The Rosy Remains of a Star’s Final Days

Hubble image of SNR 0519, the remains of a Type Ia supernova in the Large Magellanic Cloud

Stars like our Sun can last for a very long time (in human terms, anyway!) somewhere in the neighborhood of 10-12 billion years. Already over 4.6 billion years old, the Sun is entering middle age and will keep on happily fusing hydrogen into helium for quite some time. But eventually even stars come to the end of their lives, and their deaths are some of the most powerful — and beautiful — events in the Universe.

The wispy, glowing red structures above are the remains of a white dwarf in the neighboring Large Magellanic Cloud 150,000 light-years away. Supernova remnant SNR 0519 was created about 600 years ago (by our time) when a star like the Sun, in the final stages of its life, gathered enough material from a companion to reach a critical mass and then explode, casting its outer layers far out into space to create the cosmic rose we see today.

As the hydrogen material from the star plows outwards through interstellar space it becomes ionized, glowing bright red.

SNR 0519 is the result of a Type Ia supernova, which are the result of one white dwarf within a binary pair drawing material onto itself from the other until it undergoes a core-collapse and blows apart violently. The binary pair can be two white dwarfs or a white dwarf and another type of star, such as a red giant, but at least one white dwarf is thought to always be the progenitor.

Read more: A New Species of Type Ia Supernova?

A recent search into the heart of the remnant found no surviving post-main sequence stars, suggesting that SNR 0519 was created by two white dwarfs rather than a mismatched pair. Both stars were likely destroyed in the explosion, as any non-degenerate partner would have remained.

Read more here.

This image was chosen as ESA/Hubble’s Picture of the Week. See the full-sized version here.

Credit: ESA/Hubble & NASA. Acknowledgement: Claude Cornen

Cosmic C.S.I.: Searching for the Origins of the Solar System in Two Grains of Sand

Composite Spitzer, Hubble, and Chandra image of supernova remnant Cassiopeia A. A new study shows that a supernova as far away as 50 light years could have devastating effects on life on Earth. (NASA/JPL-Caltech/STScI/CXC/SAO)
Composite Spitzer, Hubble, and Chandra image of supernova remnant Cassiopeia A. A new study shows that a supernova as far away as 50 light years could have devastating effects on life on Earth. (NASA/JPL-Caltech/STScI/CXC/SAO)

“The total number of stars in the Universe is larger than all the grains of sand on all the beaches of the planet Earth,” Carl Sagan famously said in his iconic TV series Cosmos. But when two of those grains are made of a silicon-and-oxygen compound called silica, and they were found hiding deep inside ancient meteorites recovered from Antarctica, they very well may be from a star… possibly even the one whose explosive collapse sparked the formation of the Solar System itself.

Researchers from Washington University in St. Louis with support from the McDonnell Center for the Space Sciences have announced the discovery of two microscopic grains of silica in primitive meteorites originating from two different sources. This discovery is surprising because silica — one of the main components of sand on Earth today — is not one of the minerals thought to have formed within the Sun’s early circumstellar disk of material.

Instead, it’s thought that the two silica grains were created by a single supernova that seeded the early solar system with its cast-off material and helped set into motion the eventual formation of the planets.

According to a news release by Washington University, “it’s a bit like learning the secrets of the family that lived in your house in the 1800s by examining dust particles they left behind in cracks in the floorboards.”

A 3.5-cm chondrite meteorite found in Antarctica in Nov. 1998. Dark meteorites show up well against the icy terrain of Antarctica. (Carnegie Mellon University)
A 3.5-cm chondrite meteorite found in Antarctica in Nov. 1998. Dark meteorites show up well against the icy terrain of Antarctica. (Carnegie Mellon University)

Until the 1960s most scientists believed the early Solar System got so hot that presolar material could not have survived. But in 1987 scientists at the University of Chicago discovered miniscule diamonds in a primitive meteorite (ones that had not been heated and reworked). Since then they’ve found grains of more than ten other minerals in primitive meteorites.

The scientists can tell these grains came from ancient stars because they have highly unusual isotopic signatures, and different stars produce different proportions of isotopes.

But the material from which our Solar System was fashioned was mixed and homogenized before the planets formed. So all of the planets and the Sun have the pretty much the same “solar” isotopic composition.

Meteorites, most of which are pieces of asteroids, have the solar composition as well, but trapped deep within the primitive ones are pure samples of stars, and the isotopic compositions of these presolar grains can provide clues to their complex nuclear and convective processes.

The layered structure of a star about to go supernova; different layers contain different elements (Wikimedia)
The layered structure of a star about to go supernova; different layers contain different elements (Wikimedia)

Some models of stellar evolution predict that silica could condense in the cooler outer atmospheres of stars, but others say silicon would be completely consumed by the formation of magnesium- or iron-rich silicates, leaving none to form silica.

“We didn’t know which model was right and which was not, because the models had so many parameters,” said Pierre Haenecour, a graduate student in Earth and Planetary Sciences at Washington University and the first author on a paper to be published in the May 1 issue of Astrophysical Journal Letters.

Under the guidance of physics professor Dr. Christine Floss, who found some of the first silica grains in a meteorite in 2009, Haenecour investigated slices of a primitive meteorite brought back from Antarctica and located a single grain of silica out of 138 presolar grains. The grain he found was rich in oxygen-18, signifying its source as from a core-collapse supernova.

Finding that along with another oxygen-18-enriched silica grain identified within another meteorite by graduate student Xuchao Zhao, Haenecour and his team set about figuring out how such silica grains could form within the collapsing layers of a dying star. They found they could reproduce the oxygen-18 enrichment of the two grains through the mixing of small amounts of material from a star’s oxygen-rich inner zones and the oxygen-18-rich helium/carbon zone with large amounts of material from the outer hydrogen envelope of the supernova.

In fact, Haenecour said, the mixing that produced the composition of the two grains was so similar, the grains might well have come from the same supernova — possibly the very same one that sparked the collapse of the molecular cloud that formed our Solar System.

“It’s a bit like learning the secrets of the family that lived in your house in the 1800s by examining dust particles they left behind in cracks in the floorboards.”

Ancient meteorites, a few microscopic grains of stellar sand, and a lot of lab work… it’s an example of cosmic forensics at its best!

Source: Washington University in St. Louis

Cosmic Explosion Left Imprint in Fossil Record

Crab Nebula from NASA's Hubble Space Telescope
Ancient iron-loving bacteria may have collected particles from a supernova that exploded about 2.2 million years ago. The Crab Nebula, shown here in this image from NASA's Hubble Space Telescope, is much younger having exploded in 1054. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

Ancient iron-loving bacteria may have scooped up evidence of a nearby supernova explosion 2.2 million years ago, leaving an extraterrestrial iron signature in the fossil record, according to German researchers presenting their findings at a recent meeting of the American Physical Society.

In 2004, German scientists reported finding an isotope of iron in a core sample from the Pacific Ocean that does not form on Earth. The scientists calculated the decay rate of the radioactive isotope iron-60 and determined that the source was from a nearby supernova about 2 million years ago. The blast, they say, was close enough to Earth to seriously damage the ozone layer and may have contributed to a marine extinction at the Pliocene-Pleistocene geologic boundary.

Shawn Bishop, a physicist with the Technical University of Munich in Germany and the primary author of the recent study, wondered if traces of the supernova could be found in the fossil record as well. Some deep sea bacteria soak up iron creating tiny magnetic crystals. These 100-nanometer-wide crystals form long chains inside highly-specialized organelles called magnetosomes which help the bacteria orient themselves to Earth’s magnetic field. Using a core sample from the eastern equatorial Pacific Ocean, Bishop and his team sampled strata spaced about 100,000 years apart. By using a chemical treatment that extracts iron-60 while leaving other iron, the scientists then ran the sample through a mass spectrometer to determine whether iron-60 was present.

And in the layers around 2.2 million years ago, tiny traces of iron-60 appeared.

Although the scientists are not sure which star exploded to rain radioactive iron onto Earth, the scientists refer to a paper from 2002 that points to several supernovae generated in the Scorpius-Centaurus star association. The group of young stars, just 130 parsecs (about 424 light-years) from Earth, has produced 20 supernovae within the past 11 million years.

Source: Nature.com and APS.org “Abstract X8.00002: Search for Supernova 60FE in the Earth’s Fossil Record”, Physical Review Letters, “Evidence for Nearby Supernova Explosions” and 60Fe Anomaly in a Deep-Sea Manganese Crust and Implications for a Nearby Supernova Source.

Hubble Telescope Breaks Record in Finding Most Distant Type Ia Supernova

This is a NASA/ESA Hubble Space Telescope view looking long ago and far away at a supernova that exploded over 10 billion years ago — the most distant Type Ia supernova ever detected. The supernova’s light is just arriving at Earth, having travelled more than 10 billion light-years (redshift 1.914) across space. Credit: NASA, ESA, A. Riess (STScI and JHU), and D. Jones and S. Rodney (JHU).

Astronomers just keep honing their skills and refining their techniques to get the most out of their telescopes. Scientists using the Hubble Space Telescope have now broken the record for the most distant Type Ia supernova ever imaged. This supernova is over 10 billion light-years away, with a redshift of 1.914. When this star exploded 10 billion years ago, the Universe was in its early formative years and stars were being born at a rapid rate.

“This new distance record holder opens a window into the early Universe, offering important new insights into how these supernovae form,” said astronomer David O. Jones of The Johns Hopkins University in Baltimore, Md., lead author on the science paper detailing the discovery. “At that epoch, we can test theories about how reliable these detonations are for understanding the evolution of the Universe and its expansion.”

These three frames show the supernova dubbed SN UDS10Wil, or SN Wilson, the most distant Type Ia supernova ever detected. The leftmost frame in this image shows just the supernova’s host galaxy, before the violent explosion. The middle frame shows the galaxy after the supernova had gone off, and the third frame indicates the brightness of the supernova alone. Credit: NASA, ESA, A. Riess (STScI and JHU), and D. Jones and S. Rodney (JHU)
These three frames show the supernova dubbed SN UDS10Wil, or SN Wilson, the most distant Type Ia supernova ever detected. The leftmost frame in this image shows just the supernova’s host galaxy, before the violent explosion. The middle frame shows the galaxy after the supernova had gone off, and the third frame indicates the brightness of the supernova alone. Credit: NASA, ESA, A. Riess (STScI and JHU), and D. Jones and S. Rodney (JHU)

Designated as SN UDS10Wil (and nicknamed SN Wilson after American President Woodrow Wilson (president from 1913-1921), the distant supernova was part of a three-year Hubble program to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Since 2010, the CANDELS+CLASH Supernova Project has uncovered more than 100 supernovae of all types that exploded from 2.4 to over 10 billion years ago.

The previous record holder for Type Ia was announced earlier this year, a supernova that exploded around 9 billion years ago and has a redshift of 1.7. Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time.

The most distant supernovae ever are a pair of super-luminous supernovae, at redshifts of 2.05 and 3.90, announced in November 2012. Read about that discovery here.

Astronomers took advantage of the sharpness and versatility of Hubble’s Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy. These bright beacons are prized by astronomers because they can be used as a yardstick for measuring cosmic distances, thereby yielding clues to the nature of dark energy, the mysterious force accelerating the rate of expansion of the Universe.

Additionally, finding remote supernovae provides a powerful method to measure the universe’s accelerating expansion.

“The Type Ia supernovae give us the most precise yardstick ever built, but we’re not quite sure if it always measures exactly a yard,” said team member Steve Rodney of Johns Hopkins University. “The more we understand these supernovae, the more precise our cosmic yardstick will become.”

Read the team’s paper: The Discovery of the Most Distant Known Type Ia Supernova at Redshift 1.914

Sources: NASA, ESA

First-Ever High Resolution Radio Images of Supernova 1987A

An overlay of radio emission (contours) and a Hubble space telescope image of Supernova 1987A. Credit: ICRAR (radio contours) and Hubble (image.)

On February 23, 1987, the brightest extragalactic supernova in history was seen from Earth. Now 26 years later, astronomers have taken the highest resolution radio images ever of the expanding supernova remnant at extremely precise millimeter wavelengths. Using the Australia Telescope Compact Array radio telescope in New South Wales, Australia, Supernova 1987A has been now observed in unprecedented detail. The new data provide some unique imagery that takes a look at the different regions of the supernova remnant.

“Not only have we been able to analyze the morphology of Supernova 1987A through our high resolution imaging, we have compared it to X-ray and optical data in order to model its likely history,” said Bryan Gaensler, Director of CAASTRO (Centre for All-sky Astrophysics) at the University of Sydney.

Radio image at 7 mm. Credit: ICRAR Radio image of the remnant of SN 1987A produced from observations performed with the Australia Telescope Compact Array (ATCA).
Radio image at 7 mm. Credit: ICRAR
Radio image of the remnant of SN 1987A produced from observations performed with the Australia Telescope Compact Array (ATCA).

SN 1987A has been on one of the most-studied astronomical objects, as its “close” proximity in the Large Magellanic Cloud allows it to be a focus for researchers around the world. Astronomers says it has provided a wealth of information about one of the Universe’s most extreme events.

“Imaging distant astronomical objects like this at wavelengths less than 1 centimetre demands the most stable atmospheric conditions,” said lead author, Giovanna Zanardo of ICRAR, the International Center for Radio Astronomy Research. “For this telescope these are usually only possible during cooler winter conditions but even then, the humidity and low elevation of the site makes things very challenging,”

Unlike optical telescopes, a radio telescope can operate in the daytime and can peer through gas and dust allowing astronomers to see the inner workings of objects like supernova remnants, radio galaxies and black holes.

“Supernova remnants are like natural particle accelerators, the radio emission we observe comes from electrons spiraling along the magnetic field lines and emitting photons every time they turn. The higher the resolution of the images the more we can learn about the structure of this object,” said Professor Lister Staveley-Smith, Deputy Director of ICRAR and CAASTRO.

An RGB overlay of the supernova remnant. Credit: ICRAR A Red/Green/Blue overlay of optical, X-Ray and radio observations made by 3 different telescopes. In red are the 7-mm (44GHz) observations made with the Australian Compact Array in New South Wales, in green are the optical observations made by the Hubble Space Telescope, and in blue is an X-ray view of the remnant, observed by Nasa's space based Chandra X-ray Observatory.
An RGB overlay of the supernova remnant. Credit: ICRAR
A Red/Green/Blue overlay of optical, X-Ray and radio observations made by 3 different telescopes. In red are the 7-mm (44GHz) observations made with the Australian Compact Array in New South Wales, in green are the optical observations made by the Hubble Space Telescope, and in blue is an X-ray view of the remnant, observed by Nasa’s space based Chandra X-ray Observatory.

Scientists study the evolution of supernovae into supernova remnants to gain an insight into the dynamics of these massive explosions and the interaction of the blast wave with the surrounding medium.

The team suspects a compact source or pulsar wind nebula to be sitting in the centre of the radio emission, implying that the supernova explosion did not make the star collapse into a black hole. They will now attempt to observe further into the core and see what’s there.

Their paper was published in the Astrophysical Journal.

Source: ICRAR

New Kind of “Runt” Supernovae Could be Lurking Unseen

This artist's conception shows the suspected progenitor of a new kind of supernova called Type Iax. Material from a hot, blue helium star at right is funneling toward a carbon/oxygen white dwarf star at left, which is embedded in an accretion disk. In many cases the white dwarf survives the subsequent explosion. Credit: Christine Pulliam (CfA)

Imagine this “Death from the Skies” scenario; a tiny supernova lurks unseen near our Sun. Astronomers from the Harvard-Smithsonian Center for Astrophysics (CfA) announced the discovery of just such an object today and while it is not nearby, this new kind of supernova is so faint it has been hiding in the shadows.

Until now, supernovae have come in two main versions. In one scenario, a huge star, 10 to 100 times more massive as our Sun, collapses causing a colossal stellar explosion. Another scenario, known as Type Ia supernovae, occurs when material from a parent star streams onto the surface of a white dwarf. Over time, so much material falls onto the white dwarf that it raises the core temperature igniting carbon and causing a runaway fusion reaction. This event completely disrupts the white dwarf and results in a colossal stellar explosion.

Now astronomers have found a third type that is fainter and less energetic than a Type Ia. Called a Type Iax supernova, it is “essentially a mini supernova,” says lead author of the study Ryan Foley, Clay Fellow at the Harvard-Smithsonian Center for Astrophysics (CfA). “It’s the runt of the supernova litter.”

Being only about one-hundredth as bright as their supernova siblings, Foley calculates that Type Iax supernovae are about as third as common as Type Ia supernovae. The researchers also did not find them in elliptical galaxies, filled with older stars, suggesting that Type Iax supernovae come from young star systems.

So far, Foley and his team identified 25 examples of this new type of supernova. Based on observations, the team found that the new Type Iax supernovae come from binary star systems containing a white dwarf and a companion star that has burned all of its hydrogen, leaving an outer layer that is helium rich.

In a press release, Foley says they are not sure what triggers the Type Iax supernova. One explanation involves the ignition of the outer helium layer from the companion star. The resulting shockwave slams into the white dwarf and disrupts it, causing the explosion. Alternately, the white dwarf might ignite first due to the overlying helium shell it has collected from the companion star.

“Either way, it appears that in many cases the white dwarf survives the explosion unlike in a Type Ia supernova where the white dwarf is completely destroyed,” says Foley. “The star will be battered and bruised but it might live to see another day.”

Supernovae explosions release so much energy as heat and light that they outshine entire galaxies for brief periods of time. The extremely hot conditions naturally create new heavier elements, such as gold, lead, nickel, zinc and copper. The explosion enriches the surrounding area leaving material for new stars to form.

“Type Iax supernovas aren’t rare, they’re just faint,” explains Foley. “For more than a thousand years, humans have been observing supernovas. This whole time, this new class has been hiding in the shadows.”

This research has been accepted for publication in The Astrophysical Journal and is available online.

Grand Spiral Galaxy Graced By Faded Supernova

One of the most lovely deep space objects to observe is the grand-design spiral galaxy and there are few so grand as NGC 1637. Located in the constellation of Eridanus and positioned approximately 35 million light years away, this twisted beauty was home to a radical supernova event just 14 years ago. Now astronomers are taking a close look at the resultant damage caused by the stellar explosion and giving us some pretty incredible views of the galaxy as well.

When viewing NGC 1637, it seems as if the galaxy itself is evenly distributed, but take a closer look. In this image you will notice the spiral arm to the top left is much more openly constructed and stretches out a bit further than the more concentrated and stubby spiral arm to its opposite side. You will also notice the more compact arm has the appearance of being cut through its mid-section. In whole, this particular appearance is what astronomers refer to as a “lopsided spiral galaxy”.

Now, let’s talk about what happened to disturb the peace…

In 1999, high atop Mt. Hamilton and near San Jose, California, the Lick Observatory was busy utilizing a telescope which specialized in searching for supernova events. Low and behold, they discovered one… a very bright one located in NGC 1637. Like all astronomical observations, the call went out immediately to other observatories to confirm their find and to gather support data. As with most dramatic events, SN 1999em was quickly and thoroughly researched by telescopes around the world – its magnitude carefully recorded and the resultant fading meticulously accounted for as the years have passed.

Better to burn out than to fade away? There are very few things in our natural world which can match the violent beauty of a supernova event. When a star ends its life in this way, it goes out with a bang, not a whimper. For their cosmic finale, they briefly outshine the combined light of all the stars contained within the host galaxy. Like snowflakes, each supernova is unique and the cataclysmic star within NGC 1637 was eight times more massive than our Sun.

Loading player…

This video sequence starts with a view of the bright constellation of Orion (The Hunter). As we zoom in, we focus on an adjacent region of the constellation of Eridanus (The River) and a faint glow appears. This is the spiral galaxy NGC 1637, which appears in all its glory in the final view from ESO’s Very Large Telescope. In 1999 scientists discovered a Type II supernova in this galaxy and followed its slow fading over the following years. Credit: ESO/Nick Risinger

Go ahead. Take another look. During the confirmation observing runs, astronomers also imaged SN 1999em with the VLT and this data was combined with the Lick Observatory information to give us the spectacular view above. Caught in the spiral arm are young stars singing the blues amidst ethereal gas clouds and veiling dust lanes. NGC 1637 isn’t alone, either… You’ll see line of sight stars and even more galaxies in the background.

No rust here…

Original Story Source: ESO News Release.

Bright New Supernova Shines in Southern Skies

New supernova 2013aa, discovered by Stu Parker on February 13, 2013, is southwest of the spiral galaxy NGC 5643 in the southern constellation Lupus. This photo was taken three days later. Credit: Joseph Brimacombe

I live in the frozen north by choice, but occasionally I yearn for warmer places like Tucson and Key West. These feelings usually start in late February, when after nearly four months of winter, the season feels endless. Today I wish I could head down south for another reason – to see a very bright supernova in a galaxy in Lupus.

Stu Parker. Credit: BOSS
Stu Parker. Credit: BOSS

SN 2013aa popped off in the barred spiral galaxy NGC 5643 in the constellation Lupus the Wolf 34 million years ago, but no one knew its light was wiggling its way across the cosmos to Earth until New Zealand amateur astronomer Stu Parker nailed it during one of his regular supernovae hunts. Parker recorded it on Feb. 13, 2013. Since it was so far from the galaxy, he thought at first it was a hot pixel (electronic artifact) or an asteroid. Another look at the galaxy 5 minutes later confirmed it was really there.

Good thing. It turned out upon confirmation to be the brightest supernova he and his band of supernova hunters had ever discovered.

Stu is a member of a 6-man amateur supernova search team from Australia and New Zealand called BOSS (Backyard Observatory Supernova Search). They’ve been working together since 2008 with the goal of searching for and reporting supernovae in the southern sky. When a member finds a candidate, they contact profession astronomers who follow up using large telescopes. To date the group has found 56 supernovae with Stu discovering or co-discovering 45 of them!

Map showing the sky looking south around 5 a.m. local time from Tuscon, Arizona. The new supernova in galaxy NGC 5643 is low in the southern sky before dawn for observers in the southern U.S. and points south. Created with Stellarium
Map showing the sky looking south around 5 a.m. local time from Tuscon, Arizona. The new supernova in galaxy NGC 5643 is low in the southern sky before dawn for observers in the southern U.S. and points south. Created with Stellarium

From the northern U.S., much of Lupus and especially the supernova never make it above the horizon, but from about 35 degrees north and points south, SN 2013aa is fair game. The “new star” lies southwest of the core of galaxy NGC 5643, which shines at magnitude 10, bright enough to see in a 6-inch telescope from a dark sky. The supernovae is still climbing in brightness and today gleams at about 11.6 magnitude – no problem in that 6-inch if you’re equipped with a good map or photo to help get you there.

In this annotated version of the Joseph Brimacombe's photo, I've suggested a straightforward "star hop" from the galaxy's nucleus to the supernova.
In this annotated version of the Joseph Brimacombe’s photo, I’ve suggested a straightforward “star hop” from the galaxy’s core to 2013aa using brighter foreground stars.

Based on the study of 2013aa’s light, astronomers have classified it as Type Ia. Before the explosion, the star was a white dwarf, a superdense, planet-sized object with the mass of the sun. Tiny but mighty, the white dwarf’s powerful gravity pulled material from a nearby companion star down to its surface. When a dwarf puts on enough pounds to exceed 1.4 times the sun’s mass, the extra material increases the pressure and temperature of the core and the star burns explosively.

In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion.
In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to runaway burning and a catastrophic explosion that obliterates the star.

The energy released increases the star’s brightness to 5 billion times that of the sun. Matter from the blast streaks into space at speeds of 3,000-12,000 miles per second. Yes, this is a BIG deal and one of the most energetic events the universe has to offer. No wonder amateurs like myself can’t get enough of them.

NGC 5643 is best placed in the southern sky around 5 a.m. local time. From Lexington, KY. (latitude 38 degrees N.) it’s only 8 degrees high or slightly less than one fist held at arm’s length. Tuscon’s better at 14 degrees and Key West (latitude 25 N) best at 21. Farther south, your views will continue to improve. And the pleasant temperatures can’t hurt either.

You can start with the bright pair of Saturn and Spica midway up in the southern sky. Look about two outstretched fists below them to find Theta Centauri and from there “three fingers” to the lower left (southeast) to Eta Centauri. The galaxy is about 1 1/2 degrees southwest of Eta. The supernova will look like an 11 1/2 magnitude star 74″ west and 180″ south of the galaxy’s bright core. Use the annotated photo to help guide you straight to it.

To keep track of the 2013aa’s progress as well as view many more photos, I highly recommend David Bishop’s Latest Supernovae site.

Supernovae Seed Universe With Cosmic Rays

In a wave of media releases, the latest studies performed by NASA’s Fermi Gamma-ray Space Telescope are lighting up the world of particle astrophysics with the news of how supernovae could be the progenitor of cosmic rays. These subatomic particles are mainly protons, cruising along through space at nearly the speed of light. The rest are electrons and atomic nuclei. When they meet up with a magnetic field, their paths change like a bumper car in an amusement park – but there’s nothing amusing about not knowing their origins. Now, four years of hard work done by scientists at the Kavli Institute for Particle Astrophysics and Cosmology at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory has paid off. There is evidence of how cosmic rays are born.

“The energies of these protons are far beyond what the most powerful particle colliders on Earth can produce,” said Stefan Funk, astrophysicist with the Kavli Institute and Stanford University, who led the analysis. “In the last century we’ve learned a lot about cosmic rays as they arrive here. We’ve even had strong suspicions about the source of their acceleration, but we haven’t had unambiguous evidence to back them up until recently.”

Until now, scientists weren’t clear on some particulars – such as what atomic particles could be responsible for the emissions from interstellar gas. To aid their research, they took a very close look at a pair of gamma ray emitting supernova remnants – known as IC 443 and W44. Why the discrepancy? In this case gamma rays share similar energies with cosmic ray protons and electrons. To set them apart, researchers have uncovered the neutral pion, the product of cosmic ray protons impacting normal protons. When this happens, the pion rapidly decays into a set of gamma rays, leaving a signature decline – one which provides proof in the form of protons. Created in a process known as Fermi Acceleration, the protons remain captive in the rapidly moving shock front of the supernova and aren’t affected by magnetic fields. Thanks to this property, the astronomers were able to trace them back directly to their source.

“The discovery is the smoking gun that these two supernova remnants are producing accelerated protons,” said lead researcher Stefan Funk, an astrophysicist with the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University in California. “Now we can work to better understand how they manage this feat and determine if the process is common to all remnants where we see gamma-ray emission.”

Are they little speedsters? You betcha. Every time the particle passes across the shock front, it gains about 1% more speed – eventually enough to break free as cosmic ray. “Astronauts have documented that they actually see flashes of light associated with cosmic rays,” Funk noted. “It’s one of the reasons I admire their bravery – the environment out there is really quite tough.” The next step in this research, Funk added, is to understand the exact details of the acceleration mechanism and also the maximum energies to which supernova remnants can accelerate protons.

However, the studies don’t end there. More new evidence of supernovae remnants acting like particle accelerators emerged during careful observational analysis by the Serbian astronomer Sladjana Nikolic (Max Planck Institute for Astronomy). They took a look at the composition of the light. Nikolic explains: “This is the first time we were able to take a detailed look at the microphysics in and around the shock region. We found evidence for a precursor region directly in front of the shock, which is thought to be a prerequisite of cosmic ray production. Also, the precursor region is being heated in just the way one would expect if there were protons carrying away energy from the region directly behind the shock.”

Nikolic and her colleagues employed the spectrograph VIMOS at the European Southern Observatory’s Very Large Telescope in Chile to observe and document a short section of the shock front of the supernova SN 1006. This new technique is known as integral field spectroscopy – a first-time process which allows astronomers to thoroughly examine the composition of the light from the supernova remnant. Kevin Heng of the University of Bern, one of the supervisors of Nikolic’s doctoral work, says: “We are particularly proud of the fact that we managed to use integral field spectroscopy in a rather unorthodox way, since it is usually used for the study of high-redshift galaxies. In doing so, we achieved a level of precision that far exceeds all previous studies.”

It really is an intriguing time to be taking closer looks at supernovae remnants – especially in respect to cosmic rays. As Nikolic explains: “This was a pilot project. The emissions we observed from the supernova remnant are very, very faint compared to the usual target objects for this type of instrument. Now that we know what’s possible, it’s really exciting to think about follow-up projects.” Glenn van de Ven of the Max Planck Institute for Astronomy, Nikolic’s other co-supervisor and an expert in integral field spectroscopy, adds: “This kind of novel observational approach could well be the key to solving the puzzle of how cosmic rays are produced in supernova remnants.”

Kavli Institute Director Roger Blandford, who participated in the Fermi analysis, said, “It’s fitting that such a clear demonstration showing supernova remnants accelerate cosmic rays came as we celebrated the 100th anniversary of their discovery. It brings home how quickly our capabilities for discovery are advancing.”

Original Story Sources and Further Reading: Novel approach in hunt for cosmic particle accelerator, NASA’s Fermi Proves Supernova Remnants Produce Cosmic Rays, and Proof: Cosmic Rays Come from Exploding Stars.

One of the Largest Astronomical Images Ever Made

The northern portion of the Cygnus Loop, as seen in an enormous new panorama from the National Optical Astronomy Observatory (NOAO) and WIYN partners

Looking for a stunning new desktop image to wrap up the year? Try this: it’s an amazing panorama of the Cygnus Loop, a supernova remnant located 1,500 light-years away in the constellation (you guessed it) Cygnus. The full-size image, acquired with the wide-field Mosaic camera on the WIYN 0.9-meter telescope at Kitt Peak, Arizona, is a staggering 600 million pixels in size — over 1.68 gigabytes — making it one of the largest astronomical images ever made!

See the full image (and links to download larger versions) below:

2000-pixel-wide version of the full Cygnus Loop panorama

The entire structure of the Cygnus Loop, the gaseous remains of a supernova that occurred 5,000 – 10,000 years ago, covers an area nearly 45 times the size of the full Moon in the sky.

In the image, hydrogen alpha, sulphur, and oxygen ions correspond to the red, green, and blue color values, respectively.

“Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”

–  Dr. Richard Cool, MMT Observatory

From the NOAO press release:

Astronomers estimate the supernova explosion that produced the nebula occurred between 5,000 to 10,000 years ago. First noted in 1784 by William Herschel, it is so large that its many parts have been catalogued as separate objects, including NGC 6992, NGC 6995 and IC 1340 along the eastern (left) side of the image, NGC 6974 and NGC 6979 near the top-center, and the Veil Nebula (NGC 6960) and Pickering’s Triangle along the western (right) edge. The bright star near the western edge of the image, known as 52 Cygnus, is not associated with the supernova.

“Often, astronomical research reduces images to dry tables of numerical information that we analyze in order to more deeply understand our universe,” said Dr. Richard Cool, astronomer at the MMT Observatory in Arizona, who originally obtained the images in 2003 while still a graduate student. “Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”

This incredible image demonstrates that even relatively small telescopes are capable of producing cutting-edge research, when equipped with modern cameras.

Got bandwidth to spare? Download the full-size 1686.5 MB TIFF image here, or find other versions on the NOAO page here.

Image Credit: T.A. Rector (University of Alaska Anchorage), Richard Cool (University of Arizona) and WIYN/NOAO/AURA/NSF. Inset image: original dome of the Kitt Peak 0.9-meter telescope. (NOAO/AURA/NSF)