Thanks to Cassini’s new vantage point granted by its inclined orbit researchers have gotten a new look at the south pole of Titan, Saturn’s largest moon. What they’ve recently discovered is a swirling vortex of gas forming over the moon’s pole, likely the result of the approach of winter on Titan’s southern hemisphere.
What we’re seeing here is thought to be an open cell convection process in Titan’s upper atmosphere. In open cells, air sinks in the center of the cell and rises at the edge, forming clouds at cell edges. However, because the scientists can’t see the layer underneath the layer visible in these new images, they don’t know what other mechanisms may be at work.
Titan has already been seen to have a thicker area of high-altitude haze over its north pole, and as autumn progresses toward winter in Titan’s south during the course of Saturn’s 29.7-year-long orbit this may very well be the beginnings of a southern polar hood.
An animation of this southern vortex can be found here.
“We suspect that this maelstrom, clearly forming now over the south pole and spinning more than forty times faster than the moon’s solid body, may be a harbinger of what will ultimately become a south polar hood as autumn there turns to winter. Of course, only time will tell.”
– Carolyn Porco, Cassini Imaging Team Leader
Discoveries like this are prime examples of why it was so important for Cassini to have an extended, long-duration mission around Saturn, so that seasonal changes in the planet and moons could be closely observed. New seasons bring new surprises!
The southern vortex structure was also captured in raw images acquired by Cassini on June 28. A color-composite made from three of those raw images is below (the vortex can be seen at center just right of the terminator):
Saturn’s hazy Titan is now on the short list of moons that likely harbor a subsurface ocean of water, based on new findings from NASA’s Cassini spacecraft.
As Titan travels around Saturn during its 16-day elliptical orbits, it gets rhythmically squeezed by the gravitational pull of the giant planet — an effect known as tidal flexing (see video below.) If the moon were mostly composed of rock, the flexing would be in the neighborhood of around 3 feet (1 meter.) But based on measurements taken by the Cassini spacecraft, which has been orbiting Saturn since 2004, Titan exhibits much more intense flexing — ten times more, in fact, as much as 30 feet (10 meters) — indicating that it’s not entirely solid at all.
Instead, Cassini scientists estimate that there’s a moon-wide ocean of liquid water beneath the frozen crust of Titan, possibly sandwiched between layers of ice or rock.
“Short of being able to drill on Titan’s surface, the gravity measurements provide the best data we have of Titan’s internal structure.”
– Sami Asmar, Cassini team member at JPL
“Cassini’s detection of large tides on Titan leads to the almost inescapable conclusion that there is a hidden ocean at depth,” said Luciano Iess, the paper’s lead author and a Cassini team member at the Sapienza University of Rome, Italy. “The search for water is an important goal in solar system exploration, and now we’ve spotted another place where it is abundant.”
Although liquid water is a necessity for the development of life, the presence of it alone does not guarantee that alien organisms are swimming around in a Titanic underground ocean. It’s thought that water must be in contact with rock in order to create the necessary building blocks of life, and as yet it’s not known what situations may exist around Titan’s inner sea. But the presence of such an ocean — possibly containing trace amounts of ammonia — would help explain how methane gets replenished into the moon’s thick atmosphere.
“The presence of a liquid water layer in Titan is important because we want to understand how methane is stored in Titan’s interior and how it may outgas to the surface,” said Jonathan Lunine, a Cassini team member at Cornell University, Ithaca, N.Y. “This is important because everything that is unique about Titan derives from the presence of abundant methane, yet the methane in the atmosphere is unstable and will be destroyed on geologically short timescales.”
The team’s paper appears in today’s edition of the journal Science. Read more on the Cassini mission site here.
Top image: artist’s concept showing a possible scenario for the internal structure of Titan. (A. Tavani). Side image: An RGB-composite color image of Titan and Dione in front of Saturn’s face and rings, made from Cassini images acquired on May 21, 2011. (NASA/JPL/SSI. Composite by J. Major.)
New data from the Cassini spacecraft shows enduring methane lakes in the equatorial regions on Saturn’s moon Titan. Previous models of the frigid liquids on Titan’s surface showed standing bodies of liquid would only exist at the poles, but one of the newly found “tropical” lakes appears to be about half the size of Utah’s Great Salt Lake, with a depth of at least 3 feet (1 meter).
Where could the liquid for these lakes come from? “A likely supplier is an underground aquifer,” said Caitlin Griffith, the paper’s lead author and a Cassini team associate at the University of Arizona, Tucson. “In essence, Titan may have oases.”
Understanding how lakes or wetlands form on Titan helps scientists learn about the moon’s weather. Like Earth’s hydrological cycle, Titan has a “methane” cycle, with methane rather than water circulating. In Titan’s atmosphere, ultraviolet light breaks apart methane, initiating a chain of complicated organic chemical reactions. But existing models haven’t been able to account for the abundant supply of methane.
“An aquifer could explain one of the puzzling questions about the existence of methane, which is continually depleted,” Griffith said. “Methane is a progenitor of Titan’s organic chemistry, which likely produces interesting molecules like amino acids, the building blocks of life.”
Global circulation models of Titan have theorized that liquid methane in the moon’s equatorial region evaporates and is carried by wind to the north and south poles, where cooler temperatures cause methane to condense. When it falls to the surface, it forms the polar lakes. On Earth, water is similarly transported by the circulation, yet the oceans also transport water, thereby countering the atmospheric effects.
The latest results come from Cassini’s visual and infrared mapping spectrometer, which detected the dark areas in the tropical region known as Shangri-La, near the spot where the European Space Agency’s Huygens probe landed in 2005. When Huygens landed, the heat of the probe’s lamp vaporized some methane from the ground, indicating it had landed in a damp area.
Areas appear dark to the visual and infrared mapping spectrometer when liquid ethane or methane are present. Some regions could be shallow, ankle-deep puddles. Cassini’s radar mapper has seen lakes in the polar region, but hasn’t detected any lakes at low latitudes.
The tropical lakes detected by the visual and infrared mapping spectrometer have remained since 2004. Only once has rain been detected falling and evaporating in the equatorial regions, and only during the recent expected rainy season. Scientists therefore deduce the lakes could not be substantively replenished by rain.
“We had thought that Titan simply had extensive dunes at the equator and lakes at the poles, but now we know that Titan is more complex than we previously thought,” said Linda Spilker, the Cassini project scientist based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Cassini still has multiple opportunities to fly by this moon going forward, so we can’t wait to see how the details of this story fill out.”
The findings appear in this week’s issue of the journal Nature.
Here’s a quick look at one of my favorite cosmic photo subjects – the varying layers of atmosphere that enshroud Saturn’s enormous moon Titan. The image above is a color-composite made from three raw images acquired by Cassini during its latest flyby.
On June 7 Cassini approached Titan within 596 miles (959 km) and imaged portions of the moon’s northwest quadrant with its radar instrument, as well as conducted further investigations of areas near the equator where surface changes were detected in 2010.
The image here was assembled from three raw images captured in red, green and blue visible light channels. It reveals some structure in the upper hydrocarbon haze layers that extend upwards above the moon’s opaque orange clouds — reaching 400-500 km in altitude, Titan’s atmosphere is ten times thicker than Earth’s!
The June 6 flyby was the second in a series of passes that will take Cassini into a more inclined orbit, where it will reside for the next three years as it investigates Saturn’s polar regions and obtains better views of its ring system.
Here’s a great shot of Titan and Saturn acquired by Cassini on May 6, 2012 just after a pass by the haze-covered moon. It’s a color-composite made from images taken in Cassini’s red, green and blue color channels, and the resulting image was color adjusted a bit to appear more “Saturny”.
UPDATE 7/2/12: The image above is featured in today’s Astronomy Picture of the Day (APOD)… check it out here.
Cassini also made some closer passes of Titan on May 6, taking images within about 710,000 km. After recent passes of Encealdus and Dione, Cassini buzzed past Titan in preparation of a targeted flyby on May 22, after which it will head up and out out of the “moonplane” in order to get a better view of Saturn’s rings and upper latitudes.
After that, Cassini won’t be playing amongst the moons again for three years, so images like this will be a rarity for a while.
Another image of Titan, closer-in and set against Saturn’s rings and clouds, shows the fine, transparent structure of the moon’s upper atmospheric haze layers:
Created by the breakdown of methane in Titan’s opaque atmosphere by UV radiation, the haze is composed of complex hydrocarbons that extend outwards up to ten times the thickness of Earth’s atmosphere!
(The RGB layers weren’t available for this particular view, so there’s no color version of it.)
Check out previous images from Cassini’s flyby of Dione and Enceladus, and follow along with the Cassini mission on the JPL site here.
Top image: Color-composite image of Titan and Saturn (NASA/JPL/SSI/J. Major) Bottom image: Titan in blue wavelength against Saturn (NASA/JPL/SSI)
A large lake on Saturn’s cloud-covered Titan seems very similar to the Etosha Pan, a salt-encrusted dry lakebed in northern Namibia that periodically fills with water. As it turns out, Titan’s “great lake” may also be temporary.
Ontario Lacus, so named because of its similarity both in shape and size to Lake Ontario here on Earth, was first discovered near the south pole of Titan by the Cassini spacecraft in 2009. Its smooth, dark appearance in radar images indicated a uniform and reflective surface, implying a large — although likely shallow — body of liquid.
Of course, on Titan the liquid isn’t water — it’s methane, which is the main ingredient of the hydrologic cycle found on the giant moon. That far from the Sun the temperatures at Titan’s poles fall to a frigid -300ºF (-185ºC), much too cold for water to exist as a liquid and so, on this world, methane has taken its place.
A research team led by Thomas Cornet of the Université de Nantes, France has taken a closer look at Cassini’s radar data of Ontario Lacus and found evidence of channels carved into the southern portion. According to the team, this likely indicates that the lakebed surface is exposed.
“We conclude that the solid floor of Ontario Lacus is most probably exposed in those areas,” said Cornet.
In addition, sediment layers surrounding the lake suggest that the liquid level has varied.
All in all, this reveals a striking resemblance between Ontario Lacus and Namibia’s Etosha Pan — an “ephemeral lake” that is dry for much of the year, occasionally filling with a shallow layer of water which evaporates, leaving salty rings of sediment.
The inherent otherworldly nature of Etosha Pan is further underlined — and perhaps foreshadowed! — by its use as a backdrop in the 1968 sci-fi film 2001: A Space Odyssey.
Although Ontario Lacus was initially thought to be permanently filled with liquid hydrocarbons, the team’s findings draw a strong correlation with this well-known Earthly environment, suggesting a much more temporary nature and showing the value of comparative research.
“These results emphasise the importance of comparative planetology in modern planetary sciences,” said Nicolas Altobelli, Cassini project scientist for ESA.”Finding familiar geological features on alien worlds like Titan allows us to test the theories explaining their formation.”
[/caption]
Even though there are lakes and rivers of liquid hydrocarbons on the surface of Saturn’s moon Titan, the rains that feed them may come few and far between. According to data gathered by NASA’s Cassini mission, parts of Titan might not see rain for more than 1,000 years.
And according to Dr. Ralph Lorenz, from the John Hopkins Applied Physics Laboratory (JHUALP), a new mission to Titan is exactly what’s needed to get to the bottom of this.
Rain on Titan?! It sounds bizarre, but scientists have observed a complex cycle of liquid on Titan, with lakes and rivers, clouds, and the rain that must feed them. But on Titan, where surface temperatures plunge to -179C, we’re not talking about water. The whole hydrological cycle runs with methane: methane lakes, methane rivers, and methane rain.
And it appears that the rain on Titan can be extreme, with deep river channels that must have had enormous flows for brief periods. But this rain must also be rare. In all of its observations of Titan, Cassini only spotted two instances of darkened regions that might have indicated rainfall.
In a recent talk at the Lunar and Planetary Science Conference (LPSC), Dr. Lorenz presented his estimates of the Titan rainfall, and the need for a new mission that could study it.
Titan Mare Explorer (TiME)
Dr. Lorenz is one of the scientists involved with the proposed Titan Mare Explorer (TiME) mission; one of three shortlisted missions that might be turned into NASA Discovery missions.
If selected, TiME would travel to the Saturn system, descend through Titan’s thick atmosphere, and land in Ligeia Mara, a large lake on the surface of the moon. It would search for rainstorms on the descent – an extremely unlikely event – and then watch the skies for evidence of rainfall. It would be able to “hear” rain falling directly onto it, and in the liquid around it. TiME would also be equipped with instruments that would let it see cloud formation, rain shafts, and even methane rainbows.
Assuming the rain shafts are 10 km wide, and would be observable at distances of 20 km, the lander should be able to detect rainstorms within a 1200 km2 area. According to Dr. Lorenz:
We might expect a 50% chance for a lander to be rained on directly in a 2500hr mission, but that its camera could observe nearby rainfall an expected ~5 times.
Once in 1,000 years?
While the weather system on Titan is similar to Earth, it probably has some significant differences, which Cassini observations have hinted at. Although there were possible storms seen in 2004, there was a huge gap until 2010. After the “storm”, the surface of Titan was changed with a large darkened area that could indicate saturation of liquid on the surface. These ponds seemed to dry up in future observations.
Estimates indicate that regions near Titan’s poles see rainfall for 10-100 hours every Titan year (30 Earth years). But the drier parts of the moon might not see more than a single rainfall every 1,000 years.
Little Enceladus and enormous Titan are seen on either side of Saturn’s rings in this image, a color-composite made from raw images acquired by Cassini on March 12, 2012. The original images were taken in red, green and blue color channels, and with a little Photoshop editing I combined them into a roughly true-color view of what Cassini saw as it passed within 1,045,591 km of Enceladus.
It may be one of the best images from Cassini yet this year! Cloud-covered Titan and tiny Prometheus (can you see it just above the rings on the right?) are literally dwarfed by their parent Saturn in an image captured on Jan. 5, 2012.
Prometheus’ pinpoint shadow can also be seen on Saturn’s cloud tops, just inside the thin, outermost F ring shadow at bottom left.
The two moons themselves couldn’t be more different; Titan, 3,200 miles (5,150 km) wide, is wrapped in a nitrogen and methane atmosphere ten times thicker than Earth’s and is covered with vast plains of dark hydrocarbon dunes and crisscrossed by rivers of liquid methane.
Prometheus, on the other hand, is a potato-shaped shepherd moon 92 miles long and 53 miles wide (148 x 53 km) that orbits Saturn just inside the narrow, ropy F ring. While it doesn’t have an atmosphere, it does create some impressive effects on the icy material in the ring!
Another moon, Pandora, casts its shadow onto Saturn just outside the F ring shadow at bottom center. 50 miles (80 km) wide, Pandora shepherds the outer edge of the F ring but is itself not visible in this image. Watch an animation here.
This image was featured on the Cassini Imaging Central Laboratory for Operations (CICLOPS) website on Feb. 28, 2012. The view looks toward the southern, unilluminated side of the rings from about 1 degree below the ringplane.
Image credit: NASA / JPL / Space Science Institute.
Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide
This month, the Solar System gives us a lot to observe and we’ll even start to see the ‘spring’ constellations appear later in the evenings. But February still has the grand constellations of winter, with mighty Orion as a centrepiece to long winter nights.
The Sun has finally started to perform as it should as it approaches “Solar Maximum.” This means we get a chance to see the northern lights (Aurora), especially if you live in such places as Scotland, Canada, Scandinavia, or Alaska or the southern light (Aurora Australis) if you live in the southern latitudes of South America, New Zealand and Australia. Over the past few weeks we have seen some fine aurora displays and will we hope to seesome in February!
We have a bit of a treat in store with a comet being this month’s favourite object with binoculars as well, so please read on to find out more about February’s night sky wonders.
You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.
So what sights are there in the February night sky and when and where can we see them?
Aurora
The Aurora or Northern Lights (Aurora Borealis) have been seen from parts of Northern Europe and North America these last few weeks. This is because the Sun has been sending out huge flares of material, some of which have travelled towards us slamming into our magnetic field. The energetic particles then follow the Earth’s magnetic field lines towards the poles and meet the atoms of our atmosphere causing them to fluoresce, similar to what happens in a neon tube or strip light.
The colours of the aurora depend on the type of atom the charged particles strike. Oxygen atoms for example usually glow with a green colour, with some reds, pinks and blues. So the more active the Sun gets, the more likely we are to see the Northern (or Southern) Lights.
All you need to see aurora is your eyes, with no other equipment is needed. Many people image the aurora with exposures of just a few seconds and get fantastic results. Unfortunately auroras are “space weather” and are almost as difficult to predict as normal terrestrial weather, but thankfully we can be given the heads up of potential geomagnetic storms by satellites monitoring the Sun such as “STEREO” (Solar TErrestrial RElations Observatory).
Spaceweather.com is a great resource for aurora and other space weather phenomenon and the site has real-time information on current aurora conditions and other phenomenon.
Planets
Mercury is too close to the Sun to be seen at the beginning of the month, but will be visible very low in the south west from the 17th onwards. At the end of February Mercury will be quite bright at around mag -0.8 and will be quite a challenge. It can be seen for about 30 minutes after sunset.
Venus will improve throughout the month in the south west and will pass within half a degree of Uranus on the 9th of February. You can see this through binoculars or a small telescope. On the 25th Venus and the slender crescent Moon can be seen together a fabulous sight. At the end of month Venus closes in on Jupiter for a spectacular encounter in March.
Mars can easily be spotted with the naked eye as a salmon pink coloured “star” and starts off the month in the constellation of Virgo and moves into Leo on the 4th. Mars is at opposition on March 3rd but is also at its furthest from the Sun on the 15th February making this opposition a poor one with respect to observing due to its small apparent size. The planet will still be visually stunning throughout the month.
Jupiter starts off the month high in the south as darkness falls and is still an incredibly bright star-like object. Through good binoculars or a small telescope you can see its four Galilean moons – a fantastic sight. On the 8th at around 19:50 UT, Europa will transit Jupiter and through a telescope you will see the tiny moons shadow move across its surface. Throughout February, Jupiter moves further west for its close encounter with Venus in March.
Saturn rises around midnight in the constellation of Virgo and appears to be a bright yellowish star. Through a small telescope you will see the moon Titan and Saturn’s rings as well.
Uranus is now a binocular or telescope object in the constellation of Pisces. On the 9th Uranus and the planet Venus will be within half a degree of each other.
Neptune is not visible this month.
Comets
Comet Garradd is still on show early in the month — if you have binoculars — and as the month progresses the viewing should improve. You can find the comet in the constellation of Hercules not far from the globular cluster M92. It is about a half a degree away or around the same width as the full Moon. The comet is around magnitude 7 or a little fainter than the more famous globular cluster M13 also to be found in Hercules, so you will definitely need binoculars to see it. The comet is heading north over the course of the month which should mean that it will become a little easier to see. At the beginning of the month you will have to get up early to see it, the best time being around 5:30 to 6:30 GMT. By the end of the month though, it should be visible all night long.
Moon phases
Full Moon – 7th February
Last Quarter – 14th February
New Moon – 21st February
Constellations
In February, Orion still dominates the sky but has many interesting constellations surrounding it.
Above and to the left of Orion you will find the constellation of Gemini, dominated by the stars Castor and Pollux, representing the heads of the twins with their bodies moving down in parallel lines of stars with each other.
Legend has it that Castor and Pollux were twins conceived on the same night by the princess Leda. On the night she married the king of Sparta, wicked Zeus (disguised as a swan) invaded the bridal suite, fathering Pollux who was immortal and twin of Castor who was fathered by the king so was mortal.
Castor and Pollux were devoted to each other and Zeus decided to grant Castor immortality and placed Castor with his brother Pollux in the stars.
Gemini has a few deep sky objects such as the famous Eskimo nebula and some are a challenge to see. Get yourself a good map, Planisphere or star atlas and see what other objects you can track down.