Paul Spudis’ Plan for a Sustainable and Affordable Lunar Base

Artist concept of a settlement on the Moon. Credit: NASA/Pat Rawlings

[/caption]

It’s long been a dream to have a human settlement on the Moon, but in this age of budget cuts and indecisive plans for NASA’s future, a Moon base may seem too costly and beyond our reach. However, noted lunar scientist Dr. Paul Spudis from the Lunar and Planetary Institute and a colleague, Tony Lavoie from the Marshall Space Flight Center, have come up with a plan for building a lunar settlement that is not only affordable but sustainable. It creates a Moon base along with a type of ‘transcontinental railroad’ in space which opens up cislunar space – the area between Earth and the Moon – for development.

“The ultimate goal in space is to be able to go anywhere, anytime with as much capability as we need,” Spudis told Universe Today. “This plan uses a robotic and human presence on the Moon to use the local resources to create a new spacefaring system. The key for doing this is to adopt a flexible approach that is incremental and cumulative.”

In a nutshell what Spudis proposes is to send robots to the Moon which are tele-operated from Earth to start extracting water from the polar deposits to create propellant. The propellant would be used to fuel a reusable space transportation system between the Earth and the Moon.

“The reason this is possible is because the Moon is close – it’s only three light-seconds round trip for radio signal get from Earth to the Moon back,” Spudis said, “which means you can control machines remotely with operators on the Earth actually doing the activities that an astronaut might do on the Moon.”

A lunar mining facility harvests oxygen from the resource-rich volcanic soil of the eastern Mare Serenitatis.Credit: NASA/Pat Rawlings.

The advantage here is that a large part of the needed infrastructure, such as the mining operation, the processing plants, the development of storage for the water and propellant, is created before people even arrive.

“So what we try to do is to develop an architecture that enables us to, first, do this in small, incremental steps, with each step building upon the next, and the net effect is cumulative over time,”Spudis said. “And finally we are able to bring people to the Moon when we’re ready to actually have them live there. We place an outpost — a habitat — that will be fully operational before the first humans arrive.”

The significant amount of water than has been found on the Moon at the poles makes this plan work.

“We estimate there are many tens of billions of tons of water at both poles,” Spudis said. “What we don’t know in detail is exactly how much water is distributed what physical state it is in, and that’s one of the reasons why the first step in our plan is to send robotic prospectors up there to map the deposits and see how they vary.”

Water is an important resource for humans in space: it supports life for drinking and cooking, it can be broken down into oxygen for breathing, and by combing the oxygen and hydrogen in a fuel cell, electricity can be generated. Water is also a very good shielding material that could protect people from cosmic radiation, so the habitat could be “jacketed” with water.

But the most important use of water is being able to create a powerful chemical rocket propellant by using the oxygen and hydrogen and freezing them into a liquid.

“The Moon offers us this water not only to support human life there, but also to make rocket propellant to allow us to refuel our spacecraft both on the Moon and space above the Moon.”

In a series of 17 incremental missions, a human base would be built, made operational and occupied. It starts with setting up communication and navigation satellites around the Moon to enable precision operation for the robotic systems.

Next would sending rover to the Moon, perhaps a variant of the MER rovers that are currently exploring Mars, to prospect the best places for water at the lunar poles. The poles also provide areas of permanent sunlight to generate electrical power.

Next, larger equipment would be sent to experiment with digging up the ice deposits, melting the ice and storing the products. (See our previous article about using bulldozers on the Moon).

“Now, all those are simple conceptually, but we’ve never done them in practice,” said Spudis, “so we don’t know how difficult it is. But by sending the small robotic missions to the Moon and practicing this via remote control from Earth, we can evaluate how difficult it is — where the chokepoints are — and what are the most efficient ways to get to these deposits and to extract usable a product from them.”

The next step is to increase the magnitude of the effort by landing bigger robotic machines that can actually start making product on industrial scales so that a depot of supplies can be stockpiled on the Moon for when the first human humans to return to the Moon.

Cislunar space. Graphic courtesy Paul Spudis.

In the meantime, a constant transportation system between Earth and Moon would be created, with another system that goes between the Moon and lunar orbit, which opens up all kinds of possibilities.

“The analogy I like to make is this is very similar to the Transcontinental Railroad,” Spudis said. “We didn’t just build the Transcontinental Railroad to from the East Coast directly to the West Coast; we also built it to access all the points in between, which consequently were developed economically as well.”

By having a system where the vehicles are refueled from the resources extracted on the Moon, a system is created that routinely accesses the Moon and allows for returning to Earth, but all the other points in between can be accessed as well.

“We create a transportation system that accesses all those points between Earth and Moon. The significance of that is, much of our satellite assets reside there,” said Spudis, “ for example communication satellites and weather monitoring satellites reside in geosynchronous orbit, (about 36,000 km above the Earth’s equator) and right now we cannot reach that from low Earth orbit. If we have system that can routinely go back and forth to the Moon, we could also go to these high orbits where a lot of commercial and national security assets are.”

Spudis added that a fuel depot could go in various locations, including the L1 LaGrange point which would enable space flight beyond the Moon.

How long will this take?

“We estimate that we can create an entire turn-key lunar outpost on the Moon within about 15 to 16 years, with humans arriving about 10 years after the initial robotic missions go,” Spudis said. “The mining operation would produce about 150 tons of water per year and roughly 100 tons of propellant.

And do any new technologies or hardware have to be built?

“Not really,” said Spudis. “Effectively this plan is possible to achieve right now with existing technology. We don’t have any ‘unobtainium’ or any special magical machine that has to be built. It is all very simple outgrowths of existing equipment, and many cases you can use the heritage equipment from previous missions.”

And what about the cost?

Spudis estimates that the entire system could be established for an aggregate cost of less than $88 billion, which would be about $5 billion a year, with peak funding of $6.65 billion starting in Year 11. This total cost includes development of a Shuttle-derived 70 mT launch vehicle, two versions of a Crew Exploration Vehicles (LEO and translunar), a reusable lander, cislunar propellant depots and all robotic surface assets, as well as all of the operational costs of mission support for this architecture.

“The best part is that because we have broken our architecture into small chunks, each mission is largely self-contained and once it gets to the Moon it interacts and works with the pieces that are already there,” Spudis said.

And the budget would be flexible.

“We can do this project at whatever speed the resources permit,” Spudis said. “So if you have a very constrained budget with very low levels of expenditure, you can go you just go much more slowly. If you have more resources available you can increase the speed and increase the rate of asset emplacement on the Moon and do more in a shorter period of time. This architecture gets us back to the Moon and creates real capability. But the free variable is schedule, not money.”

Artist concept of a Moon base. Credit: NASA/Pat Rawlings.

Returning to the Moon is important, Spudis believes, because not only can we use the resources there, but it teaches us how to be a spacefaring civilization.

“By going to the Moon we can learn how to extract what we need in space from what we find in space,” he said. “Fundamentally that is a skill that any spacefaring civilization has to master. If you can learn to do that, you’ve got a skill that will allow you to go to Mars and beyond.”

For more information see Spudis’ website, SpudisLunarResources.com More details and graphs can be found on this pdf document.

Listen to an interview of Paul Spudis on this topic for the 365 Days of Astronomy podcast.

Paul Spudis blogs at Once and Future Moon at Smithonsian Air & Space website.

Stage Set For SpaceX to Compete for Military Contracts

NASA, the NRO and the U.S. Air Force have signed an agreement that could see smaller space firms competing for large military contracts. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

NASA Strengthens Virgin Galactic Ties With New Contract

NASA has entered an arrangement with commercial space firm Virgin Galactic to fly experiments on board the company's SpaceShipTwo. Photo Credit: Virgin Galactic/Mark Greenburg

[/caption]
NASA has, on a number of occasions tapped the NewSpace firm Virgin Galactic to help the space agency accomplish its objectives – recently, it has done so again. This new contract will see NASA science payloads take suborbital flights on the company’s SpaceShipTwo (SS2) spacecraft. This however is not the first time that NASA has entered into an arrangement with the emerging commercial space flight firm.

NASA first began working with Virgin Galactic in 2007, when it entered into a Memorandum of Understanding to explore possible collaborative efforts to develop various equipment required to conduct space flight operations (space suits, heat shields, and other space flight elements).

Under this arrangement NASA will have one scientific mission flown aboard SpaceShipTwo with options for two additional flights. Photo Credit: Virgin Galactic/Mark Greenberg

Earlier this year, NASA selected seven different firms that either had or were developing suborbital spacecraft – one of these was Virgin Galactic. The announcement that was made Thursday, Oct. 13 is actually the culmination of the Flight Opportunities Program, which was announced on Aug. 9 of this year and established to help NASA meet its technology and research development requirements.

The agreement to fly NASA payloads on SS2 was announced about a week after former NASA Shuttle Program Manager; Mike Moses stated he was leaving the space agency to work as Virgin Galactic’s vice president of operations. Moses will be in charge of all operations at Spaceport America, located near Las Cruces, New Mexico.

On these missions, not only will a carry a scientific payload but an engineer that will monitor the payload and operate the payload. Photo Credit: Virgin Galactic/Mark Greenberg

“I’ve known Mike for a long time, from his flight controller days which led to him becoming a flight director and then moving into the shuttle program,” said Kyle Herring, a NASA public affairs officer. “I think he would be a very valuable asset to any organization that he went to. Mike’s expertise will be very beneficial in not just mission operations but ground operations as well.”

The NASA contract with Virgin Galactic is for one flight with the space agency optioning two additional flights (for a potential of three flights total). If NASA options all three flights, the total contract would be worth an estimated $4.5 million. The announcement came just four days prior to the dedication ceremony for the spaceport’s new headquarters (the dedication was on Monday, Oct. 17).

NASA will flight at least one experiment package on SpaceShipTwo, with an option to fly potentially two more. Photo Credit: Virgin Galactic/Mark Greenberg

Each of these suborbital missions will have a trained engineer on board to handle the experiments.

Virgin Galactic is an arm of the London-based Virgin Group which is owned by British billionaire Sir Richard Branson. Virgin Galactic is working to provide tourists with suborbital flights into space that will allow these space passengers to briefly experience the micro-gravity environment. The flights will launch from a spaceport which is currently under construction near Las Cruces New Mexico. Tickets have been priced at about $200,000 each.

Former Space Shuttle Program Manager Mike Moses has joined Virgin Galactic as the company's vice president of operations. The company conducted a dedication ceremony of its new spaceport, located near Las Cruces, New Mexico on Monday, Oct. 17. Photo Credit: Virgin Galactic/Mark Greenberg

Crewed Variant of X-37 Space Plane Proposed

The X-37, versions of which have flown twice into space already, is now being proposed as a potential means of transportation for crews to the International Space Station. Photo Credit: Boeing

[/caption]
As reported online at Space.com, the Boeing Company is already working on the CST-100 space taxi as a means of transportation to and from the International Space Station (ISS). But the aerospace firm is not content with just this simple space capsule and is looking into whether-or-not another of Boeing’s current offerings – the X-37B space plane could be modified to one day ferry crew to and from the orbiting laboratory as well.

proposed variant of the spacecraft, dubbed the X-37C, is being considered for a role that has some similarities to the cancelled X-38 Crew Return Vehicle (CRV). The announcement was made at a conference hosted by the American Institute of Aeronautics and Astronautics (AIAA) and reported on Space.com.

The USAF has already launched two of the X-37B Orbital Text Vehicles (OTV) from Cape Canaveral Air Force Station in Florida. Photo Credit: ULA/Pat Corkery

The X-37B or Orbital Test Vehicle (OTV) has so far been launched twice by the U.S. Air Force from Cape Canaveral Air Force Station in Florida. One of the military space planes completed the craft’s inaugural mission, USA-212, on Apr. 22, 2010. The mini space plane reentered Earth’s atmosphere and conducted an autonomous landing at Vandenberg Air Force on Dec. 3, 2010.

The U.S. Air Force then went on to launch the second of the space planes on mission USA-226 on Mar. 5, 2011. With these two successful launches, the longest-duration stay on orbit by a reusable vehicle and a landing under its belt, some of the vehicle’s primary systems (guidance, navigation, thermal protection and aerodynamics among others) are now viewed as having been validated. The vehicle has performed better than expected with the turnaround time being less than predicted.

If the X-37C is produced, it will be roughly twice the size of its predecessor. The X-37B is about 29 feet long; this new version of the mini shuttle would be approximately 48 feet in length. The X-37C is estimated at being approximately 165-180 percent larger than the X-37B. This increase in the size requires a larger launch vehicle.

This larger size also highlights plans to have the spacecraft carry 5 or 6 astronauts – with room for an additional crew member that is immobilized on a stretcher. The X-38, manufactured by Scaled Composites, was designed, built and tested to serve as a lifeboat for the ISS. In case of an emergency, crew members on the ISS would have entered the CRV and returned to Earth – a role that now could possibly be filled by the X-37C. The key difference being that the CRV only reached the point of atmospheric drop tests – the X-37B has flown into space twice.

Certain elements of the X-37C proposal highlight mission aspects of the cancelled X-38 Crew Return Vehicle. Photo Credit: NASA.gov

The crewed variant of the X-37 space plane would contain a pressurized compartment where the payload is normally stored, it would have a hatch that would allow for astronauts to enter and depart the spacecraft. Another hatch would be located on the main body of the mini shuttle so as to allow access to the vehicle on the ground. The X-37C, like its smaller cousin, would be able to rendezvous, dock, reenter the atmosphere and land remotely, without the need of a pilot. Acknowledging the need for pilots to control their own craft however, the X-37C would be capable of accomplishing these space flight requirements under manual control as well.

As mentioned in the Space.com article, one of the other selling points for the X-37C is its modular nature. Different variants could be used for crewed flights or unmanned missions that could return delicate cargo from the ISS. Neither the Russian Soyuz spacecraft, nor commercially-developed capsules are considered as appropriate means of returning biological or crystal experiments to Earth due to the high rate of acceleration that these vehicles incur upon atmospheric reentry. By comparison the X-37B experiences just 1.5 “g” upon reentry.

The launch vehicle that would send the proposed X-37C to orbit would be the United Launch Alliance Atlas V rocket. In provided images the X-37C is shown utilizing a larger version of the Atlas booster and without the protective fairing that covered the two X-37B space planes that were launched.

Guest Post: NASA’s Sample Return Robot Challenge

Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.

Imagine a rover on the Moon nimbly gliding around boulders and crevices until it finds something that looks interesting. It stops to pick up a sample and then rushes back to its home platform only to venture out again soon. Now imagine that it was doing all of this without any humans telling it to.

That’s the idea behind NASA’s new Sample Return Robot Challenge, part of its Centennial Challenge program. The space agency announced a potential $1.5 million prize for what it terms “an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and then return the samples to the starting zone.”


NASA recently released a set of rules that requires the participating robots to go big. Like 80,000 square meters big. That’s the amount of area of rough terrain, complete with trees and creeks, the autonomous bots will have to cover in order to find different samples spread randomly throughout.

Teams will collect those samples during two different levels of competition. Level one will require the participants to retrieve a randomly placed sample with a distinct packaging. The second level, and the one that pays the most cash prizes, requires the recovery of different types of samples, including ones specifically designed to test a team’s pattern recognition skills.

The competition is open to everyone and teams have until the end of the year to register. The event is expected to be held next year at Worcester Polytechnic Institute in Massachusetts. If one a team manages to win the prize, NASA’s dream of autonomous rovers won’t be too far off.

Source: NASA

Breaking the Speed of Light

Particle Collider
Today, CERN announced that the LHCb experiment had revealed the existence of two new baryon subatomic particles. Credit: CERN/LHC/GridPP

[/caption]

It’s been a tenet of the standard model of physics for over a century. The speed of light is a unwavering and unbreakable barrier, at least by any form of matter and energy we know of. Nothing in our Universe can travel faster than 299,792 km/s (186,282 miles per second), not even – as the term implies – light itself. It’s the universal constant, the “c” in Einstein’s E = mc2, a cosmic speed limit that can’t be broken.

That is, until now.

An international team of scientists at the Gran Sasso research facility outside of Rome announced today that they have clocked neutrinos traveling faster than the speed of light. The neutrinos, subatomic particles with very little mass, were contained within beams emitted from CERN 730 km (500 miles) away in Switzerland. Over a period of three years, 15,000 neutrino beams were fired from CERN at special detectors located deep underground at Gran Sasso. Where light would have made the trip in 2.4 thousandths of a second, the neutrinos made it there 60 nanoseconds faster – that’s 60 billionths of a second – a tiny difference to us but a huge difference to particle physicists!

The implications of such a discovery are staggering, as it would effectively undermine Einstein’s theory of relativity and force a rewrite of the Standard Model of physics.

The OPERA Neutrino Detector. Credit: LGNS.

“We are shocked,” said project spokesman and University of Bern physicist Antonio Ereditato.

“We have high confidence in our results. We have checked and rechecked for anything that could have distorted our measurements but we found nothing. We now want colleagues to check them independently.”

Neutrinos are created naturally from the decay of radioactive materials and from reactions that occur inside stars. Neutrinos are constantly zipping through space and can pass through solid material easily with little discernible effect… as you’ve been reading this billions of neutrinos have already passed through you!

The experiment, called OPERA (Oscillation Project with Emulsion-tRacking Apparatus) is located in Italy’s Gran Sasso facility 1,400 meters (4,593 feet) underground and uses a complex array of electronics and photographic plates to detect the particle beams. Its subterranean location helps prevent experiment contamination from other sources of radiation, such as cosmic rays. Over 750 scientists from 22 countries around the world work there.

Ereditato is confident in the results as they have been consistently measured in over 16,000 events over the past two years. Still, other experiments are being planned elsewhere in an attempt to confirm these remarkable findings. If they are confirmed, we may be looking at a literal breakdown of the modern rules of physics as we know them!

“We have high confidence in our results,” said Ereditato. “We have checked and rechecked for anything that could have distorted our measurements but we found nothing. We now want colleagues to check them independently.”

A preprint of the OPERA results will be posted on the physics website ArXiv.org.

Read more on the Nature article here and on Reuters.com.

UPDATE: The OPERA team paper can be found here.

 

 

Commercial Space Roundup

NASA has announced that it will option additional milestones for its Commercial Crew Development Program. Image Credit: SNC

[/caption]
By all reports – commercial space is thriving. A number of recent announcements show that the burgeoning “private” space industry is thriving. NASA released its plans to obtain transportation services for its astronauts to the International Space Station (ISS) as well as optional milestones for the Commercial Crew Development Round 2 (CCDev2).

“This is a significant step forward in America’s amazing story of space exploration,” said NASA Administrator Charles Bolden. “It’s further evidence we are committed to fully implementing our plan — as laid out in the Authorization Act — to outsource our space station transportation so NASA can focus its energy and resources on deep space exploration.”

To help speed up the process Bolden has stated that NASA will fund some of the original milestones that have already been negotiated as part of some of the Space Act Agreements (SAA) under CCDev2.

NASA’s proposal outlines contracts that would benefit multiple firms that are set to provide the space agency with designs of spacecraft, rockets and other launch services. This contract is worth an estimated $1.61 billion and is currently slated to run from July 2012 through April 2014. NASA has updated Sierra Nevada Corporation’s SAA with four more milestones – that total up to $25.6 million meaning that the contract that this NewSpace firm now has with NASA is worth $105.6 million – if the agency can successfully accomplish all of its milestones.

“All four CCDev2 partners are performing very well and meeting their milestones,” said Phil McAlister, director of NASA’s Commercial Spaceflight Development. “These additional milestones were selected because they sufficiently accelerated the development of commercial crew transportation systems to justify additional NASA investment.”

The Spacecraft Company opened an assembly facility at Mojave Air and Space Port to build Virgin Galactic spaceships. Photo Credit: Mark Greenberg

Meanwhile, out in California, The Spaceship Company (TSC), the joint venture of Sir Richard Branson’s Virgin Galactic and Scaled Composites, announced a milestone of their own with the opening of its Final Assembly, Integration and Test Hangar (FAITH), at the Mojave Air and Space Port. The hangar, which cost an estimated $8 million, supports the final stages of Virgin Galactic’s WhiteKnightTwo and SpaceShipTwo. It is hoped that this new facility will both support further commercial space ventures and create jobs.

The facility is located on taxiway-B and encompasses approximately 68,000-square-feet. It will be used to assemble, prepare and test the vehicles. One of the building’s other roles is that of maintenance hangar.

“We take great pride in the opening of FAITH as an accomplishment for our company, our current and future customers and our industry,” said The Spaceship Company Vice President, Operations Enrico Palermo. “Within this new facility, we will produce the highest quality commercial spaceflight systems.”

With FAITH in place, the required infrastructure is now in place to manufacture a fleet of SpaceShipTwo (SS2) sub-orbital spaceships as well as the WhiteKnightTwo (WK2) carrier aircraft. The facility has been sized to support construction of SS2 and WK2 with room to build two of each of these craft – at the same time.

The other structure that is needed to support SS2 and WK2 operations is a 48,000-square-foot building that is located at the Mojave Air and Space Port that TSC has recently had upgraded. If the sub-orbital space tourism market takes off TSC has optioned rights to expand the facility.

“Despite the current state of the U.S. economy and rising unemployment, this is a strong time of growth for The Spaceship Company,” Palermo said. “We are creating excellent, high-skilled job opportunities for individuals with aerospace, engineering and hands-on space program experience. We want employees who are passionate about developing new and innovative ways of accessing space.”

The SXC has signed a lease for the Lynx (tail number 2) sub-orbital space plane. Image Credit: XCOR

Staying on the topic of sub-orbital space planes, Space Expedition Curaçao (SXC) and XCOR Aerospace, Inc. have announced the completion of a deal that will secure the wet lease of production Lynx tail number two for operation on the Caribbean island of Curaçao.

“Since we signed the initial Memorandum of Understanding (MOU) in October of 2010, XCOR and SXC have worked diligently towards completing the Definitive Agreement,” explained XCOR CEO Jeff Greason. “Now that the ink is dry and the check has cleared we can proceed at full pace to begin operations in Curaçao in 2014.”

Since the first flights of SpaceShipOne high above the Mojave Desert, the commercial space industry has found its legs and has expanded its reach both nationally and internationally. With Space Exploration Technologies (SpaceX) plans to launch its next Falcon 9 rocket and Dragon spacecraft to the International Space Station in November the commercial space field appears to be cementing its beachhead on not only sub-orbital flights – but orbital ones as well.

SpaceX to Dock With ISS on Next Flight: NASA Maybe – Russia Nyet

Russia has again stated that doea not approve of SpaceX and NASA's plans to dock the next Dragon Spacecraft with the International Space Station. Image Credit: SpaceX

[/caption]

It is looking less likely that Space Exploration Technologies (SpaceX) will be allowed to dock the next of its Dragon Spacecraft to the International Space Station (ISS). Instead it is now looking like the Dragon will be allowed to only come close the orbiting outpost to test out many of the spacecraft’s key systems.

This comes from a statement issued by Vladimir Solovyov, head of the Russian segment of the ISS mission control center on Friday and posted on the Russian news site RIA Novosti. Up until now SpaceX has stated that they would launch the next Dragon Spacecraft atop one of the company’s Falcon 9 rockets on Nov. 30. It is unknown now whether-or-not the proposed docking will be allowed to take place.

SpaceX has had a string of successes - and failures - since its founding in 2002. Photo Credit: Alan Walters/awaltersphoto.com

In a company-prepared statement, SpaceX stated that the company had been working to fulfill all of the necessary requirements to allow SpaceX to become the first private firm to dock its spacecraft with the ISS. Russia, however, has repeatedly stated that it will not allow this. The rationale behind this stance is based on safety. According to Russia, a vehicle, which has only flown once, does not have the established, proven track record required for such operations.

Moreover both NASA and SpaceX stated that while a final determination has yet to be made – the private space firm has not been denied the opportunity to dock with the International Space Station. Thus leaving the flight’s status in a sort of limbo. This situation also highlights that the assorted international members involved on ISS – don’t always agree.

Russia's most recent attempt to launch its unmanned Progress Spacecraft ended in the loss of the spacecraft as well as its cargo. Photo Credit: RSC Energia

Many industry experts noted the irony of these statements given that the last Soyuz rocket failed, causing the destruction of the Progress spacecraft as well as the three tons of supplies that the spacecraft carried.

NewSpace firms themselves have acknowledged anomalies in their programs – including SpaceX. Blue Origin recently lost one of its test vehicles. Apparently the rocket went off of its predicted flight path and range safety was forced to destroy the vehicle.

Orbital Science's Cygnus Spacecraft is one of the other vehicles being developed under the COTS program. Image Credit: Orbital Sciences Corporation

Under the initial Commercial Orbital Transportation Services (COTS) agreement SpaceX was supposed to launch the Demo 2 mission, which would have completed COTS Milestone 19 (the mission scheduled for this November) two years ago. Similarly, milestones 20-22 were scheduled to be accomplished by the first quarter of 2010.

COTS is a NASA-funded program, designed to coordinate delivery of both astronauts as well as cargo to the ISS by privately-owned companies. COTS – was announced in January of 2006, under the Bush Administration. As it stands currently, SpaceX is the frontrunner under this contract which also includes Orbital Sciences Corporation.

Behind the Scenes of NASA’s Upcoming MMORPG

Astronaut: Moon, Mars and Beyond. Need image credit data

[/caption]

These days, nearly every game company is trying to get their fingers in the MMORPG (Massively Multiplayer Online Role Playing Game) pie. Given the past successes of games like Ultima Online and Everquest and the current success of games like EVE Online and World of Warcraft, it’s no surprise that companies want try to create the next “killer app” of the MMORPG market.

One such game company that will be launching a new game is the company partnered with NASA to develop a space-based MMORPG for the space agency.  Having raised nearly $40,000 in pledged funding via kickstarter, the company aims to start beta testing their offering some time next year.

So what does this new MMORPG do differently that will attract and retain paying customers? What makes Astronaut: Moon, Mars and Beyond different from say, EVE Online, Star Trek Online, or Star Wars Galaxies?

When a game developer becomes associated with a “big-name” property,  expectations from both fans and developers can be quite high. Despite securing a license to create a game based on the Stargate franchise, a game development company never released the game and eventually ended up in bankruptcy. Star Trek Online, despite being one of the most anticipated MMORPG franchises went through two developers and when finally released had less than stellar sales.  Of course, many fans of MMORPG’s are all too familiar with the myriad issues that plagued Star Wars Galaxies.

Not all online games are destined for failure. Some games build up players steadily over time and retain an extremely loyal fan base. In some cases, “slow and steady wins the race” is a reality for some game companies. So, what does it take to build a successful online game franchise?

Concept Art of a Future Astronaut: Image Credit: Project Whitecard International 2011

In the case of the upcoming NASA MMORPG, Daniel Laughlin, project manager of NASA’s Learning Technologies cited research over the past decade indicating that games have tremendous potential to enhance learning. Laughlin stated, “The goal of the MMO project is to tap into the power of games to inspire and promote learning specifically in areas of science, technology, engineering and mathematics (STEM)”. Laughlin also added, “Based on the existing literature as well as my own experiences gaming, an MMO was the logical choice for a game project for NASA.”

What Laughlin believes to be of benefit to his idea is that a MMO gives the ability to continually update, adjust and expand a game – keeping players engaged over long periods of time.

Laughlin also mentioned the success of a NASA proof-of-concept game, Moonbase Alpha, as an encouraging sign of interest in a NASA-themed MMORPG, citing over 400,000 downloads. Laughlin also added “It is short proof of concept piece. Just a 20 minute mission, but it was built to prove to NASA that we could build a commercial quality game that uses NASA content – the lunar architecture – and is fun and inspirational.”

Moonbase Alpha Screenshot: Image Credit: NASA Learning Technologies

How does a promising proof-of-concept demo become a full-fledged online game?

Laughlin’s office solicited development partners to build the game under a non-reimbursable space act agreement (Meaning NASA is partnered with the game developer, but no funds change hands). The Astronaut: Moon, Mars and Beyond team was selected through a competitive process and has signed an agreement with NASA. The development team has to raise development funds on their own and NASA will provide subject matter experts along with education and evaluation experts to assist the team. Currently, the development team has raised nearly $40,000 via their kickstarter page.

Astronaut: Moon, Mars and Beyond. Image Credit: Project Whitecard International 2011

Khal Shariff, CEO of Project Whitecard is equally optimistic about Astronaut: Moon, Mars and Beyond, stating, “We view this project as an almost sacred opportunity to engage new and current generations of science fans, those who are forever looking outward, with a vision for space exploration.”

When asked specifically about the fund raising efforts via Kickstarter, Shariff mentioned “It means all of the world to the people making this project happen, and it’s a hell of a deal, especially when you see that a $30 bid will send two licenses to a school and one to yourself.” Shariff also added, “More than this, it shows that Astronaut: Moon, Mars and Beyond, has honest, people-driven roots and will succeed or fail on its own merits.”

Astronaut: Moon, Mars and Beyond. Image Credit: Project Whitecard International 2011

Shariff’s goal is a very solid game mechanic that rewards players for competing in areas of STEM learning and mentioned that one essential gameplay mechanic is a combination of gear and crafting. One other game play mechanic of quests are standard fare in many online games. In the case of Astronaut: Moon, Mars and Beyond, the quests are missions that fit into the larger storyline. Shariff was tight-lipped as to what, if any protagonists are present in the game, stating: “We have protagonists in the game, and I won’t say much about them, because I don’t want to spoil the opening scene of Chapter One.”

On the topic of chapters, Shariff mentioned plans for a future expansion to allow manned travel to destinations beyond Mars and the asteroid belt, even though in first chapter, players will have visited said destinations with unmanned missions.

Based on information presented by the development team, it does appear they will be putting forth considerable effort to fulfill Laughlin’s goal of a fun, educational and infinitely playable game. Shariff concluded with: “We want you to sit down and curl up with one session and have a feeling like you had when you read the best short science fiction stories, especially like those of Clarke. There is plenty of adventure to plumb.”

If you’d like to learn more about NASA’s Learning Technologies program, visit: http://www.nasa.gov/offices/education/programs/national/ltp/research/index.html

You can download the Moonbase Alpha game at: http://ipp.gsfc.nasa.gov/mmo, and you can learn more about Astronaut: Moon, Mars and Beyond at: http://www.astronautmmo.com

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

Book Review: A Dictionary of the Space Age

A Dictionary of the Space Age covers most aspects of space flight but is somewhat lacking in detail. Image Credit: John Hopkins University & Alan Walters/awaltersphoto.com

[/caption]
Writing a dictionary is not the same as writing a novel. While it might seem difficult to mess up a dictionary, even one with terminology that is as complicated as that used within the space industry – getting it right can be challenging. For those that follow space flight having such a dictionary can be invaluable. While A Dictionary of the Space Age does meet the basic requirements easily it fails somewhat in terms of its comprehensiveness.

When normal folks, even space enthusiasts watch launches and other space-related events (EVAs, dockings, landings and such) there are so many acronyms and jargon thrown about – that it is extremely hard to follow. With A Dictionary of the Space Age on hand, one can simply thumb through and find out exactly what is being said, making it both easier to follow along and making the endeavor being witnessed far more inclusive. That is as long if you are only looking for the most general of terms. The book is far from complete – but given the complex nature of the topic – this might not have been possible.

Crewed, unmanned, military space efforts and satellites – all have key terms addressed within the pages of this book.

The book is published by The Johns Hopkins University Press and was compiled and written by aerospace expert Paul Dickson. One can purchase the book on the secondary market (Amazon.com) for around $12 (new for around $25). The dictionary also has a Kindle edition which is available for $37.76. Dickson’s previous works on space flight is Sputnik: The Shock of the Century.

Weighing in at 288 pages, the book briefly covers the primary terms used within the space community. In short, if you are interested in learning more about space flight – or wish to do so – this is a good book for you.