Distant galaxies, dark matter, dark energy, and the origin and evolution of the universe itself are some of the many scientific goals of China’s newly announced space telescope. If all goes according to plan, the China Space Station Telescope (CSST) will blast off atop a Long March 5B rocket sometime in late 2023. Once in a safe orbit, CSST should begin observations in 2024. Judging by these research topics, it looks like the Chinese Academy of Sciences is throwing down an impressive scientific gauntlet for itself and its astronomers.
Continue reading “China Announces Its New Flagship Space Telescope Mission”Webb Has Almost Reached its Final, Coldest Temperature
Launched on December 25, 2021 from ESA’s launch site in Kourou, French Guiana aboard an Ariane 5 rocket, the James Webb Space Telescope (JWST) reached its final orbit at the L2 Lagrange point on January 24, 2022. It has since performed several operations to get it ready for its observing mission which should begin in about a month.
As part of getting it ready for its mission, NASA has been cooling off its instruments, such as the Mid-Infrared Instrument (MIRI), to operating temperatures. Now that they have reached that point, all that’s left to cool down are the mirrors.
Continue reading “Webb Has Almost Reached its Final, Coldest Temperature”
Space for All: Bringing Astronomy to Remote Mountain Villages in Morocco
The night sky is a great leveler, something that people from all walks of life have been able to look upon and draw inspiration from. Unfortunately, the ability to observe the planets and stars and study the mysteries of the Universe is still not open to everyone. When it comes to astronomy, there is still a problem of access, which mirrors disparities in development, education, and health outcomes worldwide.
This disparity is persistent not only in developed and developing nations but between urban and rural communities as well. In southern Morocco, this disparity is felt by public schools in the remote villages of the Atlas Mountains. But thanks to the Asif Astronomy Club and its founder – Ph.D. student El-Mehdi Essaidi – children in these schools are getting the chance to use a professional astronomical telescope to observe the stars and planets for the first time.
Continue reading “Space for All: Bringing Astronomy to Remote Mountain Villages in Morocco”A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets
We’ve found thousands of exoplanets in the last couple of decades. We’ve discovered exoplanets unlike anything in our own Solar System. But even with all we’ve found, it seems like there’s more and more to discover. Space scientists of all types are always working on the next generation of missions, which is certainly true for exoplanets.
Chinese researchers are developing an idea for an exoplanet-detecting array of space telescopes that acts as an interferometer. But it won’t only detect them. The array will use direct imaging to characterize distant exoplanets in more detail.
Continue reading “A Fleet of Space Telescopes Flying in Formation Could Reveal Details on Exoplanets”Next Generation Telescopes Could Search for Intelligent Civilizations Directly
We’re still in the early days of searching for life elsewhere. The Perseverance rover is on its way to a paleo-delta on Mars to look for fossilized signs of ancient bacterial life. SETI’s been watching the sky with radio dishes, listening for signals from distant worlds. Our telescopes are beginning to scan the atmospheres of distant exoplanets for biosignatures.
Soon we’ll take another step forward in the search when new, powerful telescopes begin to search not just for life but for other civilizations.
Continue reading “Next Generation Telescopes Could Search for Intelligent Civilizations Directly”Smaller, Ground-Based Telescopes can Study Exoplanet Atmospheres too
The next step to understanding exoplanets is to understand their atmospheres better. Astronomers can determine a planet’s mass, density, and other physical characteristics fairly routinely. But characterizing their atmospheres is more complicated.
Astronomers have had some success studying exoplanet atmospheres, and spacecraft like the James Webb Space Telescope and the ESA’s ARIEL mission will help a lot. But there are thousands of confirmed exoplanets with many more to come, and the Webb has many demands on its time.
Can smaller, ground-based telescopes play a role in understanding exoplanet atmospheres?
Continue reading “Smaller, Ground-Based Telescopes can Study Exoplanet Atmospheres too”Best Image Ever Taken of Stars Buzzing Around the Milky Way’s Supermassive Black Hole
It all began with the discovery of Sagittarius A*, a persistent radio source located at the Galactic Center of the Milky Way that turned out to be a supermassive black hole (SMBH). This discovery was accompanied by the realization that SMBHs exist at the heart of most galaxies, which account for their energetic nature and the hypervelocity jets extending from their center. Since then, scientists have been trying to get a better look at Sag A* and its surroundings to learn more about the role SMBHs play in the formation and evolution of our galaxy.
This has been the goal of the GRAVITY collaboration, an international team of astronomers and astrophysicists that have been studying the core of the Milky Way for the past thirty years. Using the ESO’s Very Large Telescope Interferometer (VLTI), this team obtained the deepest and sharpest images to date of the region around Sag A*. These observations led to the most precise measurement yet of the black hole’s mass and revealed a never-before-seen star that orbits close to it.
Continue reading “Best Image Ever Taken of Stars Buzzing Around the Milky Way’s Supermassive Black Hole”Lightweight, Flexible Lens Could be the Future of Space Telescopes
Holograms are useful for more than interesting-looking baubles in gift shops. Materials scientists have used them for applications from stress/strain gauges to data storage systems. It turns out they would also be useful in making extraordinarily lightweight, flexible mirrors for space telescopes. A new study led by researchers at the Rensselear Polytechnic Institue shows how that might happen.
Continue reading “Lightweight, Flexible Lens Could be the Future of Space Telescopes”What Would It Take To See Artificial Lights at Proxima Centauri B?
Is there an alien civilization next door? It’s…possible(ish). In late 2020, we discovered a signal from the direction of Proxima Centauri (not necessarily from Proxima Centauri), our closest neighbour star. Named BLC- 1 by project Break Through Listen, the signal is still being analyzed to ensure it isn’t simply an echo of our own civilization – typically what they turn out to be. But why not just directly look at planets in Proxima Centauri and see if a civilization is there?
From space, the most obvious sign somebody lives on Earth is the glow from the nightside of our planet. Our cities emit light that’s shed into the Cosmos. Problem is that our current generation of telescopes are not powerful enough to see lights on distant worlds. But several researchers are testing the capabilities of the next generation of telescopes already on the drawing board. The finding? Yes! if advanced enough…or glowy enough…we would be able to see if another civilization has the lights on at Proxima Centauri.
Continue reading “What Would It Take To See Artificial Lights at Proxima Centauri B?”The Giant Magellan Telescope’s 6th Mirror has Just Been Cast. One More to Go
By 2029, the Giant Magellan Telescope (GMT) in northern Chile will begin collecting its first light from the cosmos. As part of a new class of next-generation instruments known as “extremely large telescopes” (ELTs), the GMT will combine the power of sophisticated primary mirrors, flexible secondary mirrors, adaptive optics (AOs), and spectrometers to see further and with greater detail than any optical telescopes that came before.
At the heart of the telescope are seven monolithic mirror segments, each measuring 8.4 m (27.6 ft) in diameter, which will give it the resolving power of a 24.5 m (80.4 ft) primary mirror. According to recent statements from the GMT Organization (GMTO), the University of Arizona’s Richard F. Caris Mirror Lab began casting the sixth and seventh segments for the telescope’s primary mirror (which will take the next four years to complete).
More