The Light Sail is Working… It’s Working!

A beautiful sight! In this image, LightSail 2's solar sail is almost fully deployed on July 23rd. The fish-eye camera lens makes the sail appear warped. Image Credit: The Planetary Society

Good news from The Planetary Society: LightSail 2’s solar sail is functioning as intended. After launching on June 25th, then deploying its solar sail system on July 23rd, mission managers have been working with the solar sail to optimize they way LightSail 2 orients itself towards the Sun. Now The Planetary Society reports that the spacecraft has used its solar sail to raise its orbit.

Continue reading “The Light Sail is Working… It’s Working!”

Drama In Low-Earth Orbit As LightSail2 Deploys Its Sails

LightSail 2 captured this image of Mexico on July 12th, 2019. The image is looking east across Mexico. The tip of the Baja Peninsula is on the left, and on the far right is Tropical Storm Barry. Image Credit: The Planetary Society

LightSail 2 has successfully deployed its solar sails. Shortly after 12:00 pm PST The Planetary Society tweeted that the sails were deployed, and that the spacecraft was sailing with sunlight. We can all enjoy their success and start to wonder how solar sails will fit into humanity’s plans for space exploration.

Update: This article has been updated with new images from LightSail2.

Continue reading “Drama In Low-Earth Orbit As LightSail2 Deploys Its Sails”

Can We Use Special Sails To Bring Old Satellites Back Down To Earth?

Drag sails can be used to de-orbit old satellites. Image Credit: Purdue University/David Spencer

The growing problem of space debris in LEO (Low-Earth Orbit) is garnering more and more attention. With thousands of satellites in orbit, and thousands more on the way, our appetite for satellites seems boundless. But every satellite has a shelf-life. What do we do with them when they’ve outlived their usefulness and devolve into simple, troublesome space debris?

Continue reading “Can We Use Special Sails To Bring Old Satellites Back Down To Earth?”

Skywatcher and Satellite Tracker Photographs US Air Force’s Secret Space Plane in Orbit!

The U.S. Air Force's X-37B robotic space plane in orbit, as photographed by satellite tracker Ralf Vandebergh. Credit: © Ralf Vandebergh

Ever since it started taking to space, there has been a lot of mystery and controversy surrounding the USAF’s X-37B space plane. Despite the fact that this militarized-version of NASA’s orbital vehicle has conducted several spaceflights since its first in 2010, we still have no idea what its true purpose is. But so far, the smart money appears to be on it being an advanced spy plane.

Hoping to gather clues to this question, skywatcher and satellite tracker Ralf Vandebergh of the Netherlands has spent the past few months hunting for this space plane in the night sky. Recently, he was fortunate enough to not only locate the elusive X-37B in the sky but also managed to snap some photographs of it. Given its diminutive size and secretive-nature, this was no small feat!

Continue reading “Skywatcher and Satellite Tracker Photographs US Air Force’s Secret Space Plane in Orbit!”

The ESA’s SpaceBok Robot Will Hop Its Way Around Low-Gravity Worlds

The SpaceBok is a hopping exploration robot being developed for use on low-gravity worlds. Image Credit: ESA

The ESA is helping a group of students from Zurich test and develop their hopping exploration robot. Called SpaceBok, the robot is designed to operate on low-gravity bodies like the Moon or asteroids. It’s based on the concept of ‘dynamic walking’, something that animals on Earth use.

Continue reading “The ESA’s SpaceBok Robot Will Hop Its Way Around Low-Gravity Worlds”

Inflatable Heat Shield Could Deliver Heavy Payloads to Worlds With a Thick Atmosphere

Illustration of Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID). Credits: NASA

One of the greater challenges of sending payloads to Mars is having to contend with the planet’s atmosphere. While incredibly thin compared to Earth’s (with roughly half of 1% of Earth’s air pressure), the resulting air friction is still an issue for spacecraft looking to land there. And looking to the future, NASA hopes to be able to land heavier payloads on Mars as well as other planets – some of which may have atmospheres as dense as Earth.

A possible solution to this is the use of inflatable aeroshells (aka. heat shields), which offer numerous advantages over rigid ones. To develop this technology, NASA and United Launch Alliance (ULA) have partnered to develop an inflatable heat shield known as the Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID). By 2022, they hope to send this cutting-edge prototype to low-Earth orbit (LEO), where it will be tested.

Continue reading “Inflatable Heat Shield Could Deliver Heavy Payloads to Worlds With a Thick Atmosphere”

Astronauts Could Rely on Algae as the Perfect Life Support Partner

From the Soyuz capsule, Space Shuttle Endeavour during Expedition 27 is docked to the International Space Station 220 miles above the Earth. Before Apollo 11 landed on the Moon, plans were underway to develop the next generation spacecraft that would lower the cost of human spaceflight and make trips routine. Forty years have passed since the Saturn rocket last flew and four years since the last Shuttle. Supporters on Capital Hill appear resigned to accept a replacement for the Shuttle, while inhernently safer, will cost $600 million per launch excluding the cost of the payload. SLS is destined to server both humand spaceflight and robotic missions. (Photo Credit: NASA)

When planning for long-duration crewed missions, one of the most important things is to make sure that the crews have enough of the bare essentials to last. This is no easy task, since a crewed spacecraft will be a crew’s entire world for months on end. That means that a sufficient amount of food, water and oxygen will need to be brought along.

According to a new investigation being conducted aboard the International Space Station, a possible solution could lie with a hybrid life support system (LSS). In such a system, which could be used aboard spacecraft and space stations in the near future, microalgae would be used to clean the air and water, and possibly even manufacture food for the crew.

Continue reading “Astronauts Could Rely on Algae as the Perfect Life Support Partner”

The Starhops Have Begun!

SpaceX's first detailed render of the Starship reentering Earth's atmosphere. Credit: SpaceX

According to Elon Musk, SpaceX’s Starship Hopper just completed its inaugural hop test at the company’s South Texas Launch Site. As the first of many, this test is intended to validate the sophisticated Raptor engines that will be used aboard the full-scale Starship spacecraft, which is intrinsic to Musks’ long-term vision of providing intercontinental flights and making commercial trips to the Moon and Mars.

Continue reading “The Starhops Have Begun!”

New Research Reveals How Galaxies Stay Hot and Bothered

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole. Credit: ESO/Gravity Consortium/L. Calçada

It’s relatively easy for galaxies to make stars. Start out with a bunch of random blobs of gas and dust. Typically those blobs will be pretty warm. To turn them into stars, you have to cool them off. By dumping all their heat in the form of radiation, they can compress. Dump more heat, compress more. Repeat for a million years or so.

Eventually pieces of the gas cloud shrink and shrink, compressing themselves into a tight little knots. If the densities inside those knots get high enough, they trigger nuclear fusion and voila: stars are born.

Continue reading “New Research Reveals How Galaxies Stay Hot and Bothered”