Stalking Uranus: A Complete Guide to the 2014 Opposition Season

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).

It’s no joke… now is the time to begin searching the much-maligned (and mispronounced) planet Uranus as it reaches opposition in early October leading up to a very special celestial event.

Last month, we looked at the challenges of spying the solar system’s outermost ice giant world, Neptune. Currently located in the adjacent constellation Aquarius, Neptune is now 39 degrees from Uranus and widening. The two worlds had a close conjunction of just over one degree of separation in late 1993, and only long time observers of the distant worlds remember a time waaaay back in the early-1970s where the two worlds appeared farther apart than 2014 as seen from our Earthly vantage point.

Stellarium
Uranus rising to the east the evening of October 7th, just prior to the start of the October 8th lunar eclipse later the same evening. Created  using Stellarium.

In 2014, opposition occurs at 21:00 Universal Time (UT)/5:00 PM EDT on October 7th. If this date sounds familiar, it’s because Full Moon and the second total lunar eclipse of 2014 and the ongoing lunar tetrad of eclipses occurs less than 24 hours afterwards. This puts Uranus extremely close to the eclipsed Moon, and a remote slice of the high Arctic will actually see the Moon occult (pass in front of) Uranus during totality. Such a coincidence is extremely rare: the last time the Moon occulted a naked eye planet during totality occurred back during Shakespearian times in 1591, when Saturn was covered by the eclipsed Moon. This close conjunction as seen from English soil possibly by the bard himself was mentioned in David Levy’s book and doctoral thesis The Sky in Early Modern English Literature, and a similar event involving Saturn occurs in 2344 AD.

Credit:
The footprint of the October 8th occultation of Uranus. Credit: Occult 4.1.

We’re also in a cycle of occultations of Uranus in 2014, as the speedy Moon slides in front of the slow moving world every lunation until December 2015. Oppositions of Uranus — actually pronounced “YOOR-un-us” so as not to rhyme with a bodily orifice — currently occur in the month of September and move forward across our calendar by about 4 days a year.

Credit:
Uranus (lower left) near the limb of the gibbous Moon of September 11th, 2014. Credit: Roger Hutchinson.

This year sees Uranus in the astronomical constellation Pisces just south of the March equinoctial point. Uranus is moving towards and will pass within a degree of the +5.7 magnitude star 96 Piscium in late October through early November. Shining at magnitude +5.7 through the opposition season, Uranus presents a disk 3.7” in size at the telescope. You can get a positive ID on the planet by patiently sweeping the field of view: Uranus is the tiny blue-green “dot” that, unlike a star, refuses to come into a pinpoint focus.

The apparent path of Uranus from September 2014 through January 2015 across the constellation Pisces. The inset shows the tilt and orbit of its major moons across a 2′ field of view. Created by the author using Starry Night Education software.

Uranus also presents us with one of the key mysteries of the solar system. Namely, what’s up with its 97.8 degree rotational tilt? Clearly, the world sustained a major blow sometime in the solar system’s early history. In 2014, we’re viewing the world at about a 28 degree tilt and widening. This will continue until we’re looking straight at the south pole of Uranus in early 2030s. Of course, “south” and “north” are pretty arbitrary when you’re knocked back over 90 degrees on your axis! And while we enjoy the September Equinox next week on September 23rd, the last equinox for any would-be “Uranians” occurred on December 16th, 2007. This put the orbit of its moons edge-on from our point of view from 2006-2009 for only the third time since discovery of the planet in 1781. This won’t occur again until around 2049. Uranus also passed aphelion in 2009, which means it’s still at the farther end of its 19.1 to 17.3 astronomical unit (A.U.) range from the Sun in its 84 year orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.
The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.

And as often as Uranus ends up as the butt (bad pun) of many a scatological punch line, we can at least be glad that the world didn’t get named Georgium Sidus (Latin for “George’s Star”) after William Herschel’s benefactor, King George the III. Yes, this was a serious proposal (!). Herschel initially thought he’d found a comet upon spying Uranus, until he realized its slow motion implied a large object orbiting far out in the solar system.

A replica... Credit:
A replica of the reflecting telescope that Herschel used to discover Uranus. Credit: Alun Salt/Wikimedia Commons image under a Creative Commons Attribution Share-Alike 2.0 license.

Spurious sightings of Uranus actually crop up on star maps prior to Herschel’s time, and in theory, it hovers juuusst above naked eye visibility near opposition as seen from a dark sky site… can you pick out Uranus without optical assistance during totality next month? Hershel and Lassell also made claims of spotting early ring systems around both Uranus and Neptune, though the true discovery of a tenuous ring system of Uranus was made by the Kuiper Airborne Observatory (a forerunner of SOFIA) during an occultation of a background star in 1977.

Credit: Ed Kotapish
A corkscrew chart for the moons of Uranus through October. Credit: Ed Kotapish/Rings PDS node.

Looking for something more? Owners of large light buckets can capture and even image (see above) 5 of the 27 known moons of Uranus. We charted the orbital elongations for favorable apparitions through October 2014 (to the left). Check out last year’s chart for magnitudes, periods, and maximum separations for each respective moon. An occulting bar eyepiece may help you in your quest to cut down the ‘glare’ of nearby Uranus.

When will we return to Uranus? Thus far, humanity has explored the world up close exactly once, when Voyager 2 passed by in 1986. A possible “Uranus Probe” (perhaps, Uranus Orbiter is a better term) similar to Cassini has been an on- and off- proposal over the years, though it’d be a tough sell in the current era of ever dwindling budgets. Plutonium, a mandatory power source for deep space missions, is also in short supply. Such a mission might take up to a decade to enter orbit around Uranus, and would represent the farthest orbital reconnaissance of a world in our solar system. Speedy New Horizons is just whizzing by Pluto next July.

All great thoughts to ponder as you scour the skies for Uranus in the coming weeks!

Power Up! Distant Uranus Sees A Storm Surge Of ‘Monstrous’ Proportions

Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory

Who can imagine Uranus as a quiet planet now? The Keck Observatory caught some spectacular pictures of the gas giant undergoing a large storm surge a few days ago, which took astronomers by surprise because the planet is well past the equinox in 2007, when the sun was highest above the equator.

“We are always anxious to see that first image of the night of any planet or satellite, as we never know what it might have in store for us,” stated Imke de Pater, an astronomer at the University of California, Berkeley that led the research.

“This extremely bright feature we saw on UT 6 August 2014 reminds me of a similarly bright storm we saw on Uranus’s southern hemisphere during the years leading up to and at equinox.”

Astronomers say the brightest of the storms is “monstrous” and reminds them of a dissipated feature nicknamed the “Berg”, since it looked a bit like an iceberg.

These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL
These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL

The Berg, which might have been there when one of the Voyager spacecraft flew by in 1986, moved between the southern latitudes of 32 and 36 degrees between 2000 and 2005. After getting brighter in 2004, it moved towards the equator and got even stronger, where it remained until falling apart in 2009. (You can see pictures of it here.)

“The present storm is even brighter than the Berg. Its morphology is rather similar, and the team expects it may also be tied to a vortex in the deeper atmosphere,” Keck stated. Based on how bright the storm appears, researchers believe it must be reaching high into the atmosphere, perhaps approaching the tropopause (just below the stratosphere)

Source: Keck Observatory

Cassini’s View of Another Pale Blue Dot

Uranus as seen by Cassini on July 19, 2013 (NASA/JPL-Caltech/SSI)

When you hear the words “pale blue dot” you’re probably reminded of the famous quote by Carl Sagan inspired by an image of Earth as a soberingly tiny speck, as imaged by Voyager 1 on Feb. 14, 1990 from beyond the orbit of Pluto. But there’s another pale blue world in our Solar System: the ice giant Uranus, and its picture was captured much more recently by the Cassini spacecraft from orbit around Saturn on April 11, 2014.

Released today by the Cassini Imaging Team, the image above shows Uranus as a tiny blue orb shining far beyond the bright hazy bands of Saturn’s F ring.

“Do you relish the notion of being a Saturnian, and gazing out from the lofty heights of Saturn at the same planets we see here from the Earth?”
– Carolyn Porco, Cassini Imaging Team Leader

Uranus’ coloration is a result of methane high in its frigid atmosphere. According to the description on the CICLOPS site, “methane on Uranus — and its sapphire-colored sibling, Neptune — absorbs red wavelengths of incoming sunlight, but allows blue wavelengths to escape back into space, resulting in the predominantly bluish color seen here.”

This was also the first time Uranus had been imaged by the Cassini spacecraft, which has been in orbit around Saturn since 2004. In fact its ten-year orbital anniversary will come on July 1.

This image adds one more planet to the list of worlds captured on Camera by Cassini, which made headlines last fall when a glorious mosaic was released that featured a backlit Saturn in eclipse surrounded by its luminous rings, the specks of several of its moons, and the distant dots of Venus, Mars, and the Earth and Moon. Made from 141 separate exposures, the mosaic was captured on July 19, 2013 — known by many space aficionados as “the day the Earth smiled” as it was the first time the world’s population was alerted beforehand that its picture would be taken from over 900 million miles away.

Saturn — with its terrestrial spacecraft in tow — was about 28.6 AU away from Uranus when the image was acquired. That’s about  4.28 billion kilometers (2.66 billion miles). From that distance the glow of the 51,118-kilometer (31,763-mile) -wide Uranus is reduced to a mere few pixels (which required digital brightening by about 4.5x, as well.)

Read more on the Cassini Imaging Central Laboratory for Operations (CICLOPS) page here and in a news release from NASA’s JPL here.

Image credit: NASA/JPL-Caltech/SSI. Source: Carolyn Porco, CICLOPS Director

Astrophoto: Uranus at Opposition

Uranus, imaged from Italy on October 3, 2013, when the planet was at opposition. Credit and copyright: Giuseppe Petricca.

Last week, we asked if you were looking for an observing challenge: looking for planet Uranus when it reached opposition — where it is opposite the Sun the sky, meaning the planet rises as the Sun sets. Giuseppe Petricca from Italy took the challenge and ran with it. His skies over Sulmona, Abruzzo in Italy cleared, and not even 12 hours after the official time of opposition he got this shot using his new Toucam Pro II on a Newtonian 200/1000 on EQ5 unmotorized mount.

Nice!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Uranus: A Guide to its 2013 Opposition

Credit:

Up for a challenge? Got a big 12” light bucket of a Dobsonian telescope and looking for something new to point it at? This week, as the Moon reaches New phase on October 4th and stays safely out of the late evening sky, why not check out Uranus and its retinue of moons. And yes, we’ve heard just about ALL the Uranus jokes —its pronounced yer-in-us, thank you very much — but feel free to attempt to pen an original if you must.

Now, back to astronomy. Uranus reaches opposition for 2013  on Thursday, October 3rd at 14:00 Universal Time. Opposition is the point in time that an outer planet rises as the Sun sets. In the case of Uranus, its opposition dates advance forward by about 4-5 days each year.

Credit
The current location of Uranus in Pisces. Created by the author using Stellarium. (click to enlarge).

This also marks the start of the best time to hunt for the planet among the star fields of the constellation Pisces. Uranus will reach its maximum elevation above the southern horizon for northern hemisphere viewers for early October around local midnight. For observers south of the equator, Uranus will transit to the north. Incidentally, Uranus also currently sits near the equinoctial point occupied by the Sun during the March equinox, making viewing opportunities nearly equal for both hemispheres.

Uranus is 19.04 astronomical units distant during opposition 2013, or about 158 light minutes away. Shining at magnitude +5.8, Uranus presents a tiny blue-green disk just under 4” across at opposition.

Uranus currently lies six degrees SW of the +4.4 magnitude star Delta Piscium, on the border of the constellations Pisces and Cetus. Uranus will actually be crossing once again into the non-zodiacal constellation of Cetus later this year.

Discovered in 1781 by Sir William Herschel, Uranus has only completed 2 full orbits (2.75 to be precise) in its 84.3 year trips about the Sun. We can be thankful that William’s proposal to name the planet Geogium Sidus after his benefactor King George the III didn’t stick!

Starry Night Education
The path of Uranus into Cetus. Created by the author using Starry Night Education software.

At opposition, Uranus will be located at;

Right Ascension: 0h 40’

Declination: +3° 25’

Five of the 27 known moons of Uranus are also within the grasp of a moderate-sized backyard scope as well. The trick is to catch ‘em near greatest elongation, when they appear farthest from the “glare of Uranus” (hey, there’s a freebie for a snicker or two). An eyepiece equipped with an occulting bar, or simply nudging Uranus out of the field of view can also help.

With magnitudes ranging from +13 to +16, the moons of Uranus are similar in brightness to Neptune’s large moon Triton or the tiny world Pluto.

The five brightest moons of Uranus and their respective maximum elongations are:

Chart constructed by author.

And here’s a handy finder chart for the coming month, showing maximum elongations for each:

A corkscrew graph featuring the greatest elongations for the five brightest moons of Uranus. (Created by Ed Kotapish using PDS Rings Node).
A corkscrew graph featuring the greatest elongations for the five brightest moons of Uranus through October. (Created by Ed Kotapish using PDS Rings Node).

The first two moons were named Titania and Oberon by William’s son John after characters from William Shakespeare’s A Mid-Summer Night’s Dream. William discovered the first two moons of Uranus on the night of January 11th, 1787 using his 49.5” reflector. His scopes were so advanced for his day, that it wasn’t until over a half a century later that William Lassell discovered Umbriel and Ariel using the Liverpool Observatory’s 24” reflector in 1851.

Gerard Kuiper would later add tiny Miranda to the list, nabbing it with the McDonald Observatory’s 82” Otto Struve Telescope in 1948. We would then have to wait until Voyager 2’s 1986 flyby of Uranus in 1986 to add more. To date, Voyager 2 remains the only spacecraft to visit Uranus and Neptune.

The current convention established by the International Astronomical Union is to name the moons of Uranus after characters from the plays of Shakespeare or Alexander Pope’s Rape of the Lock.

There’s still a wide range of names in said literature to choose from!

It’s interesting to note that the orbits of the moons of Uranus are also currently tipped open about 25 degrees to our line of sight and widening. They were edge on in December 2007, and will be perpendicular to our Earthly view come 2029, after which they’ll head back to edge on in 2049. This is because Uranus and the orbits of its moons are tipped at a 97 degree angle relative to the planet’s orbit. This is why elongations for its moons are often quoted it terms of “north and south” of the planet, rather than the familiar east and west. Shadow transits of the moons can occur with about a year and a half during plane-crossing seasons, but they’re ~42 years apart and tough to spot on the tiny disk of Uranus!

October 4th Starry Night Education
An example of the orientation of Uranus’s moons on October 4th, with Oberon at greatest elongation. Note that Miranda is the tiny unlabeled moon with the interior orbit. (Created by the author using Starry Night Education software).

Uranus also reached aphelion in 2009 at 20.099 AU from the Sun —we’re still at the farther end of the spectrum, as oppositions of Uranus can range from 19.09 to 17.28 AU distant.

Uranus will rise earlier on each successive evening until it reaches quadrature at the end of the year on December 30th. At this point, it’ll be roughly due south at local sunset. Keep in mind, there’s also another ice giant worth hunting for in the adjacent constellation of Aquarius named Neptune.

So ignore those bad puns, and be sure to take out that 10” (scope, that is) and point it at Uranus!

Trojan Asteroid Found Orbiting Uranus

One of three discovery images of 2011 QF99 taken from CFHT on 2011 October 24 (2011 QF99 is inside the green circle). This is the first of three images of the same patch of sky, taken one hour apart, that were then compared to find moving light-sources.

What’s new in the outer reaches of our solar system? Try the discovery of a Trojan asteroid orbiting Uranus. While a plethora of puns exist for this simple fact, the reality check is that this means there are far more of these objects out there than astronomers expected. The new Trojan even has a name – 2011 QF99!

A Trojan asteroid is a transient space rock which is temporarily captured by the gravity of a giant planet. It shares the planet’s orbital path, locked into a specific position known as a Lagrange point. What makes 2011 QF99 unusual is its presence in the outer solar system. Researchers found the scenario a bit unlikely. Why? The answer is simply because of planet size. According to theory, the strong gravitational pull of the larger neighboring planets should have destabilized any captured asteroid’s orbit and shot Uranian Trojans out of the neighborhood long ago.

So just how did this 60 kilometer-wide conglomeration of ice and rock end up circling Uranus? Astronomers turned towards computer modeling for the answer. The research team, including UBC astronomers Brett Gladman, Sarah Greenstreet and colleagues at the National Research Council of Canada and Observatoire de Besancon in France, did a simulation of the solar system and its co-orbital objects – including Trojan asteroids. A short-term animation showing the motion of 2011 QF99, as seen from above the north pole of the solar system can be found here.

“Surprisingly, our model predicts that at any given time three percent of scattered objects between Jupiter and Neptune should be co-orbitals of Uranus or Neptune,” says Mike Alexandersen, lead author of the study to be published tomorrow in the journal Science.

Until now, no one had made any estimates on the percentage of possible outer solar system Trojans. Unexpectedly, the amount ended up being far greater than earlier estimates. Just over the last 10 years, several temporary Trojans and co-orbitals have been cataloged and 2011 QF99 is one of them. It made its home around Uranus within the last few hundred thousand years and will eventually – in about a million years – escape Uranus’ gravity.

“This tells us something about the current evolution of the solar system,” says Alexandersen. “By studying the process by which Trojans become temporarily captured, one can better understand how objects migrate into the planetary region of the solar system.”

Original Story Source: UBC News Release.

Uranus Is Being Chased By Asteroids!

A Sharper View Of Uranus
Uranus viewed in the infrared spectrum, revealing internal heating and its ring system. Image Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory

As Uranus speeds in its orbit in the solar system, there are three large space rocks that are in lockstep with the gas giant, according to new simulations. Two of them are wobbling in unstable “horseshoe” orbits near Uranus, while the third is in a more reliable Trojan orbit that is always 60 degrees in front of the planet.

The largest of this small group is the asteroid Crantor, which is 44 miles (70 kilometers) wide. Its horseshoe orbit, and that of companion 2010 EU65, means the space rocks seesaw between being close to Uranus and further away. They should stay in that configuration for a few million years.

The last of the group is 2011 QF99, in a Trojan orbit near one of Uranus’ Lagrangian points — sort of like a celestial parking spot where an object can hang out without undue influence from the balanced gravitational forces.

An artists impression of an asteroid belt(credit: NASA)
An artists impression of an asteroid belt(credit: NASA)

The results illustrate the importance of space rocks that are outside of the main asteroid belt between Mars and Jupiter.

There are several kinds of these asteroids (classified by their orbits) that follow around planets in the solar system. Earth itself, for example, has at least one Trojan asteroid.

“Crantor currently moves inside Uranus’ co-orbital region on a complex horseshoe orbit. The motion of this object
is primarily driven by the influence of the Sun and Uranus, although Saturn plays a significant role in destabilizing its orbit,” the authors wrote in their new study.

“Although this object follows a temporary horseshoe orbit, more stable trajectories are possible and we present 2010 EU65 as a long-term horseshoe librator candidate in urgent need of follow-up observations.”

The results are described in Crantor, a short-lived horseshoe companion to Uranus  (Astronomy & Astrophysics, March 3, 2013.)

Source: Servicio de informacíon y noticias cientifícas

27 Years Ago: Voyager 2’s Visit to Uranus

Image of Uranus’ crescent taken by a departing Voyager 2 on January 25, 1986 (NASA/JPL)

27 years ago today, January 24, 1986, NASA’s Voyager 2 spacecraft sped past Uranus, becoming simultaneously the first and last spacecraft to visit the blue-tinged gas giant, third largest planet in the Solar System.

The image above shows the crescent-lit Uranus as seen by Voyager 2 from a distance of about 965,000 km (600,000 miles.) At the time the spacecraft had already passed Uranus and was looking back at the planet on its way outwards toward Neptune.

Although composed primarily of hydrogen and helium, trace amounts of methane in Uranus’ uppermost atmosphere absorb most of the red wavelengths of light, making the planet appear a pale blue color.

12bg-1

Image of the 1,500-km-wide Oberon acquired by Voyager 2 on Jan. 24, 1986 (NASA/JPL)

The second of NASA’s twin space explorers (although it launched first) Voyager 2 came within 81,800 kilometers (50,600 miles) of Uranus on January 24, 1986, gathering images of the sideways planet, its rings and several of its moons. Voyager 2 also discovered the presence of a magnetic field around Uranus, as well as 10 new small moons.

6bg

Three moons discovered by Voyager 2 in 1986 (NASA/JPL)

Data gathered by Voyager 2 revealed that Uranus’ rate of rotation is 17 hours, 14 minutes.

At the time of this writing, Voyager 2 is 15,184,370,900 km from Earth and steadily moving toward the edge of the Solar System at a speed of about 3.3 AU per year. At that distance, signals from Voyager take just over 14 hours and 4 minutes to reach us.

See images from Voyager 2’s visit of Uranus here, and check out a video of the August 20, 1977 launch below along with more images from the historic Voyager mission’s “Grand Tour” of the outer Solar System.

Uranus has Bizarre Weather

New infrared images of Uranus show details not seen before. Credit: NASA/ESA/L. A. Sromovsky/P. M. Fry/H. B. Hammel/I. de Pater/K. A. Rages

Here’s the scene: a thick, tempestuous atmosphere with winds blowing at a clip of 900 km/h (560 mph); massive storms that would engulf continents here on Earth, and temperatures in the -220 C (-360 degree F) range. Sounds like a cold Hell, but this is the picture emerging of the planet Uranus, revealed in new high-resolution infrared images from the Keck Observatory in Hawaii, exposing in incredible detail the bizarre weather of a planet that was once thought to be rather placid.

“My first reaction to these images was ‘wow’ and then my second reaction was ‘WOW,'” said Heidi Hammel, a co-investigator on the new observations. “These images reveal an astonishing amount of complexity in Uranus’ atmosphere. We knew the planet was active, but until now much of the activity was masked by noise in our data.”

Voyager 2’s view of Uranus. Credit: NASA

With its beautiful blue atmosphere, Uranus can seem rather tranquil at first glance. Even the flyby of Voyager 2 in 1986 revealed a rather “bland” blue ball. But coming into focus now with the new are large weather systems, and even though they are probably much less violent than storms on Earth, the weather on Uranus is just…bizarre.

“Some of these weather systems,” said Larry Sromovsky, from the University of Wisconsin-Madison who led the new study using the Keck II telescope, “stay at fixed latitudes and undergo large variations in activity. Others are seen to drift toward the planet’s equator while undergoing great changes in size and shape. Better measures of the wind fields that surround these massive weather systems are the key to unraveling their mysteries.”

Sromovsky, Hammel and their colleagues are using new infrared techniques to deliver some of the “most richly detailed views of Uranus yet obtained by any instrument on any observatory. No other telescope could come close to producing this result,” Sromovsky said.

What they are seeing are previously undetected, small but widely distributed weather feature, and they hope the movements of these features can help make sense of the planet’s odd pattern of winds.

They observed a scalloped band of clouds just south of Uranus’ equator and a swarm of small convective features in the north polar regions of the planet. Features like this don’t seem to be in the southern polar regions, but are similar to the types of “popcorn” –type clouds seen on Saturn. Uranus’ north pole is not visible from Earth night now, but when it does come into view, the researchers wouldn’t be surprised to see a polar vortex feature similar to what has been seen at Saturn’s south pole.

The driver of these features must be solar energy because there is no other detectable internal energy source.

“But the Sun is 900 times weaker there than on Earth because it is 30 times further from the Sun, so you don’t have the same intensity of solar energy driving the system,” said Sromovsky. “Thus the atmosphere of Uranus must operate as a very efficient machine with very little dissipation. Yet the weather variations we see seem to defy that requirement.”

One possible explanation, is that methane is pushed north by an atmospheric conveyor belt toward the pole where it wells up to form the convective features visible in the new images. The phenomena may be seasonal, the team said, but they are still working on trying to put together a clear seasonal trend in the winds of Uranus.

“Uranus is changing,” he said, “and there is certainly something different going on in the two polar regions.”

The images were released at the American Astronomical Society’s Division for Planetary Sciences meeting taking place this week.

Source: University of Wisconsin-Madison

The Moon from Earth As You’ve Never Seen it Before

The Morteus region on the Moon, taken from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

Think this is an orbital view of the Moon? Guess again. Astrophotographer Thierry Legault took this image from his backyard in the suburbs of Paris, France! He’s taken a series of images of the Moon the past few nights that will blow your mind when you consider they were taken from Earth, within the confines of the metropolis of Paris (largest city in France, 5th largest in the EU, 20th largest in the world). Thierry used a Celestron C14 EdgeHD (356mm) and Skynyx2.2 camera. You definitely want to click on these images for the larger versions on Thierry’s website, and he suggests using a full-HD screen in subdued surroundings.

Additionally, Thierry also recently took images of Mercury and Uranus that include incredible detail.

Plato, Mons Pico and Montes Teneriffe as seen on Sept 8th, 2010, from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

The clarity and detail are just tremendous. See all of Thierry’s recent lunar images at this link. He has a collection of twelve different images of various regions on the Moon and all are stunning.

Below are his images of Mercury and Uranus. In the image of Mercury, surface details are visible, and the cloud belts are even visible on the images of Uranus:

Incredibly detailed view of Mercury on August 23, 2012, as seen from Blancourt, France. Credit: Thierry Legault. Used by permission.

Uranus, as seen on September 9, 2012 from Blancourt, France. Credit: Thierry Legault. Used by permission.

Thanks, as always, to Thierry Legault for sharing his images and allowing us to post them. Check out his website: http://legault.perso.sfr.fr/ for more wonderful images and information about how he does his amazing astrophotography.