NASA and DARPA Will be Testing a Nuclear Rocket in Space

Artist concept of Demonstration for Rocket to Agile Cislunar Operations (DRACO) spacecraft, Credits: DARPA

The coming decades of space exploration will see astronauts return to the Moon, the first crewed missions to Mars, and robotic missions to the outer Solar System (among other things). These missions will leverage innovative technologies that allow faster transits, long-duration stays, and sustainable living far from Earth. To this end, NASA and other space agencies are investigating nuclear applications, especially where energy and propulsion are concerned. Many of these proposals have been on the books since the early space age and have been thoroughly validated.

On Tuesday, January 24th, NASA and the Defense Advanced Research Projects Agency (DARPA) announced they were launching an interagency agreement to develop a nuclear-thermal propulsion (NTP) concept. The proposed nuclear rocket is known as the Demonstration Rocket for Agile Cislunar Operations (DRACO), which would enable fast-transit missions to Mars (weeks instead of months). This three-phase program will culminate with a demonstration of the DRACO in orbit, which is expected to occur by early 2027.

Continue reading “NASA and DARPA Will be Testing a Nuclear Rocket in Space”

A Novel Propulsion System Would Hurl Hypervelocity Pellets at a Spacecraft to Speed it up

Graphic depiction of Pellet-Beam Propulsion for Breakthrough Space Exploration. Credits: Artur Davoyan

Today, multiple space agencies are investigating cutting-edge propulsion ideas that will allow for rapid transits to other bodies in the Solar System. These include NASA’s Nuclear-Thermal or Nuclear-Electric Propulsion (NTP/NEP) concepts that could enable transit times to Mars in 100 days (or even 45) and a nuclear-powered Chinese spacecraft that could explore Neptune and its largest moon, Triton. While these and other ideas could allow for interplanetary exploration, getting beyond the Solar System presents some major challenges.

As we explored in a previous article, it would take spacecraft using conventional propulsion anywhere from 19,000 to 81,000 years to reach even the nearest star, Proxima Centauri (4.25 light-years from Earth). To this end, engineers have been researching proposals for uncrewed spacecraft that rely on beams of directed energy (lasers) to accelerate light sails to a fraction of the speed of light. A new idea proposed by researchers from UCLA envisions a twist on the beam-sail idea: a pellet-beam concept that could accelerate a 1-ton spacecraft to the edge of the Solar System in less than 20 years.

Continue reading “A Novel Propulsion System Would Hurl Hypervelocity Pellets at a Spacecraft to Speed it up”

Scientists Build a Teeny Tiny Tractor Beam

Microscopic tractor beams exist. Can they be upscaled? Image Credit: Designed by upklyak / Freepik

Tractor beams make intuitive sense. Matter and energy interact with each other in countless ways throughout the Universe. Magnetism and gravity are both natural forces that can draw objects together, so there’s sort of a precedent.

But engineering an actual tractor beam is something different.

Continue reading “Scientists Build a Teeny Tiny Tractor Beam”

New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days

Artist's concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA

We live in an era of renewed space exploration, where multiple agencies are planning to send astronauts to the Moon in the coming years. This will be followed in the next decade with crewed missions to Mars by NASA and China, who may be joined by other nations before long. These and other missions that will take astronauts beyond Low Earth Orbit (LEO) and the Earth-Moon system require new technologies, ranging from life support and radiation shielding to power and propulsion. And when it comes to the latter, Nuclear Thermal and Nuclear Electric Propulsion (NTP/NEP) is a top contender!

NASA and the Soviet space program spent decades researching nuclear propulsion during the Space Race. A few years ago, NASA reignited its nuclear program for the purpose of developing bimodal nuclear propulsion – a two-part system consisting of an NTP and NEP element – that could enable transits to Mars in 100 days. As part of the NASA Innovative Advanced Concepts (NIAC) program for 2023, NASA selected a nuclear concept for Phase I development. This new class of bimodal nuclear propulsion system uses a “wave rotor topping cycle” and could reduce transit times to Mars to just 45 days.

Continue reading “New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days”

Is Space Power a Good Idea? A New Spacecraft is Going to Find Out!

Artist's impression of the Caltech Space Solar Power Demonstrator (SSPD), Credit: Caltech

Solar power, long considered the leading contender among renewable energy sources, has advanced significantly over the past few decades. The cost of manufacturing and installing solar panels has dropped considerably, and efficiency has increased, making it price competitive with coal, oil, and fossil fuels. However, some barriers, like distribution and storage, still prevent solar power from being adopted more aggressively. In addition, there’s the ever-present issue of intermittency, where arrays cannot collect power in bad weather and during evenings.

These issues have led to the concept of space-based solar power (SBSP), where satellites equipped with solar arrays could gather solar energy twenty-four hours a day, seven days a week, three-hundred and sixty-five days a year. To test this method, researchers at the California Institute of Technology (Caltech) recently launched a technology demonstrator to space. It’s called the Space Solar Power Demonstrator (SSPD), which will test several key components of SBSP and evaluate the method’s ability to harvest clean energy and beam it back to Earth.

Continue reading “Is Space Power a Good Idea? A New Spacecraft is Going to Find Out!”

NASA Just Tested a new Engine That Will Launch Artemis V and Beyond

NASA conducts an RS-25 hot fire on the Fred Haise Test Stand at Stennis Space Center in south Mississippi on Dec. 14. Credit: NASA/SSC

On November 16th, NASA launched the first mission of the Artemis Program (Artemis I), which splashed down three and a half weeks later. This uncrewed mission saw the Space Launch System (SLS) send an Orion spacecraft far beyond the orbit of the Moon, establishing a new record for distance traveled by a mission and the amount of time spent beyond Low Earth Orbit (LEO). Powering the core stage of the SLS were four Aerojet Rocketdyne RS-25s, the same engines used by the Space Shuttle – known as the Space Shuttle Main Engine (SSME).

By the end of the decade, NASA plans to mount a total of six Artemis launches that will include crewed missions to the surface, the creation of the Artemis Basecamp, and the deployment of the Lunar Gateway. NASA also plans to upgrade key components in the mission architecture along the way, which include replacing the Space Shuttle Era engines with the newly-designed RS-25E. On December 14th, NASA tested this engine for the first time at the Stennis Space Center in Mississippi, completing a hot fire test that lasted for just under three and a half minutes (209.5 seconds).

Continue reading “NASA Just Tested a new Engine That Will Launch Artemis V and Beyond”

Birds use Dynamic Soaring to Pick Up Velocity. We Could Use a Similar Trick to Go Interstellar

The Solar Sail demonstration mission. Credit: NASA

To stand on a coastal shore and watch how eagles, ravens, seagulls, and crows take flight in high winds. it’s an inspiring sight, to be sure. Additionally, it illustrates an important concept in aerial mechanics, like how the proper angling of wings can allow birds to exploit differences in wind speed to hover in mid-air. Similarly, birds can use these same differences in wind speed to gain bursts of velocity to soar and dive. These same lessons can be applied to space, where spacecraft could perform special maneuvers to pick up bursts of speed from “space weather” (solar wind).

This was the subject of a recent study led by researchers from McGill University in Montreal, Quebec. By circling between regions of the heliosphere with different wind speeds, they state, a spacecraft would be capable of “dynamic soaring” the same way avian species are. Such a spacecraft would not require propellant (which makes up the biggest mass fraction of conventional missions) and would need only a minimal power supply. Their proposal is one of many concepts for low-mass, low-cost missions that could become interplanetary (or interstellar) explorers.

Continue reading “Birds use Dynamic Soaring to Pick Up Velocity. We Could Use a Similar Trick to Go Interstellar”

Sierra Space Inflated a Habitat to Destruction, Testing its Limits Before Going to Orbit

What’s left of Sierra Space’s LIFE Habitat test article after the Ultimate Burst Pressure Test. Credit: Sierra Space.

Normally, it would be a very bad day if your space station habitat module blew up. But it was all smiles and high-fives in mission control when Sierra Space’s LIFE habitat was intentionally over-inflated until it popped spectacularly in an Ultimate Burst Pressure (UBP) test. This video shows the moment of boom from several different viewpoints.

Continue reading “Sierra Space Inflated a Habitat to Destruction, Testing its Limits Before Going to Orbit”

Nature’s Ultra-Rare Isotopes Can’t Hide from this New Particle Accelerator

The Facility for Rare Isotope Beams at the University of Michigan will study rare isotopes that last only fractions of a second. Image Credit: FRIB/University of Michigan.

A new particle accelerator at Michigan State University is producing long-awaited results. It’s called the Facility for Rare Isotope Beams, and it was completed in January 2022. Researchers have published the first results from the linear accelerator in the journal Physics Review Letters.

Continue reading “Nature’s Ultra-Rare Isotopes Can’t Hide from this New Particle Accelerator”

If We’re Going to Get Under the Ice on Europa, How Will We Send a Signal Back to the Surface?

Artist’s rendering of the Europa “tunnelbot.” (Credit: Alexander Pawlusik, LERCIP Internship Program NASA Glenn Research Center)
Artist’s rendering of the Europa “tunnelbot.” (Credit: Alexander Pawlusik, LERCIP Internship Program NASA Glenn Research Center)

If we send some type of nuclear-powered tunnelbot to Europa to seek life under its icy shield, how will we know what it finds? How can a probe immersed in water under all that ice communicate with Earth? We only have hints about the nature of that ice, what layers it has and what pockets of water it might hold.

All we know is that it’s tens of kilometres thick and as hard as granite.

Continue reading “If We’re Going to Get Under the Ice on Europa, How Will We Send a Signal Back to the Surface?”