Alien Life on Titan? Hang on Just a Minute…

This artist concept shows a mirror-smooth lake on the surface of the smoggy moon Titan. Image credit: NASA/JPL

[/caption]

Two papers released last week detailing oddities found on Titan have blown the top off the ‘jumping to conclusions’ meter, and following media reports of NASA finding alien life on Saturn’s hazy moon, scientists are now trying to put a little reality back into the news. “Everyone: Calm down!” said Cassini imaging team leader Carolyn Porco on Twitter over the weekend. “It is by NO means certain that microbes are eating hydrogen on Titan. Non-bio explanations are still possible.” Porco also put out a statement on Monday saying such reports were “the unfortunate result of a knee-jerk rush to sensationalize an exciting but rather complex, nuanced and emotionally-charged issue.”

Astrobiologist Chris McKay told Universe Today that life on Titan is “certainly the most exciting, but it’s not the simplest explanation for all the data we’re seeing.”

McKay suggests everyone needs to take the Occam’s Razor approach, where the simplest theory that fits the facts of a problem is the one that should be selected.

The two papers suggest that hydrogen and acetylene are being depleted at the surface of Titan. The first paper by Darrell Strobel shows hydrogen molecules flowing down through Titan’s atmosphere and disappearing at the surface. This is a disparity between the hydrogen densities that flow down to the surface at a rate of about 10,000 trillion trillion hydrogen molecules per second, but none showing up at the surface.

“It’s as if you have a hose and you’re squirting hydrogen onto the ground, but it’s disappearing,” Strobel said. “I didn’t expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should ‘float’ to the top of the atmosphere and escape.”

The other paper (link not yet available) led by Roger Clark, a Cassini team scientist, maps hydrocarbons on Titan’s surface and finds a surprising lack of acetylene. Models of Titan’s upper atmosphere suggest a high level of acetylene in Titan’s lakes, as high as 1 percent by volume. But this study, using the Visual and Infrared Mapping Spectrometer (VIMS) aboard Cassini, found very little acetylene on Titan’s surface.

Of course, one explanation for both discoveries is that something on Titan is consuming the hydrogen and acetylene.

Even though both findings are important, McKay feels the crux of any possible life on Titan hinges on verifying Strobel’s discovery about the lack of hydrogen.

“To me, the whole thing hovers on this determination of whether there is this flux of hydrogen is real,” McKay said via phone. “The acetylene has been missing and the ethane has been missing, but that certainly doesn’t generate a lot of excitement, because how much is supposed to be there depends on how much is being made. There are a lot of uncertainties.”

McKay stressed both results are still preliminary and the hydrogen loss in particular is the result of a computer calculation, and not a direct measurement. “It is the result of a computer simulation designed to fit measurements of the hydrogen concentration in the lower and upper atmosphere in a self-consistent way,” he said in a statement he put out over the weekend. “It is not presently clear from Strobel’s results how dependent his conclusion of a hydrogen flux into the surface is on the way the computer simulation is constructed or on how accurately it simulates the Titan chemistry.”

However, the findings are interesting for astrobiology, and would require the actual existence of methane-based life, a theory McKay himself proposed five years ago, which he described today as an “odd idea.”

In 2005, McKay and Heather Smith (McKay and Smith, 2005) suggested that methane-based life (rather than water-based) called methanogens on Titan could consume hydrogen, acetylene, and ethane. The key conclusion of that paper was “The results of the recent Huygens probe could indicate the presence of such life by anomalous depletions of acetylene and ethane as well as hydrogen at the surface.”

Even though the two new papers seem to show evidence for all three of these on Titan, McKay said this is a still a long way from “evidence of life”. However, it is extremely interesting.

But what does McKay really think?

“Unfortunately, if I was betting, the most likely explanation is that Darrel’s (Strobel) results are wrong and that further analysis will show there is another explanation for the data he is trying to fit, besides the strong flux of hydrogen into the surface. I would be very happy if we did confirm all that data, but we do have to take it in steps.”

McKay provided four possibilities for the recently reported findings, listed in order of their likely reality:

1. The determination that there is a strong flux of hydrogen into the surface is mistaken. “It will be interesting to see if other researchers, in trying to duplicate Strobel’s results, reach the same conclusion,” McKay said.

2. There is a physical process that is transporting H2 from the upper atmosphere into the lower atmosphere. One possibility is adsorption onto the solid organic atmospheric haze particles which eventually fall to the ground. However this would be a flux of H2, and not a net loss of H2.

3. If the loss of hydrogen at the surface is correct, the non-biological explanation requires that there be some sort of surface catalyst, presently unknown, that can mediate the hydrogenation reaction at 95 K, the temperature of the Titan surface. “That would be quite interesting and a startling find although not as startling as the presence of life,” McKay said.

4. The depletion of hydrogen, acetylene, and ethane, is due to a new type of liquid-methane based life form as predicted (Benner et al. 2004, McKay and Smith 2005, and Schulze-Makuch and Grinspoon 2005 (Astrobiology, vol. 5, no. 4., p. 560-567.).

McKay said if further analysis shows that a strong flux of hydrogen into the surface really is happening, “then my first two explanations are no longer options and we are then left with two really quite remarkable alternatives, either there is some mysterious metalysis going on, which at 95 k is really hard to imagine, and would have enormous implications for things like chemical engineering. And the second alternative is that there is life, which is even more amazing.”

“So to make process on this,” McKay continued, “we have to confirm Darrel’s result that there is hydrogen being fluxed onto the surface of Titan, that is really way unexpected, and unfortunately, it constitutes extraordinary claims that need extraordinary evidence. Darrel’s paper is just a first step in that.”

What does McKay think about the rash of media reports claiming life on Titan?

“Well, I think it reflects our human fascination and desire to find life out there,” he said. “We want it to be true. When we’re given a set of facts, if they are consistent with biology we jump to that explanation first. The most biologically interesting explanation is the first one we look to. We ought to give that a name — something like ‘Carl Sagan’s Razor’ as opposed to ‘Occam’s Razor,’ which would say that ‘The most exciting explanation is assumed to be true until it is proven false.'”

You can read all of McKay’s written response on the CICLOPS website, which Porco said will be “the first installment in a new feature on the CICLOPS website, called ‘Making Sense of the News’, where from time to time, scientists, both involved in Cassini and not, will be invited to comment on new developments that bear on the exploration of the solar system and the study of planetary systems, including our own.”

Early Faint Sun Paradox Explained?

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

[/caption]

Models of the Sun’s evolution indicate it was as much as 30 percent less luminous during Earth’s early history than it is now. But, somehow the surface of the planet was warm enough for primordial life to emerge. A new study and a look at Saturn’s moon Titan has provided clues for how the Sun could have kept the early Earth warm enough. Scientists say a thick organic haze that enshrouded early Earth several billion years ago may have been similar to the haze that covers Titan and would have protected emerging life on the planet from the damaging effects of ultraviolet radiation, while warming the planet, as well.

Eric Wolf from the University of Colorado-Boulder and his team believe the organic haze was made up primarily of methane and nitrogen chemical byproducts created by reactions with light. If the particles clumped together in larger, complex structures, an arrangement known as a fractal size distribution, then the smallest particles would interact with the shortwave radiation, while the larger structures made out of the smaller particles would affect longer wavelengths. Not only would the haze have shielded early Earth from UV light, it would have allowed gases like ammonia to build up, causing greenhouse warming and perhaps helped to prevent the planet from freezing over.

Other researchers including Carl Sagan have proposed possible solutions to this “Early Faint Sun” paradox, which generally involved atmospheres with powerful greenhouse gases that could have helped insulate the Earth. But while those gases would have blocked the radiation, it wouldn’t have warmed Earth enough for life to form.

“Since climate models show early Earth could not have been warmed by atmospheric carbon dioxide alone because of its low levels, other greenhouse gases must have been involved,” said Wolf. “We think the most logical explanation is methane, which may have been pumped into the atmosphere by early life that was metabolizing it.”

Lab simulations helped researchers conclude that the Earth haze likely was made up of irregular “chains” of aggregate particles with greater geometrical sizes, similar to the shape of aerosols believed to populate Titan’s thick atmosphere. The arrival of the Cassini spacecraft at Saturn in 2004 has allowed scientists to study Titan, the only moon in the solar system with both a dense atmosphere and liquid on its surface.

During the Archean period there was no ozone layer in Earth’s atmosphere to protect life on the planet, said Wolf. “The UV shielding methane haze over early Earth we are suggesting not only would have protected Earth’s surface, it would have protected the atmospheric gases below it — including the powerful greenhouse gas, ammonia — that would have played a significant role in keeping the early Earth warm.”

The researchers estimated there were roughly 100 million tons of haze produced annually in the atmosphere of early Earth during this period. “If this was the case, an early Earth atmosphere literally would have been dripping organic material into the oceans, providing manna from heaven for the earliest life to sustain itself,” said team member Brian Toon, also from CU-Boulder.

“Methane is the key to make this climate model run, so one of our goals now is to pin down where and how it originated,” said Toon. If Earth’s earliest organisms didn’t produce the methane, it may have been generated by the release of gasses during volcanic eruptions either before or after life first arose — a hypothesis that will requires further study.

This new study will likely re-ignite interest in a controversial experiment by scientists Stanley Miller and Harold Urey in the 1950s in which methane, ammonia, nitrogen and water were combined in a test tube. After Miller and Urey ran an electrical current through the mixture to simulate the effects of lightning or powerful UV radiation, the result was the creation of a small pool of amino acids — the building blocks of life.

“We still have a lot of research to do in order to refine our new view of early Earth,” said Wolf. “But we think this paper solves a number of problems associated with the haze that existed over early Earth and likely played a role in triggering or at least supporting the earliest life on the planet.”

Sources: CU-Boulder, Science

Incredible Images of Enceladus From Cassini’s Latest Flyby

Titan, Saturn's rings and Enceladus. Credit: NASA/JPL/SSI

[/caption]

Wow. Cassini the artist has struck again, this time with amazing images from the close flyby of Enceladus that we wrote a preview about earlier this week. Cassini flew by Enceladus during the early hours of May 18 UTC, coming within about 435 kilometers (270 miles) of the moon’s surface. The raw images came in late last night, and in my inbox this morning was an email from Stuart Atkinson, (no relation, but great name) alerting me to the treasures. Stu himself has called this image “the new iconic image of the space age,” and Emily Lakdawalla of the Planetary Blog has called these images “some of the most amazing Cassini has captured yet.”

What you’re seeing here is hazy Titan, backlit by the Sun, with Saturn’s rings in the foreground– plus, at the way bottom is the limb of the night side of Enceladus’ south pole. Emily has created a flipped, annotated image (plus there’s more Enceladus jaw-droppers below:

nceladus, Titan, and the rings of Saturn (explained) Credit: NASA/JPL/SSI/annotated by Emily Lakdawa. Click for larger version.

The 'fountains' of Enceladus. Credit: NASA/JPL/SSI

Three huge “fountains” of Enceladus geysers are visible in this raw image taken by Cassini on May 18, 2010. The camera was pointing toward Enceladus at approximately 14,972 kilometers away, and the image was taken using the CL1 and CL2 filters. Emily, with her photo editing prowess, has created a movie from four different images as Cassini cruised closer to the moon.

Astro0 on UnmannedSpaceflight.com has put the two different images together to create a collage of what it would have looked like if the plumes were visible in the image with Titan. Gorgeous! Plus, here’s a color version Astro0 created.

Plus there’s this very interesting raw image from Cassini:

Raw image from Cassini on May 18. Credit: NASA/JPL/SSI

Explanations anyone?

Cassini will be flying by Titan in the early hours of May 20 UTC, coming within 1,400 kilometers (750 miles) of the surface. Although Cassini will primarily be doing radio science during this pass to detect subtle variations in the gravitational tug on the spacecraft by Titan, hopefully we’ll see some new visible light images of Titan, as well.

For more images from Cassini, see the Cassini website, and the section for the raw images.

Cassini’s Cruise: Close Flybys of Two Moons in Less Than Two Days

On the left, Saturn's moon Enceladus is backlit by the sun, showing the fountain-like sources of the fine spray of material that towers over the south polar region. On the right, is a composite image of Titan. Image credit: NASA/JPL/SSI and NASA/JPL/University of Arizona

[/caption]

It’s a space navigator’s dream! The Cassini spacecraft will perform close flybys of two of Saturn’s most enigmatic moons all within less than 48 hours, and with no maneuvers in between. Enceladus and Titan are aligned just right so that Cassini can catch glimpses of these two contrasting moons – one a geyser world and the other an analog to early Earth.

Cassini will make its closest approach to Enceladus late at night on May 17 Pacific time, which is in the early hours of May 18 UTC. The spacecraft will pass within about 435 kilometers (270 miles) of the moon’s surface.

The main scientific goal at Enceladus will be to watch the sun play peekaboo behind the water-rich plume emanating from the moon’s south polar region. Scientists using the ultraviolet imaging spectrograph will be able to use the flickering light to measure whether there is molecular nitrogen in the plume. Ammonia has already been detected in the plume and scientists know heat can decompose ammonia into nitrogen molecules. Determining the amount of molecular nitrogen in the plume will give scientists clues about thermal processing in the moon’s interior.

Then on to Titan: the closest approach will take place in the late evening May 19 Pacific time, which is in the early hours of May 20 UTC. The spacecraft will fly to within 1,400 kilometers (750 miles) of the surface.

Cassini will primarily be doing radio science during this pass to detect the subtle variations in the gravitational tug on the spacecraft by Titan, which is 25 percent larger in volume than the planet Mercury. Analyzing the data will help scientists learn whether Titan has a liquid ocean under its surface and get a better picture of its internal structure. The composite infrared spectrometer will also get its southernmost pass for thermal data to fill out its temperature map of the smoggy moon.

Cassini has made four previous double flybys and one more is planned in the years ahead.

For more information on the Enceladus flyby, dubbed “E10,” see this link.

For more information on the Titan flyby, dubbed “T68,” see this link.

Source: JPL

Life on Titan Could Be Smelly and Explosive

Artist concept of Methane-Ethane lakes on Titan (Credit: Copyright 2008 Karl Kofoed). Click for larger version.

[/caption]

Could there be life on Titan? If so, one astrobiologist says humans probably couldn’t be in the same room with a Titanian and live to tell about it. “Hollywood would have problems with these aliens” said Dr. William Bains. “Beam one onto the Starship Enterprise and it would boil and then burst into flames, and the fumes would kill everyone in range. Even a tiny whiff of its breath would smell unbelievably horrible. But I think it is all the more interesting for that reason. Wouldn’t it be sad if the most alien things we found in the galaxy were just like us, but blue and with tails?”

While giving an obvious nod to the recent movie “Avatar,” Bains’ research provides insight to the difficulties we might encounter – beyond cultural – if we ever meet up with alien life. There could be unintended harmful consequences for one species, or both.

Bains is working to find out just how extreme the chemistry of life can be. Life on Titan, Saturn’s largest moon, represents one of the more bizarre scenarios being studied. While images sent back by the Cassini/Huygens mission might make Titan look Earth-like and maybe even inviting, it has a thick atmosphere of frozen, orange smog. At ten times our distance from the Sun, it is a frigid place, with a surface temperature of -180 degrees Celsius. Water is permanently frozen into ice and the only liquid available is liquid methane and ethane.

So instead of water based-life (like us), life on Titan would likely be based on methane.

“Life needs a liquid; even the driest desert plant on Earth needs water for its metabolism to work. So, if life were to exist on Titan, it must have blood based on liquid methane, not water. That means its whole chemistry is radically different. The molecules must be made of a wider variety of elements than we use, but put together in smaller molecules. It would also be much more chemically reactive,” said Bains.

Additionally, Bains said a metabolism running in liquid methane would have to be built of smaller molecules than terrestrial biochemistry.

“Terrestrial life uses about 700 molecules, but to find the right 700 there is reason to suppose that you need to be able to make 10 million or more,” Bains said. “The issue is not how many molecules you can make, but whether you can make the collection you need to assemble a metabolism.”

Bains said doing such assembling is like trying to find bits of wood in a lumber-yard to make a table.

“In theory you only need 5,” he said. “But you may have a lumber-yard full of offcuts and still not find exactly the right five that fit together. So you need the potential to make many more molecules than you actually need. Thus the 6-atom chemicals on Titan would have to include much more diverse bond types and probably more diverse elements, including sulphur and phosphorus in much more diverse and (to us) unstable forms, and other elements such as silicon.”

Energy is another factor that would affect the type of life that could evolve on Titan. With Sunlight a tenth of a percent as intense on Titan’s surface as on the surface of Earth, energy is likely to be in short supply.

“Rapid movement or growth needs a lot of energy, so slow-growing, lichen-like organisms are possible in theory, but velociraptors are pretty much ruled out,” said Bains.

Whatever life may be on Titan, at least we know there won’t be a Jurassic Park.

Bains, whose research is carried out through Rufus Scientific in Cambridge, UK, and MIT in the USA, is presenting his research at the National Astronomy Meeting in Glasgow, Scotland on April 13, 2010.

Source: RAS NAM

Sailing the Seas of Titan

Titan's Ligeia Mare. Credit: NASA/JPL/USGS

The first interplanetary nautical craft may be a boat to explore the methane seas of Titan. A proposed mission to Titan would explore some of its largest seas, including Ligeia Mare (pictured) or the Kraken Mare, both of which are in the northern hemisphere of the foggy moon of Saturn. The concept has been studied for over two years by scientific team led by Ellen Stofan of Proxemy Research, Inc. in Washington DC, and has recently been submitted to NASA.

The concept is under consideration by NASA to be one of the Discovery Class missions – low-cost, high-return missions, which include the MESSENGER and Kepler missions. If chosen, the Titan Mare Explorer (TiME), could launch as early as January of 2015, and would make port at Titan in June of 2023. The total proposed cost of TiME is currently estimated at $425 million. Stofan described the proposal at this year’s American Geophysical Union meeting in San Fransisco, CA.

Lakes, seas, and rivers were discovered on Titan by the Cassini spacecraft in 2005. Since then, the weather and climate patterns of the moon have been scrutinized by scientists, leading to the discovery of both fog and rain.

Of course, the proposed boat wouldn’t be the first craft to land on Titan – that distinction is held by the Huygens probe, which as part of the Cassini mission landed on Titan on January 14th, 2005 and for three hours took images and scientific data which it sent back to Earth. Huygens touched down on dry land, though it was designed to operate on either land or ocean.

Proposed instruments for the boat include a mass spectrometer, sonar, cameras and meteorology instruments. TiME would investigate the chemical composition of the seas of Titan, as well as monitor the cycle of ethane and methane on the moon (called the “methane-ologic” cycle), a process that scientists are just beginning to understand. The sonar would be used just like it is on submarines and boats here on Earth – to map the depth of the seas, as well as get an accurate image of the sea bottom.

Since the cloudy and foggy surface of Titan sees little sunlight, the boat is proposed to be powered by an Advanced Stirling Radioisotope Generator. These types of engines, called Stirling engines after the inventor, Robert Stirling, use a radioactive source such as plutonium to heat a gas in one chamber, and as it flows to a cooler chamber the flow is turned into mechanical energy with a very high rate of efficiency.

If the boat is seaworthy, it may set a precedent to give us Earthlubbers a chance at understanding the only other body in our Solar System with lakes and seas on its surface (though Europa and Enceladus are thought to have watery oceans under their crusts). By comparing the methane-ologic cycle on Titan with the Earth’s hydrologic cycle, scientists could gain a more intricate knowledge of the large-scale impact of these cycles.

Source: Physorg, Ellen Stofan’s presentation (available here in PDF)

Cassini Captures Sunshine Gleaming off Lake on Titan


This image shows the first flash of sunlight reflected off a lake on Saturn’s moon Titan. Credit: NASA/JPL

Dear friend,
Ah, yes. Another gorgeous day here in the northern lake district. It warmed up to about 94 K (-179 °C, or -290 °F) and we sat and enjoyed the sunshine gleaming off the liquid lakes here on Titan. Wish you were here!

Liquid lakes? Gleaming sunshine? Titan?

Yes, it’s all true. The Cassini Spacecraft has captured the first flash of sunlight reflected off a lake on Saturn’s moon Titan, confirming the presence of liquid on the part of the moon dotted with many large, lake-shaped basins.

Cassini scientists had been looking for the glint, also known as a specular reflection, since the spacecraft began orbiting Saturn in 2004. But Titan’s northern hemisphere, which has more lakes than the southern hemisphere, has been veiled in winter darkness. The sun only began to directly illuminate the northern lakes recently as it approached the equinox of August 2008, the start of spring in the northern hemisphere. Titan’s hazy atmosphere also blocked out reflections of sunlight in most wavelengths. This serendipitous image was captured on July 8, 2009, using Cassini’s visual and infrared mapping spectrometer.

This image is being presented at the fall meeting of the American Geophysical Union in San Francisco.

“This one image communicates so much about Titan — thick atmosphere, surface lakes and an otherworldliness,” said Bob Pappalardo, Cassini project scientist, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “It’s an unsettling combination of strangeness yet similarity to Earth. This picture is one of Cassini’s iconic images.”

Titan, Saturn’s largest moon, has captivated scientists because of its many similarities to Earth. Scientists have theorized for 20 years that Titan’s cold surface hosts seas or lakes of liquid hydrocarbons, making it the only other planetary body besides Earth believed to harbor liquid on its surface. While data from Cassini have not indicated any vast seas, they have revealed large lakes near Titan’s north and south poles.

In 2008, Cassini scientists using infrared data confirmed the presence of liquid in Ontario Lacus, the largest lake in Titan’s southern hemisphere. But they were still looking for the smoking gun to confirm liquid in the northern hemisphere, where lakes are also larger.

Katrin Stephan, of the German Aerospace Center (DLR) in Berlin, an associate member of the Cassini visual and infrared mapping spectrometer team, was processing the initial image and was the first to see the glint on July 10th.

“I was instantly excited because the glint reminded me of an image of our own planet taken from orbit around Earth, showing a reflection of sunlight on an ocean,” Stephan said. “But we also had to do more work to make sure the glint we were seeing wasn’t lightning or an erupting volcano.”

Team members at the University of Arizona, Tucson, processed the image further, and scientists were able to compare the new image to radar and near-infrared-light images acquired from 2006 to 2008.

They were able to correlate the reflection to the southern shoreline of a lake called Kraken Mare. The sprawling Kraken Mare covers about 400,000 square kilometers (150,000 square miles), an area larger than the Caspian Sea, the largest lake on Earth. It is located around 71 degrees north latitude and 337 degrees west latitude.

The finding shows that the shoreline of Kraken Mare has been stable over the last three years and that Titan has an ongoing hydrological cycle that brings liquids to the surface, said Ralf Jaumann, a visual and infrared mapping spectrometer team member who leads the scientists at the DLR who work on Cassini. Of course, in this case, the liquid in the hydrological cycle is methane rather than water, as it is on Earth.

“These results remind us how unique Titan is in the solar system,” Jaumann said. “But they also show us that liquid has a universal power to shape geological surfaces in the same way, no matter what the liquid is.”

Source: JPL

Lake Asymmetry on Titan Explained

This mosaic of Cassini, SAR, ISS, and VIS images data shows that there are many more lakes in the northern regions of Titan than in the south. The eccentric orbit of Saturn is thought to have caused this imbalance. Image Credit: NASA/JPL/Caltech/University of Arizona/Cassini Imaging Team

If you’ve wanted to take a swim in a lake on Titan, don’t: they’re not lakes like we have here on Earth, composed of methane and ethane instead of water. If you have somehow evolved lungs to breathe and swim in these chemicals, you should take your beach vacation in the northern hemisphere of Titan, where you’ll find many more lakes. Data taken by the Cassini mission has shown that there are more of these methane lakes concentrated in the northern hemisphere of Saturn’s moon than in the southern hemisphere. A recent analysis of the Cassini findings by a team at Caltech has shown that the cause of this asymmetry of lakes is due to the orbit of Saturn.

Because of the eccentricity of Saturn’s orbit around the Sun, there is a constant transfer of methane in Titan’s atmosphere from the south to the north. This effect is called astronomical climate forcing, or the Milankovitch cycle, and is thought to be the cause of ice ages here on Earth. We wrote about the Milankovitch cycles and their influence on climate change just earlier today.

Scientists originally thought that the northern hemisphere was somehow differently structured than the south. Imaging data from Cassini showed that ethane and methane lakes cover 20 times more area in the northern hemisphere than lakes in the south. There also are more half-filled and dried-up lake beds in the north. For example, if the composition of the surface of Titan somehow allowed for more methane and ethane to permeate the ground more in the north, this could have explained the difference. But further data from Cassini has confirmed that there is no great difference in topography between the two hemispheres of Titan.

The seasonal differences on Titan only partially explain the asymmetry of lake formation. One year on Titan is 29.5 Earth years, so about every 15 years the seasons of Titan reverse. In other words, the winter and summer seasons could have caused the evaporation and transfer of gas to the north, where it is cooled and is currently in the form of lakes until the seasons change again.

A team led by Oded Aharonson, associate professor of planetary science at Caltech found that there was much more to the story, though. The seasonal effect could only account for changes in lake depth for each hemisphere to vary by about one meter. Titan’s lakes are hundreds of meters deep on average, and this process is too slow to explain the depth changes we see today. It became apparent that the seasonal differences were only partly contributing to this difference.

“On Titan, there are long-term climate cycles in the global movement of methane that make lakes and carve lake basins. In both cases we find a record of the process embedded in the geology,” Aharonson said in a press release.

The Milankovitch cycle on Titan is likely the cause of the lake imbalance. Summers in the north are long and relatively mild, while those in the south are shorter, but warmer. Over thousands of years, this leads to a net movement of gas towards the north, which then condenses and stays there in liquid form. During southern summer Titan is close to the sun, and during northern summer it is approximately 12% further from the Sun.

Their results appear in the advance online version of Nature Geoscience for November 29th. Animations detailing the transfer are available on Oded Aharonson’s home page.

If Cassini would have been sent to Titan 32,000 years ago, the picture would have been reversed: the south pole would have many more lakes than the north. Conversely, any Titanian deep-lake divers in a few thousand years will fare much better in the lakes of the south.

Source: Eurekalert, Oded Aharonson’s Home Page

New Evidence of Seasonal Change on Titan

Stereographic projection of Synthetic Aperture Radar (SAR) imagery of Titan’s south polar region obtained between Sep. 2005 and July 2009. The Cassini radar has observed 60% of this area and 9% has repeat coverage. Areas where changes have been detected are outlined in red. Credit: Alex Hayes and Jonathan Lunine

[/caption]
New images of Titan’s surface from the Cassini spacecraft show changes which are evidence of seasonal change. Objects identified earlier as liquid hydrocarbon lakes are shrinking and disappearing over the course of one to several Earth years. Scientists say seasonal temperature variations causing evaporation is the most likely cause for the changes observed. Cassini’s Synthetic Aperture Radar (SAR) repeatedly peered through Titan’s thick atmosphere, and data show that the lakes exhibit more than an order of magnitude increase in radar return and have disappearing borders between observations, suggesting surface change. These changes cannot be explained without invoking temporal variability, scientists reported at the American Astronomical Society’s Division for Planetary Sciences meeting now under way in Fajardo, Puerto Rico.

Alex Hayes, of the California Institute of Technology, and Dr. Jonathan Lunine, of the University of Rome Tor Vergata shared images of several regions on Titan’s south pole. Ontario Lacus is the largest and best characterized lake on Titan. Between July 2004 and July 2009, the shorelines of Ontario Lacus have receded, consistent with liquid evaporation and/or infiltration. In June and July 2009, the Cassini radar acquired its first high-resolution SAR images of the lake. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study Ontario.

Areas where the Cassini radar has observed transient surface liquid in Titan’s south polar region. The top two images are located near (60S, 210W) and were obtained in December 2007 and May 2009. Empty lake features are outlined in red and filled lakes, observed in the 2007 image, are outlined in cyan. The lake features disappear between observations. The bottom row consists of images near (69S, 90W) obtained in Oct. 2007 and Dec. 2008. Empty lake features observed in Dec. 2008 are outlined in red. The empty lake features in the bottom-left section of the image are dark in Oct. 2007, consistent with liquid-filled lakes. In the Dec. 2008 image the brightness of these features are indistinguishable from the empty lakes in the upper-right section of the image (which are bright in both observations), suggesting surface change.
Areas where the Cassini radar has observed transient surface liquid in Titan’s south polar region. The top two images are located near (60S, 210W) and were obtained in December 2007 and May 2009. Empty lake features are outlined in red and filled lakes, observed in the 2007 image, are outlined in cyan. The lake features disappear between observations. The bottom row consists of images near (69S, 90W) obtained in Oct. 2007 and Dec. 2008. Empty lake features observed in Dec. 2008 are outlined in red. The empty lake features in the bottom-left section of the image are dark in Oct. 2007, consistent with liquid-filled lakes. In the Dec. 2008 image the brightness of these features are indistinguishable from the empty lakes in the upper-right section of the image (which are bright in both observations), suggesting surface change.

Evaporation is the most likely scenario for observed changes on Titan’s surface. Alternative explanations include freezing, cryovolcanism, and subsurface infiltration. Freezing is unlikely due to thermodynamic reasons during the summer season in Titan’s south pole, and there are no clearly observable cryovolcanic features in the study areas. However, liquids evaporating and becoming part of a static hydrologic system is inconsistent with the observations. But, the scientists said, infiltration into a dynamic hydrologic system with a regionally varying methane/ethane table is possible.

“If evaporation is responsible, model results suggest rates are about 1m/yr, similar to current GCM estimates of methane evaporation rates for the latitudes and season in question,” Hayes and Lunine wrote in their press release. “An analysis of the receding shorelines observed in Ontario Lacus also yield evaporation rates of about 1 m/yr and support the results of the two- layer model for the smaller lakes. These observations constrain volatile fluxes and hence, the evolution of Titan’s hydrologic system.”

Source: AAS Planetary Science Division

Titan’s Haze Acts as Ozone Layer

Crucial building blocks in the organic haze layers of Titan and possibly of early Earth come from chemical reactions. Image credits courtesy of NASA-JPL, Dr. Xibin Gu, and Reaction Dynamics Group, University of Hawaii.

[/caption]
Titan appears to be more like Earth all the time, and a new understanding of Titan’s hazy atmosphere could provide clues to the evolution of Earth’s early atmospheric environment and the development of life on our home planet. Researchers have discovered a series of chemical reactions on Saturn’s largest moon that may shield the moon’s surface from ultraviolet radiation, similar to how Earth’s ozone layer works. The reactions may also be responsible for forming the large organic molecules that compose the moon’s thick and hazy orange atmosphere.

Scientists have long understood that high in Titan’s atmosphere, sunlight breaks apart methane into carbon and hydrogen. These elements react with nitrogen and other ingredients to form a thick haze of complex hydrocarbons which completely enshrouds the moon.

But recently, the role of polyynes in the chemical evolution of Titan’s atmosphere has been vigorously researched and debated. Polyynes are a group of organic compounds with alternating single and triple bonds, such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH). These polyynes are thought to serve as an UV radiation shield in planetary environments, and could act as prebiotic ozone. This would be important for any life attempting to form on Titan.

“Even if you form biologically important molecules (via other reactions) and there is no ozone or ozone like-layer, these molecules will not always survive the harsh radiation environment,” said Ralf Kaiser, lead scientist of the study.

However, the underlying chemical processes that initiate the formation and control the growth of polyynes have not been understood.

Kaiser and his colleagues studied the formation of triacetylene and larger organic molecules in the lab and in computer simulations. They found that triacetylene can be formed by collisions between two small molecules in a reaction that can be easily initiated under the cold conditions found in Titan’s atmosphere.

The authors suggest that triacetylene, an organic molecule that could act as a shield for ultraviolet radiation, may serve as the building block for creating complex molecules in Titan’s atmosphere.

“The present experiments are conducted with molecules containing carbon and hydrogen atoms only,” Kaiser told Universe Today. “To investigate the formation of astrobiologically important molecules on Titan, we have to ‘add’ oxygen and nitrogen, too.” Kaiser said they plan to do those type of experiments later this year.

The team said they hope their combined experimental,theoretical, and modeling study will act as a template, and trigger much needed, successive investigation of the chemistry of surrounding Titan so that a more complete picture of the processes involved in the chemical processing of moon’s atmosphere will emerge.

Lead image caption: Crucial building blocks in the organic haze layers of Titan and possibly of early Earth come from chemical reactions. Image credits courtesy of NASA-JPL, Dr. Xibin Gu, and Reaction Dynamics Group, University of Hawaii

Source: PNAS