds into islands of possibility. These planets are formed from those very same elements that were synthesized in that cataclysmic eruption. These new worlds contain the blueprints for life as we know it.
Upon one of these worlds, a certain mixture of hydrogen and oxygen occurs. Within this mixture, certain carbon atoms form up to create replicating chains that follow a simple pattern. Perhaps after billions of years, these same elements that were thrust into the universe by that dying star finds itself giving life to something that can look up and appreciate the majesty that is the cosmos. Perhaps that something has the intelligence to realize that the carbon atom within it is the very same carbon atom that was created in a dying star, and that a supernovae occurred that allowed that carbon atom to find its way into the right part of the universe at the right time. The energy that was the last dying breath of a long dead star was the same energy that allowed life to take its first breath and gaze upon the stars. These stellar ghosts are our ancestors. They are gone in form, but yet remain within our chemical memory. They exist within us. We are supernova. We are star dust. We are descended from stellar ghosts…
For almost half a century, scientists have subscribed to the theory that when a star comes to the end of its life-cycle, it will undergo a gravitational collapse. At this point, assuming enough mass is present, this collapse will trigger the formation of a black hole. Knowing when and how a black hole will form has long been something astronomers have sought out.
And why not? Being able to witness the formation of black hole would not only be an amazing event, it would also lead to a treasure trove of scientific discoveries. And according to a recent study by a team of researchers from Ohio State University in Columbus, we may have finally done just that.
The research team was led by Christopher Kochanek, a Professor of Astronomy and an Eminent Scholar at Ohio State. Using images taken by the Large Binocular Telescope (LBT) and Hubble Space Telescope (HST), he and his colleagues conducted a series of observations of a red supergiant star named N6946-BH1.
To break the formation process of black holes down, according to our current understanding of the life cycles of stars, a black hole forms after a very high-mass star experiences a supernova. This begins when the star has exhausted its supply of fuel and then undergoes a sudden loss of mass, where the outer shell of the star is shed, leaving behind a remnant neutron star.
This is then followed by electrons reattaching themselves to hydrogen ions that have been cast off, which causes a bright flareup to occur. When the hydrogen fusing stops, the stellar remnant begins to cool and fade; and eventually the rest of the material condenses to form a black hole.
However, in recent years, several astronomers have speculated that in some cases, stars will experience a failed supernova. In this scenario, a very high-mass star ends its life cycle by turning into a black hole without the usual massive burst of energy happening beforehand.
Using information obtained with the LBT, the team noted that N6946-BH1 showed some interesting changes in its luminosity between 2009 and 2015 – when two separates observations were made. In the 2009 images, N6946-BH1 appears as a bright, isolated star. This was consistent with archival data taken by the HST back in 2007.
However, data obtained by the LBT in 2015 showed that the star was no longer apparent in the visible wavelength, which was also confirmed by Hubble data from the same year. LBT data also showed that for several months during 2009, the star experienced a brief but intense flare-up, where it became a million times brighter than our Sun, and then steadily faded away.
They also consulted data from the Palomar Transit Factory (PTF) survey for comparison, as well as observations made by Ron Arbour (a British amateur astronomer and supernova-hunter). In both cases, the observations showed evidence of a flare during a brief period in 2009 followed by a steady fade.
In the end, this information was all consistent with the failed supernovae-black hole model. As Prof. Kochanek, the lead author of the group’s paper – – told Universe Today via email:
“In the failed supernova/black hole formation picture of this event, the transient is driven by the failed supernova. The star we see before the event is a red supergiant — so you have a compact core (size of ~earth) out the hydrogen burning shell, and then a huge, puffy extended envelope of mostly hydrogen that might extend out to the scale of Jupiter’s orbit. This envelope is very weakly bound to the star. When the core of the star collapses, the gravitational mass drops by a few tenths of the mass of the sun because of the energy carried away by neutrinos. This drop in the gravity of the star is enough to send a weak shock wave through the puffy envelope that sends it drifting away. This produces a cool, low-luminosity (compared to a supernova, about a million times the luminosity of the sun) transient that lasts about a year and is powered by the energy of recombination. All the atoms in the puffy envelope were ionized — electrons not bound to atoms — as the ejected envelope expands and cools, the electrons all become bound to the atoms again, which releases the energy to power the transient. What we see in the data is consistent with this picture.”
Naturally, the team considered all available possibilities to explain the sudden “disappearance” of the star. This included the possibility that the star was shrouded in so much dust that its optical/UV light was being absorbed and re-emitted. But as they found, this did not accord with their observations.
“The gist is that no models using dust to hide the star really work, so it would seem that whatever is there now has to be much less luminous then that pre-existing star.” Kochanek explained. “Within the context of the failed supernova model, the residual light is consistent with the late time decay of emission from material accreting onto the newly formed black hole.”
Naturally, further observations will be needed before we can know whether or not this was the case. This would most likely involve IR and X-ray missions, such as the Spitzer Space Telescope and the Chandra X-ray Observatory, or one of he many next-generation space telescopes to be deployed in the coming years.
In addition, Kochanek and his colleagues hope to continue monitoring the possible black hole using the LBT, and by re-visiting the object with the HST in about a year from now. “If it is true, we should continue to see the object fade away with time,” he said.
Needless to say, if true, this discovery would be an unprecedented event in the history of astronomy. And the news has certainly garnered its share of excitement from the scientific community. As Avi Loeb – a professor of astronomy at Harvard University – expressed to Universe Today via email:
“The announcement on the potential discovery of a star that collapsed to make a black hole is very interesting. If true, it will be the first direct view of the delivery room of a black hole. The picture is somewhat messy (like any delivery room), with uncertainties about the properties of the baby that was delivered. The way to confirm that a black hole was born is to detect X-rays.
“We know that stellar-mass black holes exist, most recently thanks to the discovery of gravitational waves from their coalescence by the LIGO team. Almost eighty years ago Robert Oppenheimer and collaborators predicted that massive stars may collapse to black holes. Now we might have the first direct evidence that the process actually happens in nature.
But of course, we must remind ourselves that given its distance, what we could be witnessing with N6946-BH1 happened 20 million years ago. So from the perspective of this potential black hole, its formation is old news. But to us, it could be one of the most groundbreaking observations in the history of astronomy.
Much like space and time, significance is relative to the observer!
Outer space touches us in so many ways. Meteors from ancient asteroid collisions and dust spalled from comets slam into our atmosphere every day, most of it unseen. Cosmic rays ionize the atoms in our upper air, while the solar wind finds crafty ways to invade the planetary magnetosphere and set the sky afire with aurora. We can’t even walk outside on a sunny summer day without concern for the Sun’s ultraviolet light burning out skin.
So perhaps you wouldn’t be surprised that over the course of Earth’s history, our planet has also been affected by one of the most cataclysmic events the universe has to offer: the explosion of a supergiant star in a Type II supernova event. After the collapse of the star’s core, the outgoing shock wave blows the star to pieces, both releasing and creating a host of elements. One of those is iron-60. While most of the iron in the universe is iron-56, a stable atom made up of 26 protons and 30 neutrons, iron-60 has four additional neutrons that make it an unstable radioactive isotope.
If a supernova occurs sufficiently close to our Solar System, it’s possible for some of the ejecta to make its way all the way to Earth. How might we detect these stellar shards? One way would be to look for traces of unique isotopes that could only have been produced by the explosion. A team of German scientists did just that. In a paper published earlier this month in the Proceedings of the National Academy of Sciences, they report the detection of iron-60 in biologically produced nanocrystals of magnetite in two sediment cores drilled from the Pacific Ocean.
Magnetite is an iron-rich mineral naturally attracted to a magnet just as a compass needle responds to Earth’s magnetic field. Magnetotactic bacteria, a group of bacteria that orient themselves along Earth’s magnetic field lines, contain specialized structures called magnetosomes, where they store tiny magnetic crystals – primarily as magnetite (or greigite, an iron sulfide) in long chains. It’s thought nature went to all this trouble to help the creatures find water with the optimal oxygen concentration for their survival and reproduction. Even after they’re dead, the bacteria continue to align like microscopic compass needles as they settle to the bottom of the ocean.
After the bacteria die, they decay and dissolve away, but the crystals are sturdy enough to be preserved as chains of magnetofossils that resemble beaded garlands on the family Christmas tree. Using a mass spectrometer, which teases one molecule from another with killer accuracy, the team detected “live” iron-60 atoms in the fossilized chains of magnetite crystals produced by the bacteria. Live meaning still fresh. Since the half-life of iron-60 is only 2.6 million years, any primordial iron-60 that seeded the Earth in its formation has long since disappeared. If you go digging around now and find iron-60, you’re likely looking at at a supernova as the smoking gun.
Co-authors Peter Ludwig and Shawn Bishop, along with the team, found that the supernova material arrived at Earth about 2.7 million years ago near the boundary of the Pleistocene and Pliocene epochs and rained down for all of 800,000 years before coming to an end around 1.7 million years ago. If ever a hard rain fell.
The peak concentration occurred about 2.2 million years ago, the same time our early human ancestors, Homo habilis, were chipping tools from stone. Did they witness the appearance of a spectacularly bright “new star” in the night sky? Assuming the supernova wasn’t obscured by cosmic dust, the sight must have brought our bipedal relations to their knees.
There’s even a possibility that an increase in cosmic rays from the event affected our atmosphere and climate and possibly led to a minor die-off at the time. Africa’s climate dried out and repeated cycles of glaciation became common as global temperatures continued their cooling trend from the Pliocene into the Pleistocene.
Cosmic rays, which are extremely fast-moving, high-energy protons and atomic nucleic, rip up molecules in the atmosphere and can even penetrate down to the surface during a nearby supernova explosion, within about 50 light years of the Sun. The high dose of radiation would put life at risk, while at the same time providing a surge in the number of mutations, one of the creative forces driving the diversity of life over the history of our planet. Life — always a story of taking the good with the bad.
The discovery of iron-60 further cements our connection to the universe at large. Indeed, bacteria munching on supernova ash adds a literal twist to the late Carl Sagan’s famous words: “The cosmos is within us. We are made of star-stuff.” Big or small, we owe our lives to the synthesis of elements within the bellies of stars.
Thirty years ago, a star that went by the designation of SN 1987A collapsed spectacularly, creating a supernova that was visible from Earth. This was the largest supernova to be visible to the naked eye since Kepler’s Supernova in 1604. Today, this supernova remnant (which is located approximately 168,000 light-years away) is being used by astronomers in the Australian Outback to help refine our understanding of stellar explosions.
Led by a student from the University of Sydney, this international research team is observing the remnant at the lowest-ever radio frequencies. Previously, astronomers knew much about the star’s immediate past by studying the effect the star’s collapse had on the neighboring Large Magellanic Cloud. But by detecting the star’s faintest hisses of radio static, the team was able to observe a great deal more of its history.
The team’s findings, which were published yesterday in the journal Monthly Notices of the Royal Astronomical Society, detail how the astronomers were able to look millions of years farther back in time. Prior to this, astronomers could only observe a tiny fraction of the star’s life cycle before it exploded – 20,000 years (or 0.1%) of its multi-million year life span.
As such, they were only able to see the star when it was in its final, blue supergiant phase. But with the help of the Murchison Widefield Array (MWA) – a low-frequency radio telescope located at the Murchison Radio-astronomy Observatory (MRO) in the West Australian desert – the radio astronomers were able to see all the way back to when the star was still in its long-lasting red supergiant phase.
In so doing, they were able to observe some interesting things about how this star behaved leading up to the final phase in its life. For instance, they found that SN 1987A lost its matter at a slower rate during its red supergiant phase than was previously assumed. They also observed that it generated slower than expected winds during this period, which pushed into its surrounding environment.
Joseph Callingham, a PhD candidate with the University of Sydney and the ARC Center of Excellence for All-Sky Astrophysics (CAASTRO), is the leader of this research effort. As he stated in a recent RAS press release:
“Just like excavating and studying ancient ruins that teach us about the life of a past civilization, my colleagues and I have used low-frequency radio observations as a window into the star’s life. Our new data improves our knowledge of the composition of space in the region of SN 1987A; we can now go back to our simulations and tweak them, to better reconstruct the physics of supernova explosions.”
The key to finding this new information was the quiet and (some would say) temperamental conditions that the MWA requires to do its thing. Like all radio telescopes, the MWA is located in a remote area to avoid interference from local radio sources, not to mention a dry and elevated area to avoid interference from atmospheric water vapor.
As Professor Gaensler – the former CAASTRO Director and the supervisor of the project – explained, such methods allow for impressive new views of the Universe. “Nobody knew what was happening at low radio frequencies,” he said, “because the signals from our own earthbound FM radio drown out the faint signals from space. Now, by studying the strength of the radio signal, astronomers for the first time can calculate how dense the surrounding gas is, and thus understand the environment of the star before it died.”
These findings will likely help astronomers to understand the life cycle of stars better, which will come in handy when trying to determine what our Sun has in store for us down the road. Further applications will include the hunt for extra-terrestrial life, with astronomers being able to make more accurate estimates on how stellar evolution could effect the odds of life forming in different star systems.
In addition to being home to the MWA, the Murchison Radio-astronomy Observatory (MRO) is also the planned site of the future Square Kilometer Array (SKA). The MWA is one of three telescopes – along with the South African MeerKAT array and the Australian SKA Pathfinder (ASKAP) array – that are designated as a Precursor for the SKA.
We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.
Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an unstable isotope specifically created during supernovas.
The teams found that the ages of the iron-60 concentrations (the determination of which was recently perfected by Wallner) centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.
“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)
The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.
While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?
“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”
Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.
“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”
You can find the teams’ papers in Nature here and here.
UPDATE 4/14/16: The presence of iron-60 from the same time periods as those mentioned above has also been found on the Moon by research teams in Germany and the U.S. Read more here.