NASA Announces 14 New “Tipping Point” Technologies for its Lunar Exploration

Artist's impression of surface operations on the Moon. Credit: NASA

In four years, NASA plans to return astronauts to the Moon as part of Project Artemis. To ensure the success of this endeavor, as well as the creation of a program of sustainable lunar exploration by the end of the decade, NASA has partnered with multiple entities in the commercial space sector. Recently, they announced that contracts will be awarded to 14 additional companies to develop a range of proposed technologies.

These proposals are part of NASA’s fifth competitive Tipping Point solicitation, one of many private-public partnership programs overseen by NASA’s Space Technology Mission Directorate (STMD). For this latest solicitation, Tipping Point is awarding contracts with a combined value of over $370 million for technology demonstrations that will facilitate future lunar missions and commercial space capabilities.

Continue reading “NASA Announces 14 New “Tipping Point” Technologies for its Lunar Exploration”

Chitin Could be the Perfect Building Material on Mars

An artist's illustration of a Mars settlement. Image: Bryan Versteeg/MarsOne
An artist's illustration of an early Mars settlement. Credit: Bryan Versteeg/MarsOne

It’s hard to deny that we’re heading for a future with a human presence on Mars. But to develop sustained presence, there are an enormous number of technical problems to be worked out. One of those problems concerns manufacturing and building.

We can’t send everything people will need to Mars. We’ll need some way to build structures, and tools and other things.

Continue reading “Chitin Could be the Perfect Building Material on Mars”

China’s New Reusable Spaceplane Lands After 2 Days in Space

Credit: Xinhua

On Friday, Sept. 4th, China launched a new and mysterious spacecraft from the Jiuquan Satellite Launch Center. The nature (and even appearance) of the spacecraft remains unknown, but according to statements made by Chinese authorities, it’s a reusable spaceplane. This vehicle is essentially China’s answer to the USAF/USSF X-37B Orbital Test Vehicle (OTV), which made its sixth launch to space (OTV-6) back in late-May.

Continue reading “China’s New Reusable Spaceplane Lands After 2 Days in Space”

Earth Observation Satellites Could be Flown Much Lower than Current Altitudes and Do Better Science

A satellite image of Tropical Depression Cristobal over the US. Image Credit: NASA Earth Observatory.

Satellite engineers know what every photographer knows: get close to your subject to get better pictures. Not just visible light pictures, but all across the spectrum. The lower altitude also improves things like radar, lidar, communications, and gps.

But when your subject is Earth, and Earth is surrounded by an atmosphere, getting closer is a delicate dance with physics. The closer a satellite gets to Earth, the more atmospheric drag it encounters. And that can mean an unscheduled plummet to destruction for Earth-Observing (EO) satellites.

Continue reading “Earth Observation Satellites Could be Flown Much Lower than Current Altitudes and Do Better Science”

Russia Just Tested an Anti-Satellite Weapon

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff carrying the ORS-5 space situational awareness and debris tracking satellite to orbit for the military at 2:04 a.m. EDT on August 26, 2017 from pad 46 on Cape Canaveral Air Force Station in Florida. Credit: Michael Seeley/WeReportSpace

The United States and Russia/USSR have been adversaries for a long time. Their heated rivarly stretches back to the waning days of WW2, when the enormous Red Army was occupying large swathes of eastern Europe, and the allies recognized the inherent threat.

The Cold War followed, when the two nations aimed an absurd number of nuclear warheads at each other. Then came the Space Race, when both nations vied for the prestige of making it to the Moon.

The US won that race, but the rivalry didn’t cool down.

Continue reading “Russia Just Tested an Anti-Satellite Weapon”

This is What an Air-Breathing Electric Thruster’s Intake Would Look Like

A drawing of an air intake collector for use on electric air thrusters on satellites. Image Credit: ESA/VKI/Politechnico di Milano

Like all other technologies, satellite technology has grown in leaps and bounds in the past couple decades. Satellites can monitor Earth in increasingly high resolutions, aiding everything from storm forecasting, to climate change monitoring, to predicting crop harvests. But there’s one thing still holding satellites back: altitude.

Continue reading “This is What an Air-Breathing Electric Thruster’s Intake Would Look Like”

How Would We Do Surgery in Space?

Virtually rendered cutaway view of a postulated traumapod surgical module. Multiple layers of thermal and radiation shielding are visible. A four?armed surgical robot is situated within the module. The patient is tethered to the operating table, while the assistant, using a touchscreen console, is tethered to the module structure via a movable chair. Illustration by T. Trapp (https://www.planvis.co.uk) CC BY-SA 4.0

Any mission to Mars requires deeper planning than missions to the ISS or the Moon. Based purely on the length of the mission, contingencies branch outwards in complex logistical pathways. What if there’s an accident? What if someone’s appendix bursts?

And what if surgery is needed?

Continue reading “How Would We Do Surgery in Space?”

Behold! The Martian Menu, Courtesy of Mars City Design!

Credit: MCD

Today, there is no shortage of people who want to see humans go to Mars in their lifetime. Moreover, many want to go there themselves, and some even want to stay! It goes without saying that this proposed endeavor presents all kinds of challenges (the word Herculean comes to mind!) This is especially true when it comes to feeding future missions to Mars, not to mention permanent residents.

Regular resupply missions to Mars are simply not feasible, which means astronauts and settlers will have to grow their own food. To inspire ideas for how this could be done, and what the resulting meals would be like, Vera Mulyani and the organization she founded (Mars City Design) created the Martian Feast Gala. This annual event showcases what a Martian Menu could consist of and illustrates how every challenge is an opportunity to get creative!

Continue reading “Behold! The Martian Menu, Courtesy of Mars City Design!”

What Does it Mean to Be a Space Architect?

Artist conception of a Hi-SEAS habitation dome. Credit: Blue Planet Research/Bryan Christie Design

Here on Earth, the concept of architecture (and those who specialize in it), is pretty clear and straightforward. But in space, human beings have comparatively little experience living and working in habitats. For the past sixty years, multiple space stations have been sent to Low Earth Orbit (LEO), which include the now-defunct Salyut stations, Skylab, and Mir, as well as the present-day International Space Station (ISS).

But in the near the future, we hope to build stations and commercial habitats in LEO, on the surface of the Moon, and Mars. In addition to needing a steady supply of food, water, and other necessities, measures will need to be taken to ensure the psychological well-being of their crews. In a recent article, Stellar Amenities founder and CEO (a space architect herself!) Anastasia Prosina explored how space architecture can meet these needs.

Continue reading “What Does it Mean to Be a Space Architect?”

Practical Ideas for Farming on the Moon and Mars

Credit: GrowMars/D. Tompkins

When the International Space Station (ISS) runs low on basic supplies – like food, water, and other necessities – they can be resupplied from Earth in a matter of hours. But when astronauts go the Moon for extended periods of time in the coming years, resupply missions will take much longer to get there. The same holds true for Mars, which can take months to get there while also being far more expensive.

It’s little wonder then why NASA and other space agencies are looking to develop methods and technologies that will ensure that their astronauts have a degree of self-sufficiency. According to NASA-supported research conducted by Daniel Tompkins of Grow Mars and Anthony Muscatello (formerly of the NASA Kennedy Space Center), ISRU methods will benefit immensely from some input from nature.

Continue reading “Practical Ideas for Farming on the Moon and Mars”