This 3D Simulation of a Supernova Needed 5 Million Hours of Supercomputing

The three-dimensional simulation of the exotic supernova reveals the turbulent structures generated during the material ejection in the explosion. Through three-dimensional simulations, scientists gain deeper insights into the physical processes of peculiar supernova explosions and can explain the observed phenomena and characteristics of these extraordinary supernovae. Credit: Ke-Jung Chen/ASIAA.

When the largest stars in the Universe run out of fuel, they detonate as supernovae, collapsing inward and leaving behind a neutron star, black hole, or just wholly vaporizing. What’s happening inside the unfolding explosion is difficult to understand, and especially so for so-called exotic supernovae, the rarest and brightest types of stellar explosions.

To better understand the dynamics of these rare supernovae, astronomers are using powerful supercomputers to simulate the process. After years of real-world research and millions of hours of supercomputer computing time, researchers have completed the first ever high-definition, 3D hydrodynamic simulation of exotic supernovae.

Continue reading “This 3D Simulation of a Supernova Needed 5 Million Hours of Supercomputing”

A New Observatory Will Spot Core-Collapse Supernovae Before They Explode

Jiangmen Underground Neutrino Observatory (JUNO) under construction. Credit: CGTN

The thing about a supernova is that you never know when it might occur. Supernovae are triggered either by a collision with another star or when the interior of a massive star becomes depleted of nuclear fuel and begins a rapid collapse. Neither of these show any major optical changes before the explosion, so we are left to scan the sky in the hopes of catching one in its early stages. But that could soon change.

Continue reading “A New Observatory Will Spot Core-Collapse Supernovae Before They Explode”

The Closest Supernova Seen in the Modern Era, Examined by JWST

SN 1987a as seen by JWST's Near-Infrared Camera. Credit: NASA, ESA, CSA, M. Matsuura, R. Arendt, C. Fransson

In November of 1572, Tycho Brahe noticed a new star in the constellation Cassiopeia. It was the first supernova to be observed in detail by Western astronomers and became known as Tycho’s Supernova. Earlier supernovae had been observed by Chinese and Japanese astronomers, but Tycho’s observations demonstrated to the Catholic world that the stars were not constant and unchanging as Aristotle presumed. Just three decades later, in 1604, Johannes Kepler watched a supernova in the constellation Ophiuchus brighten and fade. There have been no observed supernovae in the Milky Way since then.

Continue reading “The Closest Supernova Seen in the Modern Era, Examined by JWST”

Did this Supernova Explode Twice?

Artist view of a binary system before a type Ia supernova. Credit: Adam Makarenko/W. M. Keck Observatory

All supernovae are exploding stars. But the nature of a supernova explosion varies quite a bit. One type, named Type 1a supernovae, involves a binary star where one of the pair is a white dwarf. And while supernovae of all types usually involve a single explosion, astronomers have found something that breaks that mould: A Type 1a supernova that may have detonated twice.

Continue reading “Did this Supernova Explode Twice?”

Supernovae are the Source of Dust in Early Galaxies

Images of SN 2004et and SN 2017eaw. Credit: NASA, ESA, CSA, Ori Fox (STScI), Melissa Shahbandeh (STScI), Alyssa Pagan (STScI)

Every now and then there’s an interesting discovery that helps us fill in a gap in our understanding of the universe. In the case of this latest discovery, we now have confirmation of a process we’ve long assumed, but have had little direct evidence for. It all has to do with cosmic dust.

Continue reading “Supernovae are the Source of Dust in Early Galaxies”

Astronomers See the Same Supernova Four Times Thanks to a Gravitational Lens

A gravitational lens caused by a galaxy in the foreground leading to an "Einstein Cross." Credit: NASA/ESA/STScI
A gravitational lens caused by a galaxy in the foreground leading to an "Einstein Cross." Credit: NASA/ESA/STScI

Measuring cosmic distances is challenging, and astronomers rely on multiple methods and tools to do it – collectively referred to as the Cosmic Distance Ladder. One particularly crucial tool is Type Ia supernovae, which occur in binary systems where one star (a white dwarf) consumes matter from a companion (often a red giant) until it reaches the Chandrasekhar Limit and collapses under its own mass. As these stars blow off their outer layers in a massive explosion, they temporarily outshine everything in the background.

In a recent study, an international team of researchers led by Ariel Goobar of the Oskar Klein Centre at Stockholm University discovered an unusual Type Ia supernova, SN Zwicky (SN 2022qmx). In an unusual twist, the team observed an “Einstein Cross,” an unusual phenomenon predicted by Einstein’s Theory of General Relativity where the presence of a gravitational lens in the foreground amplifies light from a distant object. This was a major accomplishment for the team since it involved observing two very rare astronomical events that happened to coincide.

Continue reading “Astronomers See the Same Supernova Four Times Thanks to a Gravitational Lens”

Gemini North Returns to Service Just in Time to See a New Supernova

A new supernova, SN 2023ixf, seen in the lower left of this image from the newly refurbished Gemini North telescope, is the closest supernova seen in the past five years. The supernova, discovered on May 19, 2023, is located along one of the spiral arms of the Pinwheel Galaxy. Credit: International Gemini Observatory/NOIRLab/NSF/AURA

The 8-meter Gemini North telescope has been brought back online after seven months of repairs and refurbishment of its primary mirror. The timing couldn’t have been better, as the telescope was able to capture the brand-new supernova in the famous Pinwheel Galaxy. The bright supernova was first discovered on May 19th, and telescopes worldwide have been revealing its secrets.

Continue reading “Gemini North Returns to Service Just in Time to See a New Supernova”

Betelgeuse is Almost 50% Brighter Than Normal. What’s Going On?

The red supergiant Betelgeuse. Its activity can be confounding, and new research suggests that the star could've consumed a smaller companion star. Image credit: Hubble Space Telescope. Image Credit: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella

Whenever something happens with Betelgeuse, speculations about it exploding as a supernova proliferate. It would be cool if it did. We’re far enough away to suffer no consequences, so it’s fun to imagine the sky lighting up like that for months.

Now the red supergiant star has brightened by almost 50%, and that has the speculation ramping up again.

Continue reading “Betelgeuse is Almost 50% Brighter Than Normal. What’s Going On?”

Not All Type 1a Supernovae are Created Equally

Artist view of a binary system before a type Ia supernova. Credit: Adam Makarenko/W. M. Keck Observatory

Supernovae are brilliant explosions that can, for a time, outshine an entire galaxy. They come in two broad types: Type I and Type II. Type II supernovae are what are known as core-collapse supernovae. They occur when a massive dying star fuses ever heavier elements in its core until it runs out of energy options and its core collapses under its own weight, which triggers the explosion. Type I supernovae occur when…well, it’s complicated. But we’re learning more thanks to a new observation by radio astronomers.

Continue reading “Not All Type 1a Supernovae are Created Equally”

The Largest Explosion Ever Seen in the Universe

Artist impression of a black hole accretion. Credit: John A. Paice.

Throughout recorded history, humans have looked up at the night sky and witnessed the major astronomical events known as a “supernova.” The name, still used by astronomers, referred to the belief that these bursts of light in the “firmament” signaled the birth of a “new star.” With the birth of telescopes and modern astronomy, we have since learned that supernovae are what occur at the end of a star’s lifecycle. At this point, when a star has exhausted its hydrogen and helium fuel, it experiences gravitational collapse at its center.

This leads to a tremendous explosion that can be seen billions of light-years distant, releasing tremendous amounts of energy and blowing the star’s outer layers off. Thanks to an international team of astronomers led by the University of Southhampton, the most powerful cosmic explosion has been confirmed! The stellar explosion, AT2021lwx, took place about 8 billion light-years away in the constellation Vulpecula and was over ten times brighter than any supernova ever observed and 100 times brighter than all the stars in the Milky Way combined!

Continue reading “The Largest Explosion Ever Seen in the Universe”