Probing Pluto’s Paltry Atmosphere Using A Solar Eclipse And Spacecraft

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

Pluto is so far away from us and so tiny that it’s hard to glean even basic facts about it. What is its tenuous atmosphere made of? And how to observe it during NASA’s New Horizons very brief flyby next July? A recent Johns Hopkins blog post explains how a careful maneuver post-Pluto will let investigators use the Sun to examine the dwarf planet’s true nature.

Investigators will use an instrument called Alice, an ultraviolet spectrometer, to look at the atmosphere around Pluto and its largest moon, Charon. Alice is capable of examining the gases in the atmosphere using a large “airglow” aperture (4 by 4 centimeters) and also using the Sun for observation with a smaller, 1-mm solar occultation channel.

“Once New Horizons flies past Pluto, the trajectory will conveniently (meaning, carefully planned for many years) fly the spacecraft through Pluto’s shadow, creating an effect just like a solar eclipse here on Earth,” wrote Joel Parker, New Horizons co-investigator, in a blog post.

New Horizons
New Horizons spacecraft. Image Credit: NASA

“So we can (and will) just turn the spacecraft around and stare at the Sun, using Alice as it goes behind Pluto to measure how the Sun’s ultraviolet light changes as that light passes through deeper and deeper parts of Pluto’s atmosphere. This technique lets us measure the composition of Pluto’s atmosphere as a function of altitude.”

And guess where the technique was used not too long ago? Titan! That’s a moon of Saturn full of hydrocarbons and what could be a precursor chemistry to life. The moon is completely socked in with this orange haze that is intriguing. Scientists are still trying to figure out what it is made of — and also, to use our understanding of it to apply to planets outside our solar system.

When a huge exoplanet passes in front of its star, and it’s close enough to Earth, scientists are starting to learn how to ferret out information about its chemistry. This shows them what temperature the atmosphere is like and what it is made of, although it should be emphasized scientists are only starting on this work.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view.  Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

The goal of performing these transit observations of Titan was to understand how haze on an exoplanet might blur the observations. From four passes with the Cassini spacecraft, the team (led by Tyler Robinson at NASA’s Ames Research Center) found that haze would make it difficult to get information from all but the upper atmosphere.

“An additional finding from the study is that Titan’s hazes more strongly affect shorter wavelengths, or bluer, colors of light,” NASA stated at the time. “Studies of exoplanet spectra have commonly assumed that hazes would affect all colors of light in similar ways. Studying sunsets through Titan’s hazes has revealed that this is not the case.”

The nature of Pluto will better come to light when New Horizons makes its pass by the planet in July 2015. Meanwhile, controllers are counting down the days until the spacecraft emerges from its last hibernation on Saturday (Dec. 6).

Source: Johns Hopkins Applied Physics Laboratory

Comet Landing: Side-By-Side Pics Of Alien Surfaces Humanity Explored

As of November 2014, these are all of the planetary, lunar and small body surfaces where humanity has either lived, visited, or sent probes to. Composition by Mike Malaska, updated by Michiel Straathof. Image credits: Comet 67P/C-G [Rosetta/Philae]: ESA / Rosetta / Philae / CIVA / Michiel Straathof. Asteroid Itokawa [Hayabusa]: ISAS / JAXA / Gordan Ugarkovic. Moon [Apollo 17]: NASA. Venus [Venera 14]: IKI / Don Mitchell / Ted Stryk / Mike Malaska. Mars [Mars Exploration Rover Spirit]: NASA / JPL / Cornell / Mike Malaska. Titan [Cassini-Huygens]: ESA / NASA / JPL / University of Arizona. Earth: Mike Malaska

Correction, 11:33 a.m. EST: The University of Central Florida’s Phil Metzger points out that the image composition leaves out Eros, which NEAR Shoemaker landed on in 2001. This article has been corrected to reflect that and to clarify that the surfaces pictured were from “soft” landings.

And now there are eight. With Philae’s incredible landing on a comet earlier this week, humans have now done soft landings on eight solar system bodies. And that’s just in the first 57 years of space exploration. How far do you think we’ll reach in the next six decades? Let us know in the comments … if you dare.

More seriously, this amazing composition comes courtesy of two people who generously compiled images from the following missions: Rosetta/Philae (European Space Agency), Hayabusa (Japan Aerospace Exploration Agency), Apollo 17 (NASA), Venera 14 (Soviet Union), the Spirit rover (NASA) and Cassini-Huygens (NASA/ESA). Omitted is NEAR Shoemaker, which landed on Eros in 2001.

Before Philae touched down on Comet 67P/Churyumov–Gerasimenko Wednesday, the NASA Jet Propulsion Laboratory’s Mike Malaska created a cool infographic of nearly every place we’ve lived or visited before then. This week, Michiel Straathof updated the infographic to include 67P (and generously gave us permission to use it.)

And remember that these are just the SURFACES of solar system bodies that we have visited. If you include all of the places that we have flown by or taken pictures from of a distance in space, the count numbers in the dozens — especially when considering prolific imagers such as Voyager 1 and Voyager 2, which flew by multiple planets and moons.

To check out a small sampling of pictures, visit this NASA website that shows some of the best shots we’ve taken in space.

Titanic Liquid: Blinding ‘Sunglint’ Shines On Saturn’s Swampy Moon

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

See that yellow smudge in the image above? That’s what the Sun looks like reflecting off the seas of Titan, that moon of Saturn that excites astrobiologists because its chemistry resembles what early Earth could have looked like. This image represents the first time this “sunglint” and Titan’s northern polar seas have been captured in one mosaic, NASA said.

What’s more, if you look closely at the sea surrounding the sunlight, you can see what scientists dub a “bathtub ring.” Besides looking pretty, this image from the Cassini spacecraft shows the huge sea (called Kraken Mare) was actually larger at some point in Titan’s past.

“The southern portion of Kraken Mare … displays a ‘bathtub ring’ — a bright margin of evaporate deposits — which indicates that the sea was larger at some point in the past and has become smaller due to evaporation,” NASA stated. “The deposits are material left behind after the methane and ethane liquid evaporates, somewhat akin to the saline crust on a salt flat.”

In this near-infrared global mosaic of Titan, sunglint and the moon's polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
In this near-infrared global mosaic of Titan, sunglint and the moon’s polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

The sunlight was so bright that it saturated the detector on Cassini that viewed it, called the Visual and Infrared Mapping Spectrometer (VIMS) instrument. The sun was about 40 degrees above the horizon of Kraken Mare then, which is the highest ever observed on Titan.

The T-106 flyby Oct. 23 was the second-to-last closeup view Cassini will have of Titan this year. The spacecraft has been circling Saturn’s system for more than 10 years, and is now watching Titan (and Saturn’s) northern hemisphere enter summer.

Titan is covered in a thick, orangey atmosphere that hid its surface from scientists the first time a spacecraft zoomed by it in the 1980s. Subsequent exploration (most especially by Cassini and a short-lived lander called Huygens) have revealed dunes on and near the equator and at higher altitudes, lakes of methane and ethane.

Source: Jet Propulsion Laboratory

Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere

This cloud in the stratosphere over Titan’s north pole (left) is similar to Earth’s polar stratospheric clouds (right). NASA scientists found that Titan’s cloud contains methane ice, which was not previously thought to form in that part of the atmosphere. Cassini first spotted the cloud in 2006. Credit: L. NASA/JPL/U. of Ariz./LPGNantes; R. NASA/GSFC/M. Schoeberl

During its 2006 flyby of Titan, the Cassini Space Probe captured some of the most detailed images of Saturn’s largest moon. Amongst them was one showing the lofty cloud formations over Titan’s north pole (shown above). Interestingly enough, these cloud formations bear a strong resemblance to those that are seen in Earth’s own polar stratosphere.

However, unlike Earth’s, these clouds are composed entirely of liquid methane and ethane. Given Titan’s incredibly low temperatures – minus 185 °C (-300 °F) – it’s not surprising that such a dense atmosphere of liquid hydrocarbons exists, or that seas of methane cover the planet.

Continue reading “Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere”

Unusual Distributions of Organics Found in Titan’s Atmosphere

The ALMA array, as it looks now completed and standing on a Chilean high plateau at 5000 meters (16,400 ft) altitude. The first observations with ALMA of Titan have added to the Saturn moon's list of mysteries. {Credit: ALMA (ESO/NAOJ/NRAO) / L. Calçada (ESO)}

A new mystery of Titan has been uncovered by astronomers using their latest asset in the high altitude desert of Chile. Using the now fully deployed Atacama Large Millimeter Array (ALMA) telescope in Chile, astronomers moved from observing comets to Titan. A single 3 minute observation revealed organic molecules that are askew in the atmosphere of Titan. The molecules in question should be smoothly distributed across the atmosphere, but they are not.

The Cassini/Huygens spacecraft at the Saturn system has been revealing the oddities of Titan to us, with its lakes and rain clouds of methane, and an atmosphere thicker than Earth’s. But the new observations by ALMA of Titan underscore how much more can be learned about Titan and also how incredible the ALMA array is.

ALMA first obserations of the atmospher of Saturn's moon Titan. The image shows the distribution of the organic molecule HNC. Red to White representing low to high concenrations. The offset locations of the molecules relative to the poles suprised the researchers lead by NASA/GSFC astrochemist M. Cordiner.(Credit: NRAO/AUI/NSF; M. Cordiner (NASA) et at.)
ALMA’s first observations of the atmosphere of Saturn’s moon Titan. The image shows the distribution of the organic molecule HNC. Red to White representing low to high concentrations. The offset locations of the molecules relative to the poles surprised the researchers led by NASA/GSFC astrochemist M. Cordiner. (Credit: NRAO/AUI/NSF; M. Cordiner (NASA) et at.)

The ALMA astronomers called it a “brief 3 minute snapshot of Titan.” They found zones of organic molecules offset from the Titan polar regions. The molecules observed were hydrogen isocyanide (HNC) and cyanoacetylene (HC3N). It is a complete surprise to the astrochemist Martin Cordiner from NASA Goddard Space Flight Center in Greenbelt, Maryland. Cordiner is the lead author of the work published in the latest release of Astrophysical Journal Letters.

The NASA Goddard press release states, “At the highest altitudes, the gas pockets appeared to be shifted away from the poles. These off-pole locations are unexpected because the fast-moving winds in Titan’s middle atmosphere move in an east–west direction, forming zones similar to Jupiter’s bands, though much less pronounced. Within each zone, the atmospheric gases should, for the most part, be thoroughly mixed.”

When one hears there is a strange, skewed combination of organic compounds somewhere, the first thing to come to mind is life. However, the astrochemists in this study are not concluding that they found a signature of life. There are, in fact, other explanations that involve simpler forces of nature. The Sun and Saturn’s magnetic field deliver light and energized particles to Titan’s atmosphere. This energy causes the formation of complex organics in the Titan atmosphere. But how these two molecules – HNC and HC3N – came to have a skewed distribution is, as the astrochemists said, “very intriguing.” Cordiner stated, “This is an unexpected and potentially groundbreaking discovery… a fascinating new problem.”

The press release from the National Radio Astronomy Observatory states, “studying this complex chemistry may provide insights into the properties of Earth’s very early atmosphere.” Additionally, the new observations add to understanding Titan – a second data point (after Earth) for understanding organics of exo-planets, which may number in the hundreds of billions beyond our solar system within our Milky Way galaxy. Astronomers need more data points in order to sift through the many exo-planets that will be observed and harbor organic compounds. With Titan and Earth, astronomers will have points of comparison to determine what is happening on distant exo-planets, whether it’s life or not.

High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals. Image (Credit: NRAO/AUI/NSF)
High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals.
(Image Credit: NRAO/AUI/NSF)

The report of this new and brief observation also underscores the new astronomical asset in the altitudes of Chile. ALMA represents the state of the art of millimeter and sub-millimeter astronomy. This field of astronomy holds a lot of promise. Back around 1980, at the Kitt Peak National Observatory in Arizona, alongside the great visible light telescopes, there was an oddity, a millimeter wavelength dish. That dish was the beginning of radio astronomy in the 1 – 10 millimeter wavelength range. Millimeter astronomy is only about 35 years old. These wavelengths stand at the edge of the far infrared and include many light emissions and absorptions from cold objects which often include molecules and particularly organics. The ALMA array has 10 times more resolving power than the Hubble space telescope.

The Earth’s atmosphere stands in the way of observing the Universe in these wavelengths. By no coincidence our eyes evolved to see in the visible light spectrum. It is a very narrow band, and it means that there is a great, wide world of light waves to explore with different detectors than just our eyes.

The diagram shows the electromagnetic spectrum, the absorption of light by the Earth's atmosphere and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site and with modern solid state electronics is able to overcome the limitations placed by the Earth's atmosphere. (Credit: Wikimedia, T.Reyes)
The diagram shows the electromagnetic spectrum, the absorption of light by the Earth’s atmosphere, and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site, with modern solid state electronics, is able to overcome the limitations placed by the Earth’s atmosphere. (Credit: Wikimedia, T.Reyes)

In the millimeter range of wavelengths, water, oxygen, and nitrogen are big absorbers. Some wavelengths in the millimeter range are completely absorbed. So there are windows in this range. ALMA is designed to look at those wavelengths that are accessible from the ground. The Chajnantor plateau in the Atacama desert at 5000 meters (16,400 ft) provides the driest, clearest location in the world for millimeter astronomy outside of the high altitude regions of the Antarctic.

At high altitude and over this particular desert, there is very little atmospheric water. ALMA consists of 66 12 meter (39 ft) and 7 meter (23 ft) dishes. However, it wasn’t just finding a good location that made ALMA. The 35 year history of millimeter-wavelength astronomy has been a catch up game. Detecting these wavelengths required very sensitive detectors – low noise in the electronics. The steady improvement in solid-state electronics from the late 70s to today and the development of cryostats to maintain low temperatures have made the new observations of Titan possible. These are observations that Cassini at 1000 kilometers from Titan could not do but ALMA at 1.25 billion kilometers (775 million miles) away could.

The 130 ton German Antenna Dish Transporter, nicknamed Otto. The ALMA transporter vehicle carefully carries the state-of-the-art antenna, with a diameter of 12 metres and a weight of about 100 tons, on the 28 km journey to the Array Operations Site, which is at an altitude of 5000 m. The antenna is designed to withstand the harsh conditions at the high site, where the extremely dry and rarefied air is ideal for ALMA’s observations of the universe at millimetre- and sub-millimetre-wavelengths. (Credit: ESO)
The 130 ton German Antenna Dish Transporter, nicknamed Otto. The ALMA transporter vehicle carefully carries the state-of-the-art antenna, with a diameter of 12 metres and a weight of about 100 tons, on the 28 km journey to the Array Operations Site, which is at an altitude of 5000 m. The antenna is designed to withstand the harsh conditions at the high site, where the extremely dry and rarefied air is ideal for ALMA’s observations of the universe at millimetre- and sub-millimetre-wavelengths. (Credit: ESO)

The ALMA telescope array was developed by a consortium of countries led by the United States’ National Science Foundation (NSF) and countries of the European Union though ESO (European Organisation for Astronomical Research in the Southern Hemisphere). The first concepts were proposed in 1999. Japan joined the consortium in 2001.

The prototype ALMA telescope was tested at the site of the VLA in New Mexico in 2003. That prototype now stands on Kitt Peak having replaced the original millimeter wavelength dish that started this branch of astronomy in the 1980s. The first dishes arrived in 2007 followed the next year by the huge transporters for moving each dish into place at such high altitude. The German-made transporter required a cabin with an oxygen supply so that the drivers could work in the rarefied air at 5000 meters. The transporter was featured on an episode of the program Monster Moves. By 2011, test observations were taking place, and by 2013 the first science program was undertaken. This year, the full array was in place and the second science program spawned the Titan observations. Many will follow. ALMA, which can operate 24 hours per day, will remain the most powerful instrument in its class for about 10 years when another array in Africa will come on line.

References:

NASA Goddard Press Release

NRAO Press Release

ALMA Observatory Website

Alma Measurements Of The Hnc And Hc3N Distributions In Titan’s Atmosphere“, M. A. Cordiner, et al., Astrophysical Journal Letters

Titan’s Majestic Mirror-Like Lakes Will Come Under Cassini’s Scrutiny This Week

This colorized mosaic from NASA's Cassini mission shows the most complete view yet of Titan's northern land of lakes and seas. Saturn's moon Titan is the only world in our solar system other than Earth that has stable liquid on its surface. The liquid in Titan's lakes and seas is mostly methane and ethane. Image credit: NASA/JPL-Caltech/ASI/USGS

There’s a very early-stage NASA concept to take a submarine and dive into a lake of Titan, that moon of Saturn that has chemistry that could prove to be a similar precursor to what eventually formed life on Earth. The moon has weather and a hydrological system and an atmosphere, making it an exciting location for astrobiologists.

Luckily for scientists, the Cassini spacecraft beams back regular updates on what it sees at Titan. And this week comes yet another opportunity, as the machine whizzes by the moon to look for “mirror-like surface echoes” in a lake-filled region in Titan’s northern sector.

Principal among the targets will be Kraken Mare, a liquid hydrocarbon sea that is about five times the size of Lake Superior in North America. It’s an astounding 154,000 square miles (400,000 square kilometers). On this pass, Cassini is going to sail over the eastern area of the sea.

“Measurements of the absolute strength of the echo and its polarization properties, when detectable, yield important information about the surface status (liquid/solid), surface reflectivity, surface dielectric constant and implied composition, and surface roughness,” Cassini’s website says in a description of the T-106 flyby, which will take place Thursday (Oct. 23).

Saturn's moon Titan with Tethys hovering in the background. Image taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute
Saturn’s moon Titan with Tethys hovering in the background. Image taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

This is the second-to-last flyby Cassini will have of Titan in 2014, with the last one coming Dec. 10. In that case, the focus will be learning more about Titan’s atmosphere to learn more about measurement differences obtained by instruments on Cassini.

This past week, meanwhile, Titan has been busy looking at Saturn. It examined a northern aurora, looked at the planet’s F ring, and also searched for small satellites.

Scientists have been working at Saturn for the past 10 years with the Cassini mission, which is now entering a new phase as Saturn enters northern summer. This is expected to produce more changes on Titan, such as winds picking up, as more sunlight strikes the surface and atmosphere.

Titan’s Disappearing “Magic Island” Reappears in New Images

Three images – spanning more than seven years – of Titan’s Ligeia Mare in which an elusive, radar-bright feature has been spotted. Images were created from data collected by Cassini’s Synthetic Aperture Radar (SAR). Image credit: NASA/JPL-Caltech/ASI/Cornell

Earlier this year, we reported on a mysterious “ghost” object that had suddenly appeared and then disappeared on Saturn’s largest moon, Titan. Now, new observations by the Cassini team show this elusive feature is back again.

You may recall that a so-called “transient feature,” nicknamed “Magic Island” by the Cassini team, was first observed by Cassini in July 2013 during a Titan flyby. Magic Island has continued to puzzle scientists because shortly after its initial appearance, it disappeared and has been in hiding ever since. That is, until it just-as-suddenly reappeared in images created using SAR data collected in mid-August, 2014.

However, with its reemergence comes additional questions for scientists since its physical appearance has changed rather significantly, having roughly doubled in size during its 13 months in hiding, growing from 30 square miles [75 square km] in 2013 to almost 60 square miles [160 square km], as seen in the latest images, above.

Although scientists initially considered that this had been a transient feature, they now suspect that its appearance and disappearance may be the result of Titan’s changing seasons. (Titan is currently entering summer in its northern hemisphere.) There has also been some speculation that the feature may be rising gas bubbles, surface waves, or solid material at (or just below) the surface of Ligeia Mare.

Titan’s seas are made of liquid methane and ethane, organic compounds which are gases on Earth but liquids in Titan’s incredibly chilly -290º F (-180º C) environment.

“Science loves a mystery, and with this enigmatic feature, we have a thrilling example of ongoing change on Titan,” said Stephen Wall, the deputy team lead of Cassini’s radar team, based at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re hopeful that we’ll be able to continue watching the changes unfold and gain insights about what’s going on in that alien sea.”

The monitoring of Titan’s changing climate and surface features is a primary goal of Cassini’s ongoing, and twice-extended, mission. Further studies may confirm or eliminate explanations that have been presented to date – or they may lead to completely new hypotheses about mysteries held within and below Titan’s seas.

Titan's Ligeia Mare. Credit: NASA/JPL/USGS
Titan’s Ligeia Mare. Credit: NASA/JPL/USGS

In addition to its original primary mission, Cassini, which was launched in October 1997 and entered Saturn’s orbit on July 1, 2004, has been extended two times – the Extended Equinox Mission in July 2008, and the Solstice Mission in November, 2010. In September, 2014, NASA announced that it had fully funded Cassini through its planned completion in 2017.

For more information about Cassini and its ongoing mission, visit:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

Saturn-Circling Cassini Spacecraft Plumbs Titan’s Seas Next Week

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

Is the surf up yet on Titan? As the moon of Saturn moves towards northern summer, scientists are trying to spot signs of the winds picking up. This weekend, the Cassini spacecraft plans a look at the the largest body of liquid on Titan, Kraken Mare, to see if there are any waves on this huge hydrocarbon sea.

Cassini will make the 105th flyby of Titan on Monday (Sept. 22) to probe the moon’s atmosphere, seas and even a crater. The spacecraft will examine “the seas and lakes of the northern polar area, including Kraken and Ligeia at resolution better than 3 miles (5 kilometers) per pixel,” the Cassini website stated.

Besides wet areas of Titan, Cassini will also look at dunes and the relatively fresh-looking Sinlap crater, where scientists hope to get a high-resolution image. Managers also plan a mosaic of Tsegihi — a bright zone south of the equator — and the darker dune-filled area of Fensal. The spacecraft additionally will examine aerosols and the transparency of hazes in Titan’s atmosphere.

Titan is of interest to scientists in part because its chemistry is a possible precursor to what made life possible. Earlier this week, Cassini transmitted several raw images of its view of Titan and Saturn right now — some of the latest pictures are below.

A raw image of Saturn's moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn’s moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn's moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn’s moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn's system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn’s system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute

Spacecraft Stormchasing: Titan Clouds Swirl As Saturn Moon Approaches Northern Summer

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

Swoosh! At long last, and later than models predicted, clouds are starting to appear on Titan’s nothern hemisphere. The region is just starting to enter a seven-year-long summer, and scientists say this could be an indication of coming summer storms there.

This moon of Saturn is of particular interest to astrobiologists because it has hydrocarbons (like ethane and methane), which are organic molecules that are possible precursors to the chemistry that made life possible. But what is also neat about Titan is it has its own weather system and liquid cycle — which makes it closer to Earth than to our own, nearly atmosphere-less Moon.

“The lack of northern cloud activity up til now has surprised those studying Titan’s atmospheric circulation,” wrote Carolyn Porco, the imaging lead for Cassini, in a message distributed to journalists.

“Today’s reports of clouds, seen a few weeks ago, and other recent indicators of seasonal change, are exciting for what they imply about Titan’s meteorology and the cycling of organic compounds between northern and southern hemispheres on this unusual moon, the only one in our solar system covered in liquid organics.”

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute
Clouds swirl near Titan’s north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

The pictures were taken by the Cassini spacecraft, which has been orbiting Saturn and its moons since 2004. The satellite arrived at the system in time to see clouds forming in the southern hemisphere, but the moon has been nearly bereft of clouds since a large storm occurred in 2010.

This particular cloud system occurred over Ligeia Mare, which is near Titan’s north pole, and included gentle wind speeds of about seven to 10 miles per hour (11 to 16 kilometers per hour.)

The sequence takes place between July 20 and 22, with most of the pictures separated by about 1-2 hours (although there is a 17.5-hour jump between frames 2 and 3.)

Sources: NASA Jet Propulsion Laboratory and Cassini Imaging Central Laboratory for Operations (CICLOPS)

Scientists Discover 101 Geysers Erupting at Saturn’s Intriguing Icy Moon Enceladus

This dramatic view looks across the region of Enceladus' geyser basin and down on the ends of the Baghdad and Damascus fractures that face Saturn. The image, which looks approximately in the direction of Saturn, was taken from a more elevated viewpoint than other Cassini survey images of this area of the moon's south pole. Credit: NASA/JPL-Caltech/SSI

Scientists analyzing the reams of data from NASA’s Cassini orbiter at Saturn have discovered 101 geysers erupting from the intriguing icy moon Enceladus and that the spewing material of liquid water likely originates from an underground sea located beneath the tiny moons ice shell, according to newly published research.

The geysers are composed of tiny icy particles, water vapor and trace amounts of simple organic molecules. They were first sighted in Cassini imagery snapped during flyby’s of the 310-mile-wide (500 kilometers wide) moon back in 2005 and immediately thrust Enceladus forward as a potential abode for alien life beyond Earth and prime scientific inquisition.

Liquid water, organic molecules and an energy source are the key requirements for life as we know it.

The eruptions emanated from a previously unknown network of four prominent “tiger stripe” fractures, named Damascus, Baghdad, Cairo and Alexandria sulci, located at the south polar region of Saturn’s sixth largest moon.

Using imagery gathered over nearly seven years of surveys by Cassini’s cameras, researchers generated a survey map of the 101 geysers erupting from the four tiger strips.

This artist's rendering shows a cross-section of the ice shell immediately beneath one of Enceladus' geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface.  Image Credit:  NASA/JPL-Caltech/Space Science Institute
This artist’s rendering shows a cross-section of the ice shell immediately beneath one of Enceladus’ geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface. Image Credit: NASA/JPL-Caltech/Space Science Institute

The new findings and theories on the physical nature of how the geysers erupt have been published in two articles in the current online edition of the Astronomical Journal.

Scientists had initially postulated that the origin of the geysers could be frictional heating generated from back and forth rubbing of the opposing walls of the tiger stripe fractures that converted water ice into liquids and vapors. Another theory held that the opening and closing of the fractures allowed water vapor from below to reach the surface.

The geysers locations was eventually determined to coincide with small local hot spots erupting from one of the tiger stripe fractures after researchers compared low resolution thermal emission maps with the geysers’ locations and found the greatest activity at the warmest spots.

After later high-resolution data was collected in 2010 by Cassini’s heat-sensing instruments the geysers were found to coincide with small-scale hot spots, measuring only a few dozen feet (or tens of meters) across.

“Once we had these results in hand we knew right away heat was not causing the geysers, but vice versa,” said Carolyn Porco, leader of the Cassini imaging team from the Space Science Institute in Boulder, Colorado, and lead author of the first paper. “It also told us the geysers are not a near-surface phenomenon, but have much deeper roots.”

This graphic shows a 3-D model of 98 geysers whose source locations and tilts were found in a Cassini imaging survey of Enceladus' south polar terrain by the method of triangulation. While some jets are strongly tilted, it is clear the jets on average lie in four distinct "planes" that are normal to the surface at their source location. Image credit: NASA/JPL-Caltech/Space Science Institute
This graphic shows a 3-D model of 98 geysers whose source locations and tilts were found in a Cassini imaging survey of Enceladus’ south polar terrain by the method of triangulation. While some jets are strongly tilted, it is clear the jets on average lie in four distinct “planes” that are normal to the surface at their source location. Image credit: NASA/JPL-Caltech/Space Science Institute

“Thanks to recent analysis of Cassini gravity data, the researchers concluded the only plausible source of the material forming the geysers is the sea now known to exist beneath the ice shell. They also found that narrow pathways through the ice shell can remain open from the sea all the way to the surface, if filled with liquid water,” according to a NASA press release.

These are very exciting results in the search for life beyond Earth and clearly warrant a follow up mission.

“In casting your sights on the geysering glory of Enceladus, you are looking at frozen mist that originates deep within the solar system’s most accessible habitable zone,” writes Porco in her Captain’s Log summary of the new findings.

Surveyor's Map of Enceladus' Geyser Basin - On this polar stereographic map of Enceladus' south polar terrain, all 100 geysers have been plotted whose source locations have been determined in Cassini's imaging survey of the moon's geyser basin. Credit: NASA/JPL-Caltech/SSI
Surveyor’s Map of Enceladus’ Geyser Basin – On this polar stereographic map of Enceladus’ south polar terrain, all 101 geysers have been plotted whose source locations have been determined in Cassini’s imaging survey of the moon’s geyser basin. Credit: NASA/JPL-Caltech/SSI

The Cassini-Huygens mission is a cooperative project between NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI). Cassini was launched by a Titan IV rocket in 1997 and arrived at Saturn in 2004.

In 2005 Cassini deployed the Huygens probe which landed on Titan, Saturn’s largest moon sporting oceans of organic molecules and another prime location in the search for life.

The Cassini mission will conclude in 2017 with an intentional suicide dive into Saturn to prevent contamination on Titan and Enceladus – but lots more breathtaking science will be accomplished in the meantime!

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer