Stunning SpaceX Space Station Cargo Blastoff and Cape Landing Kicks Off Sunshine State Liftoff Trio

SpaceX launched its 12th resupply mission to the International Space Station from NASA's Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Todays (Aug. 14) stunning SpaceX Space Station cargo delivery blastoff to the International Space Station (ISS) and flawless first stage landing from the Kennedy Space Center and Cape Canaveral Air Force Station in the Sunshine State kicked off a rapid fire sequence of liftoffs planned for mid August.

All 9 SpaceX Falcon 9 Merlin 1D first stage engines ignited precisely on time from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).

“It was a gorgeous day and a specular launch,” said Dan Hartman, NASA deputy manager of the International Space Station Program, at the post launch briefing at the Kennedy Space Center press site.

The 9 Merlin 1D’s of the two stage 213-foot-tall (65-meter-tall) Falcon 9 generate 1.7 million pounds of liftoff thrust fueled by liquid oxygen and RP-1 propellants.

“Just greatness to report about the launch,” said Hans Koenigsmann, SpaceX vice president of Flight and Build Reliability at the post launch briefing.

“The second stage deployed Dragon to a near perfect orbit. The first stage was successful and made a perfect landing. From what I’ve heard, it’s right on the bullseye and made a very soft touchdown, so it’s a great pre-flown booster ready to go for the next time.”

So its 1 down and 2 launches to go along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.

“We’re excited that about three quarters of the payload aboard is science,” noted Hartman. “With the internal and external payloads that we have going up, it sets a new bar for the amount of research that we’ve been able to get on this flight.”

And all 6 astronauts and cosmonauts serving aboard the station are especially looking forward to unpacking and serving up a specially cooled and hefty stash of delicious ice cream!

The ice cream, medical experiments and mice were all part of the late load items added the evening before liftoff – work that was delayed due to thunderstorms and completed just in time to avoid a launch delay.

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

A huge crowd of delighted locals, tourists and folks flocking in from around the globe, packed local beaches, causeways and parks and the Kennedy Space Center and witnessed a space launch and landing spectacular they will long remember.

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

The launch and landing of the SpaceX Falcon 9 booster took place just minutes apart under near perfect weather conditions, as the Dragon capsule sped to the heavens on a mission to the High Frontier of Space.

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The 22 story Falcon 9 roared off pad 39A on a stream of flames and exhaust into blue skies decorated with artfully spaced wispy clouds that enhanced the viewing experience as the rocket accelerated to orbit and on its way to the 6 person multinational crew.

The triple headed sunshine state space spectacular marches forward in barely 4 days with liftoff of NASA’s amazingly insectoid-looking TDRS-M science relay comsat slated for Friday morning Aug. 18 atop a United Launch Alliance (ULA) Atlas V rocket.

Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians and perhaps the North Koreans.

The Total Solar ‘Eclipse Across America’ takes place on Monday, Aug. 21. It’s the first solar eclipse in 99 years that space the continent from coast to coast and will be at least partially visible in all 48 contiguous states!

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds (2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

20 mice are also onboard from NASA for the Rodent Research 9 (RR-9) experiment and another dozen from Japanese researchers. This will support more than 80 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

Dragon reached its preliminary orbit about 10 minutes later and successfully deployed its life giving solar arrays.

Dragon CRS-12 now begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.

Dragon will be grappled with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.

The Dragon spacecraft will spend approximately 35 days attached to the space station, returning to Earth in mid-September with over 3000 pounds of science samples and results gathered over many months from earlier experiments by the station crews.

Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

A fourth cargo Dragon is likely to launch this year in December on the CRS-13 resupply mission under NASA’s current plans.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

Cargo Manifest for CRS-12:

TOTAL CARGO: 6415.4 lbs. / 2910 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg

UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg

The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to a US port on the exposed porch of the Japanese Experiment Module (JEM).

CREAM alone comprises almost half the payload weight.

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Here is a NASA description of CREAM:

The Cosmic Ray Energetics and Mass (CREAM) instrument will be attached to the Japanese Experiment Module Exposed Facility on the space station, and measure the charges of cosmic rays. The data collected from its three-year mission will address fundamental questions about the origins and histories of cosmic rays, building a stronger understanding of the basic structure of the universe.

The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:

Here is a NASA description of LRRK2:

The Dragon’s pressurized area includes an experiment to grow large crystals of leucine-rich repeat kinase 2 (LRRK2), a protein believed to be the greatest genetic contributor to Parkinson’s disease. Gravity keeps Earth-grown versions of this protein too small and too compact to study. This experiment, developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, will exploit the benefits of microgravity to grow larger, more perfectly-shaped LRRK2 crystals for analysis on Earth. Results from this study could help scientists better understand Parkinson’s and aid in the development of therapies.

Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:

Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

SpaceX Falcon 9 rocket rests horizontally at Launch Complex 39A at the Kennedy Space Center on 13 Aug. 2017 while being processed for liftoff of the Dragon CRS-12 resupply mission to the International Space Station (ISS) slated for 14 Aug. 2017. Credit: Ken Kremer/Kenkremer.com

KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Following up last week’s announcement of NASA’s proposed Fiscal Year 2018 top line budget of $19.1 Billion by the Trump Administration, Universe Today spoke to NASA’ s Kennedy Space Center (KSC) Director Robert Cabana to get his perspective on the new budget and what it means for NASA and KSC; “Stay on the path!” – with SLS, Orion, ISS and Commercial Crew was his message in a nutshell.

The highlights of NASA’s $19.1 Billion FY 2018 budget request were outlined last week by NASA Acting Administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV on May 23.

In order to get a better idea of the implications of the 2018 NASA budget proposal for KSC, I spoke one-on-one with Robert Cabana – one of NASA’s top officials, who currently serves as Director of the Kennedy Space Center (KSC) as well as being a former astronaut and Space Shuttle Commander. Cabana is a veteran of four space shuttle missions.

How did NASA and KSC fare with the newly announced 2018 Budget?

“We at KSC and NASA as a whole did very well with the 2018 budget,” KSC Director Robert Cabana explained during an interview with Universe Today by the Rocket Garden at the Kennedy Space Center Visitor Complex (KSCVC) in Florida.

“I think it really solidifies that the President has confidence in us, on the path that we are on,” Cabana noted while attending a student robotics competition at KSCVC sponsored by NASA.

“With only a 1 percent cut – when you look at what other agency’s got cut – this budget allows us to stay on the path that we are on.”

Trump cut NASA’s 2018 budget request by $0.5 Billion compared to the recently enacted FY 2017 budget of $19.6 Billion approved by the US Congress and signed by the President.

Other Federal science agency’s also critically vital to the health of US scientific research such as the NIH, the NSF, the EPA, DOE and NIST suffered terrible double digit slashes of 10 to 20% or more.

KSC is the focal point for NASA’s human spaceflight programs currently under intense development by NASA – namely the Space Launch System (SLS) Mars megarocket, the Orion deep space crew capsule to be launched beyond Earth orbit (BEO) atop SLS, and the duo of Commercial Crew Program (CCP) space taxis being manufactured by Boeing and SpaceX that will ferry our astronauts to low Earth orbit (LEO) and the International Space Station (ISS).

Numerous NASA science missions also launch from the Florida Space Coast.

“At KSC the budget keeps us on a path that continues to provide a commercial crew vehicle to fly crews to the ISS in 2018,” Cabana stated.

“The budget also keeps us on track to launch SLS and Orion in 2019.”

“I think that’s really important – along with all the other stuff we are doing here at KSC.”

“From our point of view it’s a good budget. We need to press ahead and continue on with what we promised.”

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

What’s ahead for commercial crew at KSC?

“We are moving forward with commercial crew,” Cabana told me.

“Within the next calendar year [2018] we are moving ahead with flying the first certification flight with crew to the ISS. So that’s test flights and by the end of the year an actual crewed flight to the ISS. I want to see that happen.”

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2018. Credit: NASA

Industry partners Boeing and SpaceX are building the private CST-100 Starliner and Crew Dragon spaceships respectively, as part of NASA’s commercial crew initiative aimed at restoring America’s human spaceflight capability to launch our astronauts aboard American spaceships on American rockets from American soil.

Commercial Crew is a public/private partnership initiative with commercial contracts valued at $4.2 Billion and signed by Boeing and SpaceX with NASA in September 2014 under the Obama Administration.

The goal of commercial crew is to end our sole reliance on the Russian Soyuz capsule for astronaut flights to the space station since the retirement of the space shuttles back in 2011 – by manufacturing indigenous rockets and human rated spaceships.

However the CCP program suffered severe budget reductions by the US Congress for several years which forced significant work stretch-outs and delays in the maiden crew launches by both companies from 2015 to 2018 – and thus forced additional payments to the Russians for Soyuz seat purchases.

Both the Boeing Starliner and SpaceX Dragon crew vehicles can carry 4 or more astronauts to the ISS. This will enable NASA to add another crew member and thereby enlarge the ISS crew from 6 to 7 permanent residents after they become operational.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Meanwhile NASA is focusing on developing the SLS heavy lift rocket and Orion crew capsule with prime contractors Boeing and Lockheed Martin in an agency wide effort to send humans on a ‘Journey to Mars’ in the 2030s.

The European Space Agency(ESA) is also partnered with NASA and providing the service module for Orion.

What’s the status of the delivery of the European Space Agency’s service module?

“The service module will be here sometime next year,” Cabana said.

He noted that the details and exact timing are yet to be determined.

The first integrated launch of SLS and Orion on the unpiloted Exploration Mission-1 (EM-1) is now slated for sometime in 2019 after NASA recently slipped the date to the right from Fall 2018.

At the request of the Trump Administration, NASA also just completed a detailed study to ascertain the feasibility of adding a crew of two NASA astronauts to the EM-1 flight and launch it by the end of 2019.

In the end, NASA officials decided to stick with the baselined plan of no crew on EM-1 for a variety of technical and safety reasons, as well as cost – as I reported here.

I asked Cabana for his insight and opinion on NASA not adding crew to Orion on the EM-1 flight.

“No we are not launching crew on the first flight [EM-1],” Cabana stated.

“With the budget that we have and what we need to do, this is the answer we got to at the end.”

“You know the crew study was still very important. It allowed us to find some things that we should still do on [EM-1], even though we are not going to launch crew on that flight.

“So we will make some further modifications that will reduce the risk even further when we do fly crew [on the next flight of EM-2].”

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

So for 2017 what are the major milestone you hope to complete here at KSC for SLS and Orion?

“So for me here at the Kennedy Space Center, my goal for the end of this calendar year 2017 we will have completed all of the construction of all of the [ground systems] hardware and facilities that are necessary to process and launch the Space Launch System (SLS) and Orion,” Cabana elaborated.

‘We will still have a lot of work to do with the software for the spacecraft command and control systems and the ground systems.”

“But my goal is to have the hardware for the ground systems complete by the end of this year.”

What are those KSC facilities?

“Those facilities include the VAB [Vehicle Assembly Building] which will be complete to accept the mobile launcher in September and pad 39B will be complete in August,” Cabana said.

“The RPSF is already complete. The NPFF is already complete and we are doing testing in there. The LASF [Launch Abort System Facility] is complete – where they put the abort rocket on.”

“The Mobile Launcher will be complete from a structural point of view, with all the systems installed by the end of the year [including the umbilical’s and while room].”

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

.……….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Robert Cabana, Director of NASA’s Kennedy Space Center (KSC) and former Space Shuttle Commander, and Ken Kremer/Universe Today discuss the newly proposed NASA FY2018 budget backdropped by the Rocket Garden at the Kennedy Space Center Visitor Complex, FL in May 2017. Credit: Ken Kremer/kenkremer.com

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Hurricane Matthew Grazes Kennedy Space Center and Cape Canaveral

Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph. Credit: NASA/Cory Huston
Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph.  Credit: NASA/Cory Huston
Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph. Credit: NASA/Cory Huston

The Kennedy Space Center (KSC), Cape Canaveral Air Force Station (CCAFS) and the major population centers along the Florida Space Coast were spared from major damage to infrastructure, homes and business after the deadly Cat 4 Hurricane Matthew grazed the region with 107 mph winds rather than making a direct impact as feared.

Although some of the base and Space Coast coastal and residential areas did suffer significant destruction most were very lucky to have escaped the hurricanes onslaught in relatively good shape, when it stayed at sea rather than making the forecast direct hit.

KSC’s iconic 525 foot tall Vehicle Assembly Building (VAB), the Complex 39 launch pads and the active launch pads at CCAFS are all standing and intact – as damage evaluations are currently underway by damage assessment and recovery teams from NASA and the US Air Force.

As Hurricane Matthew approached from the south Friday morning Oct. 7 along Florida’s Atlantic coastline, it wobbled east and west, until it finally veered ever so slightly some 5 miles to the East – thus saving much of the Space Coast launch facilities and hundreds of thousands of home and businesses from catastrophic damage from the expected winds and storm surges.

“Hurricane Matthew passed Cape Canaveral and Kennedy Space Center …. with sustained winds of 90 mph with gusts to 107 mph,” on Friday, NASA officials reported.

The storm passed “the space center about 26 miles off the tip of Cape Canaveral.”

Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016.  Credit: NASA/NOAA
Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016. Credit: NASA/NOAA

KSC and CCAFS did suffer some damage to buildings, downed power lines and some flooding and remains closed.

The Damage Assessment and Recovery Teams have entered the facilities today, Oct. 8, and are surveying the areas right now to learn the extent of the damage and report on when they can reopen for normal operations.

“After the initial inspection flight Saturday morning, it was determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion,” NASA reported late today.

Hurricane force wind from Hurricane Matthew throw a concession stand up against the Spaceflight Now building at the LC 39 Press Site at the Kennedy Space Center in Florida on Oct. 7, 2016.  Credit: NASA/Cory Huston
Hurricane force wind from Hurricane Matthew throw a concession stand up against the Spaceflight Now building at the LC 39 Press Site at the Kennedy Space Center in Florida on Oct. 7, 2016. Credit: NASA/Cory Huston

Inspection teams are methodically going from building to building this weekend to assess Matthew’s impact.

“Since safety is our utmost concern, teams of inspectors are going from building-to-building assessing damage.”

It will take time to determine when the center can resume operations.

“Due to the complexity of this effort, teams need time to thoroughly inspect all buildings and roads prior to opening the Kennedy Space Center for regular business operations.”

Not until after a full inspection of the center will a list of damaged buildings and equipment be available. The next update will be available no earlier than Sunday afternoon.

A “ride-out team” of 116 remained at KSC and at work inside the emergency operations center in the Launch Control Center located adjacent to the VAB during the entire Hurricane period.

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site.   NASA is upgrading the VAB with new platforms to assemble and launch  NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

It took until Friday afternoon for winds to drop below 40 knots start preliminary damage assessments.

“KSC is now in a “Weather Safe” condition as of 2 p.m. Friday. While there is damage to numerous facilities at KSC, it consists largely roof damage, window damage, water intrusion, damage to modular buildings and to building siding.”

Teams are also assessing the CCAFS launch pads, buildings and infrastructure. Some buildings suffered severe damage.

“We have survived a catastrophic event that could have easily been cataclysmic. It is only by grace and a slight turn in Matthew’s path that our base and our barrier island homes were not destroyed or covered in seven feet of water,” wrote Brig. Gen. Wayne Monteith, commander of the Air Force’s 45th Space Wing at Patrick Air Force Base, in a Facebook update.

“There is a lot of debris throughout the base.”

“We are still experiencing deficiencies in critical infrastructure, consistent power, emergency services, communications and hazardous material inspections that make portions of our base uninhabitable or potentially dangerous.”

Severely damaged building on Cape Canaveral Air Force Station.  Credit: 45th Space Wing
Severely damaged building on Cape Canaveral Air Force Station. Credit: 45th Space Wing

Of particular importance is Space Launch Complex 41 (SLC-41) where the next scheduled liftoff is slated for Nov. 4.

The launch involves America’s newest and most advanced weather satellite on Nov 4. It’s named GOES-R and was slated for blastoff from Cape Canaveral Air Force Station pad 41 atop a United Launch Alliance (ULA) Atlas V rocket.

The launch facilities will have to be thoroughly inspected before the launch can proceed.

The satellite is in the final stages of preparation at the Astrotech Space Operations Facility in Titusville, FL as I recently observed during an up close visit in the High Bay cleanroom.

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULS Atlas V on Nov 4, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V on Nov 4, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

The major Space Coast cities in Brevard county suffered much less damage then feared, although some 500,000 residents lost power.

Local government officials allowed most causeway bridges to the barrier islands to be reopened by Friday evening, several local colleagues told me.

Here’s some images of damage to the coastal piers, town and a destroyed house from the Melbourne Beach and Satellite Beach areas from my space colleague Julian Leek.

Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Navaho missile on display at the CCAFS south gate suffered severe damage from Hurricane Matthew and crumpled to the ground.  Credit: 45th Space Wing
Navaho missile on display at the CCAFS south gate suffered severe damage from Hurricane Matthew and crumpled to the ground. Credit: 45th Space Wing
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek

Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building required to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A major overhaul of the iconic Vehicle Assembly Building (VAB) readying it for launches of NASA’s SLS Mars rocket by 2018 has reached the halfway point with installation of massive new access platforms required to enable assembly of the mammoth booster at the Kennedy Space Center (KSC) – as seen firsthand during an exclusive up close facility tour by Universe Today.

“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality. See our exclusive up close photos herein – detailing the huge ongoing effort.

Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.

Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.

“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”

A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White
A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White

It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.

SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.

SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of human voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, hoisting, fastening, banging and clanging and workers moving equipment and gear around.

Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016.  Credit: Julian Leek
Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016. Credit: Julian Leek

Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platform halves, denoted as the North and South side platforms.

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016.  Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016. Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek

What’s the status today?

“We are looking up at 5 of 10 platform levels with 10 of 20 platform halves installed here. A total of ten levels are being installed,” Sumner explained.

“We are installing them from the bottom up. The bottom five levels are installed so far.”

“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].

“So there are 10 levels for EM-1.”

Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is now rapidly moving into the new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.

“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”

“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”

“So quite a few work locations are active with different crews and different groups.”

Two additional new platform halves are sitting in the VAB transfer aisle and are next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.

“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”

Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.

The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.

The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B atop the 380 foot tall Mobile Launcher – which is also undergoing a concurrent major renovation and overhaul.

As of today, five of the ten levels of platforms are in place.

Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.

The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.

Here’s the view looking out to Platform F:

View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

How are the platforms installed ?

The platforms are carefully lifted into place by workers during a process that lasts about four hours.

“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”

Then they are attached to rail beams on the north and south walls of the high bay.

Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.

Installation of the remaining five levels of platforms should be completed by mid-2017.

“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.

“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.

The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.

“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”

The F-level platforms are located about 192 feet above the VAB floor.

“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”

“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.

Looking190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida.  Credit: Ken Kremer/kenkremer.com
Looking 190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida. Credit: Ken Kremer/kenkremer.com

‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.

So it was out with the old and in with the new to carry out that daunting task.

“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.

“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”

And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.

“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”

“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”

“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”

“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016.  New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016. New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today.  The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
US Flag hangs proudly inside the VAB - America’s Premier Spaceport to Deep Space.  Credit: Lane Hermann
US Flag hangs proudly inside the VAB – America’s Premier Spaceport to Deep Space. Credit: Lane Hermann
View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site.   NASA is upgrading the VAB with new platforms to assemble and launch  NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft  for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stunning Astrophoto Captures Awe Inspiring NASA Rocket Launch Amidst Star Trails – Gallery

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA's latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA’s latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace
see Atlas V/TDRS-L Launch Galley below
Story updated[/caption]

Space photographer Mike Killian has captured an absolutely stunning astrophoto of this week’s Atlas V blastoff that innovatively combines astronomy and rocketry – its the streak shot featured above. See additional Atlas launch imagery below – and here.

Mike’s awe inspiring imagery melds Thursday night’s (Jan. 23) spectacular Atlas V liftoff of NASA’s latest Tracking & Data Relay Satellite (TDRS) from Cape Canaveral, Florida, with brilliant star trails, reflecting the Earth’s rotation, moving in the crystal clear dark sky overhead and brilliantly glowing xenons and flaming reflections in the waters beneath.

Update 30 Jan:
This fabulous star trails/streak image has been featured as the APOD on Jan 30, 2014.

TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com
TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com

The 3.8 ton TDRS-L communications satellite was successfully delivered by the Atlas V to orbit where it will become an essential member of NASA’s vital network to relay all the crucial science and engineering data from a wide variety of science satellites – including the Hubble Space Telescope and the International Space Station.

The United Launch Alliance Atlas V launched at 9:33 p.m. from Pad 40.

Read my complete Atlas V/TDRS-L launch story – here.

Killian’s very creative image makes it looks as though the fiery rocket plume is slicing and dicing a path though the wandering stars as its thundering off the pad, arcing out over the Atlantic Ocean and soaring on to orbit.

And it’s all perfectly framed – as detailed below in my interview with Mike Killian.

Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com

Mike is a space friend of mine and we recently spent launch week together photographing the Jan. 9 Antares rocket launch from NASA’s Wallops Island Flight Facility in Virginia, amidst the bone chilling cold of the Polar Vortex – which by the way has returned! See a photo of us freezing together at NASA Wallops – below!!

See our Antares launch imagery – here and here.

Be sure to enjoy the Atlas V gallery herein including more space photog friends including Jeff Seibert, Alan Walters, Walter Scriptunas II and nasatech.net

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Mike’s magnificent new astrophoto was snapped from the Press Site at the Kennedy Space Center – located right next to the world famous countdown clock and the Vehicle Assembly Building (VAB).

The two launch sites – NASA Wallops and Cape Canaveral/NASA Kennedy Space Center – sit about 800 miles apart on the US East Coast.

His stunning new astrophoto was several years in the making and the result of rather careful planning and of course some good luck too.

Mike is a very experienced and exceptionally talented and accomplished photographer in general.

So for the benefit of Universe Today readers, I asked Mike to describe how he planned, executed and processed the fabulous Jan. 23 star trail/Atlas launch photo.

“I’ve wanted to attempt this shot for 2 years now & finally the conditions for it came together Thursday night – no moonlight, no clouds, barely a breeze, mostly dry air & enough TIME between sunset and liftoff to capture some descent star trails,” Mike Killian told me.

What was the shooting time and equipment involved?

“Approximate total shooting time was about 3 hours, 380 20-second exposures @ ISO 400, shot with a Canon T4i w/ a 11-16mm Tokina 2.8 lens,” said Killian.

“For the launch I adjusted those setting for the rocket’s bright flame, did that exposure, then took the images and stacked using Photoshop. All images are the exact same framing.”

Killian took the photos from right along the edge of the water basin at the Press Site at the Kennedy Space Center, located right next to the VAB where NASA’s Saturn V Moon rockets and Space Shuttles were processed for launch.

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Why shoot from Kennedy Space Center instead of Cape Canaveral?

“I chose to shoot from the water’s edge at Turn Basin mainly because of the water, I always like a nice reflection from the xenon lights and the launch itself.

“Plus I knew nobody would shoot from there, as both the VAB roof & Cape Canaveral were available for media to view from (both have fantastic views).”

“I wanted to do something different.”

“Generally we get an hour or so at whatever area we are shooting any given launch from, before heading back to the press site.”

“But since the Turn Basin is AT the press site, the location was open for several hours due to TDRS-L being a night launch.”

“So I had enough time to attempt this shot from about as close as you can get (4 miles or so)!

Is Mike pleased with the result?

“I’m happy with how this one came out!” Mike ecstatically told me.

For some background on the VAB and the imminent end of public tours inside – read my new VAB story, here.

And here’s my daytime shot showing the Turn Basin and Mike’s approximate shooting location at the KSC Press Site. Mike is shooting in the opposite direction – from waters edge looking to the right.

View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com

Spectacular Go Pro TDRS Launch Video by Matthew Travis

Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold. Credit: Ken Kremer – kenkremer.com
Photo Credit: Alan Walters / AmericaSpace
Photo Credit: Alan Walters / AmericaSpace

Space Science Stories to Watch in 2014

Orion moves towards its first EFT-1 spaceflight later this year. (Credit: NASA).

There’s an old Chinese proverb that says, “May you live in interesting times,” and 2013 certainly fit the bill in the world of spaceflight and space science. The past year saw spacecraft depart for Mars, China land a rover on the Moon, and drama in low Earth orbit to repair the International Space Station. And all of this occurred against a landscape of dwindling budgets, government shutdowns that threatened launches and scientific research, and ongoing sequestration.

But it’s a brave new world out there. Here are just a few space-related stories that we’ll watching in 2014:

An artist's conception of ESA's Rosetta and Philae spacecraft approaching comet 67P/Churyumov-Gerasimenko. (Credit: ESA-J. Huart, 2013)
An artist’s conception of ESA’s Rosetta and Philae spacecraft approaching comet 67P/Churyumov-Gerasimenko. (Credit: ESA-J. Huart, 2013)

Rosetta to Explore a Comet: On January 20, 2014, the European Space Agency will hail its Rosetta spacecraft and awaken it for its historic encounter with comet 67P/Churyumov-Gerasimenko later this year in August. After examining the comet in detail, Rosetta will then dispatch its Philae lander, equipped complete with harpoons and ice screws to make the first ever landing on a comet. Launched way back in 2004, Rosetta promises to provide the cosmic encounter of the year.

The October 19th, 2014 passage of comet C/2013 A1 Siding Springs past Mars. (Credit: NASA/JPL-Caltech)
The October 19th, 2014 passage of comet C/2013 A1 Siding Springs past Mars. (Credit: NASA/JPL-Caltech)

A1 Siding Springs vs. Mars: A comet discovery back in 2013 created a brief stir when researchers noted that comet C/2013 A1 Siding Springs would make a very close passage of the planet Mars on October 19th, 2014. Though refinements from subsequent observations have effectively ruled out the chance of impact, the comet will still pass 41,300 kilometres from the Red Planet, just outside the orbit of its outer moon Deimos. Ground-based observers will get to watch the +7th magnitude comet close in on Mars through October, as will a fleet of spacecraft both on and above the Martian surface.

A recent tweet from @NewHorizons_2015, a spacecraft that launched just weeks before Twitter in 2006.
A recent tweet from @NewHorizons_2015, a spacecraft that, ironically, launched just weeks before Twitter in 2006.

Spacecraft En Route to Destinations: Though no new interplanetary missions are set to depart the Earth in 2014, there are lots of exciting missions currently underway and headed for worlds yet to be explored. NASA’s Dawn spacecraft is headed towards its encounter with 1 Ceres in February 2015. Juno is fresh off its 2013 flyby of the Earth and headed for orbital insertion around Jupiter in August 2016. And in November of this year, New Horizons will switch on permanently for its historic encounter with Pluto and its retinue of moons in July 2015.    

LUX & the Hunt for Dark Matter: It’s all around us, makes up the bulk of the mass budget of the universe, and its detection is THE name of the game in modern astrophysics. But just what is dark matter? Some tantalizing– and hotly contested –data came out late last year from of an unusual detector deep underground near Lead, South Dakota. The Large Underground Xenon experiment (LUX) looks for Weakly Interacting Massive Particles (WIMPs) interacting with 370 kilograms of super-cooled liquid Xenon. LUX requires its unique locale to block out interference from incoming cosmic rays. LUX is due to start another 300 day test run in 2014, and the experiment will add another piece to the puzzle posed by dark matter to modern cosmology, whether or not detections by LUX prove to be conclusive.   

The LIGO Livingston Observatory. (Photos by Author)
The LIGO Livingston Observatory. (Photos by Author)

 The Hunt for Gravity Waves: Another story to watch may come out of Caltech’s twin gravity wave observatories when its Advanced LIGO system goes online later this year. Established in 2002, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is comprised of two detectors: one in Hanford Washington and one outside of Livingston, Louisiana. The detectors look for gravity waves generated by merging binary pulsars and black holes. Though no positive detections have yet been made, Advanced LIGO with boast ten times the sensitivity and may pave the way for a new era of gravitational wave astronomy.

An artist concept of MAVEN in orbit around Mars. (Credit: NASA's Goddard Spaceflight Center).
An artist concept of MAVEN in orbit around Mars. (Credit: NASA’s Goddard Spaceflight Center).

 Spacecraft reach Mars: 2014 is an opposition year for the Red Planet, and with it, two new missions are slated to begin operations around Mars: India’s Mars Orbiter Mission (MOM) also known as Mangalyaan-1 is slated to enter orbit on September 24th, and NASA’s MAVEN or Mars Atmosphere and Volatile Evolution Mission is set to arrive just 2 days earlier on September 22nd. MOM and MAVEN will join the Curiosity and Opportunity rovers, ESA’s Mars Express,  NASA’s Odyssey spacecraft and  the Mars Reconnaissance Orbiter in the quest to unlock the secrets of the Red Planet.

Space Tourism Takes Off: Virgin Galactic’s SpaceShipTwo passed a key milestone test flight in late 2013. Early 2014 may see the first inaugural flights by Virgin Galactic out of the Mohave Spaceport and the start of sub-orbital space tourism. SpaceShipTwo will carry two pilots and six passengers, with seats going for $250,000 a pop. Hey, room for any space journalists in there? On standby, maybe?

The First Flight of Orion: No, it’s not the first flight of the proposed sub-light interplanetary spacecraft that was to be propelled by atomic bombs… but the September launch of the Orion Multi-Purpose Crew Vehicle is the first step in replacing NASA’s capability to launch crews into space. Exploration Flight Test 1 (EFT-1) will be a  short uncrewed flight and test the capsule during reentry after two orbits. It’s to be seen if the first lunar orbital mission using an Orion MPCV will occur by the end of the decade.

Launch of the SpaceX CRS-2 mission to the ISS in early 2013. (Photo by author).
Launch of the SpaceX CRS-2 mission to the ISS in early 2013. (Photo by author)

 The First Flight of the Falcon Heavy: 2014 will be a busy year for SpaceX, starting with the launch of Thaicom-6 out of Cape Canaveral this Friday on January 3rd. SpaceX is now “open for business,” and expect to see them conducting more satellite deployments for customers and resupply missions to the International Space Station in the coming year. They’ll also be moving ahead with tests of their crew-rated version of the Dragon capsule in 2014. But one of the most interesting missions to watch for is the demo flight of the Falcon 9 Heavy slated to launch out of Vandenberg Air Force Base by the end of 2014.… more to come!

The Sunjammer Space Sail: An interesting mission moves in 2014 towards a January 2015 launch: LGarde’s Sunjammer solar sail. Sunjammer will test key solar sail technologies as well as deliver the Solar Wind Analyzer (SWAN) and the MAGIC Magnetometer to the L1 Earth-Sun Lagrange point. Sunjammer will launch on a Falcon-9 rocket and deploy a 1200 square metre solar sail weighing only 32 kilograms. This will be a great one for ground satellite-spotters to track as well as it heads out!

Gaia Opens for Business: Launched on a brilliant night-shot out of the Kourou Space Center in French Guiana on December 19th of last year, the European Space Agency’s Gaia space observatory will begin its astrometry mission in 2014, creating most accurate map yet constructed of our Milky Way Galaxy. But we also anticipate exciting new discoveries due to spin-offs from this mission, to include the discovery of new exoplanets, asteroids, comets and much more.

And as in years previous, the quest to explore brave new worlds will be done against the backdrop of tightening budgets. Just like in household budgets, modern spaceflight is a continual conflict between what we would wish and what we can afford. In recent years, no mission seems to be safe, and there have even been occasional congressional rumblings to pull the plug on missions already underway. Interesting times, indeed… 2014 promises to be an extraordinary time in spaceflight and space science, both on Earth and beyond.

Endeavour Poised for Final Takeoff on Sept. 19

Image caption: Endeavour atop the 747 SCA exits the Mate-Demate Device at the Kennedy Space Center Shuttle Landing Facility on Sept. 17. Credit: Ken Kremer

Everyone is hoping that the third time will be the charm to get the final flight of NASA’s three decade long shuttle program underway. See my gallery of shuttle Endeavour photos departing the gantry like Mate-Demate Device at the Shuttle Landing Facility (SLF).

Hordes of tourists from across the globe have descended on the Florida Space Coast to catch a glimpse of space history as Endeavour takes flight for the final time.

Space Shuttle Endeavour is poised for an early morning takeoff from the Kennedy Space Center (KSC) at first light on Wednesday, Sept. 19 following a two day delay due to poor weather conditions en route for the first leg of her cross country journey to California.

Image caption: Endeavour mated to NASA Boeing 747 at the Kennedy Space Center Shuttle Landing Facility on Sept. 17. Credit: Ken Kremer

In the meantime, local crowds of KSC workers and enthusiastic tourists are unexpectedly enjoying a few last bonus days of up close looks at NASA’s youngest shuttle orbiter atop a 747 Jumbo Jet known as the SCA or Shuttle Carrier Aircraft.

Endeavour awaits her departure orders firmly bolted on top of a specially modified 747 after being towed on Friday from the Vehicle Assembly Building (VAB) to the shuttle landing strip. The orbiter weighs nearly 200,000 pounds or 100 tons.

Liftoff of Endeavour from the SLF at KSC was originally planned for Monday, Sep 17 with a stop along the way at NASA’s Johnson Space Center (JSC) in Houston. But those carefully laid plans were derailed when a low pressure front materialized in the northern Gulf of Mexico generating a swatch of thunderstorms.

Image caption: Endeavour atop the SCA at Shuttle Landing Facility at KSC on Sept. 17. Credit: Ken Kremer

Managers could not find a safe path to Houston and twice scrubbed Endeavour’s takeoff.

With the weather delays, the cross country ferry flight has the feel of a space shuttle launch.

NASA plans to take the final takeoff decision down to the wire, following the last weather briefing at 5 a.m. on Wednesday.

Along the way from Kennedy to Johnson, the pair will conduct several low-level flyovers of NASA centers along the flight path at about 1500 feet at NASA’s Stennis Space Center in Mississippi and the Michoud Assembly Facility in New Orleans before landing at Ellington Field near JSC.

Image caption: Endeavour atop the 747 SCA exits the Mate-Demate Device at the Kennedy Space Center Shuttle Landing Facility on Sept. 17. Credit: Ken Kremer

At roughly 7:15 a.m. on Sept. 19, the SCA and Endeavour will depart Kennedy’s Shuttle Landing Facility and perform a flyover of various areas and beaches of the Space Coast, including Kennedy, the Kennedy Space Center Visitor Complex, Cape Canaveral Air Force Station and Patrick Air Force Base for 20 minutes for more.

Endeavour and the SCA will take a lengthy fly around victory lap around the Los Angeles area before landing at LAX at about 11.a.m PDT on Sept 21.

The orbiter will be towed along a 12 mile path through the streets of Inglewood and LA to the California Science Center. Eventually she will be displayed vertically, in launch configuration.

Endeavour flew 25 missions and traveled 122,883,151 miles during 299 days in space.

Ken Kremer

Image caption: Endeavour atop the SCA at Shuttle Landing Facility at KSC on Sept. 17. Credit: Ken Kremer

NASA Terminates Power, Locks Cargo Doors on Retiring Shuttle Discovery

In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, space shuttle Discovery’s payload bay is moments away from being concealed from view as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery was powered down and the doors were closed for the final time during Space Shuttle Program transition and retirement activities. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

[/caption]

Space Shuttle Discovery was powered down forever and the payload bay doors were locked tight for the final time on Friday, Dec. 16, by technicians at NASA’s Kennedy Space Center (KSC) in Florida.

Take a good last glimpse inside the retiring Discovery’s payload bay as the clamshell like doors seal off all indigenous US human spaceflight capability for several years at a minimum.

The historic “Power Down” came after both of the 60 foot long cargo bay doors were swung shut this morning for the last time inside the shuttle hanger known as Orbiter Processing Facility-1 (OPF-1) – in the shadow of the cavernous Vehicle Assembly Building (VAB).

Workers at KSC are in the final stages of the transition and retirement activities that will soon lead to Discovery departing her Florida launch pad forever on her final voyage. They are converting the orbiter from active duty flight status to display as a nonfunctional and stationary museum piece.

Kennedy Space Center Director Robert Cabana, a former space shuttle commander, formally marked the final power down and sealing of Discovery’s payload bay doors at a ceremony in OPF-1 with the skeleton force of remaining shuttle personnel engaged in the decommissioning efforts.

Discovery’s payload bay is glimpsed for the final time as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery's doors were closed and the vehicle was powered down for the final time. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

Discovery was the Fleet leader and NASA’s oldest orbiter having flown the most missions. All told Discovery soared 39 times to space from her maiden flight in 1984 to her last touchdown on the STS-133 mission in March 2011.

In between, Discovery deployed the iconic Hubble Space Telescope, launched the Ulysses solar probe and numerous other science satellites and Department of Defense surveillance platforms, conducted the first shuttle rendezvous with Russia’s Mir Space Station and delivered key components to the International Space Station including the last habitable module.

Discovery payload bay and doors sealed for History inside Orbiter Processing Facility-1 at KSC. Credit: NASA/Kim Shiflett

Discovery flew both ‘return to flight’ missions following the Challenger and Columbia tragedies as well as the second flight of Astronaut and Senator John Glenn, first American to orbit the Earth.

Discovery has been thoroughly cleansed and cleared of all hazardous materials in preparation for making the vehicle safe for public display at her new and final resting place, the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va..

Technicians re-installed the three power generating fuel cells after draining and purging all the toxic materials and fuels from the fuel lines and assemblies. Three replica space shuttle main engines were also installed last week.

The "vehicle powered" sign is momentarily lit as KSC technicians prepare to power down space shuttle Discovery for the last time. Credit: NASA/Kim Shiflett
The "vehicle powered" sign is turned off following the final power down of space shuttle Discovery. Credit: NASA/Kim Shiflett

In 2012, the 100 ton orbiter will be hoisted piggyback atop NASA’s specially modified 747 carrier aircraft. Discovery will take flight for the last time in April and become the center piece at her new home inside the Smithsonian’s spaceflight exhibition in Virginia.

To make way for Discovery, the prototype shuttle Enterprise currently housed at the Smithsonian will be hauled out and flown to New York City for display at the Intrepid, Sea, Air and Space Museum.

Altogether, Discovery spent 365 days in space during the 39 missions, orbited Earth 5,830 times and traveled 148,221,675 miles during a career spanning 27 years.

There is nothing on the horizon comparable to NASA’s Space Shuttles. Their capabilities will be unmatched for several decades to come.

America is now totally dependent on the Russians for launching US astronauts to space until privately built ‘space taxis’ from firms like SpaceX, Boeing and Sierra Nevada are ready in perhaps 4 to 6 years.

Liftoff of Space Shuttle Discovery on the STS-133 mission from the Kennedy Space Center on 39th and historic final flight to space. Credit: Ken Kremer
Space Shuttle Discovery rolling to the Vehicle Assembly Building during summer 2011 as it's being processed for retirement before transport to permanent home at the Smithsonian Air & Space Museum in Virginia. Thrusters, OMS pods and main engines were removed for cleaning of toxic components and fuels. Credit: Ken Kremer

Commander of Final Shuttle Mission to Leave NASA

Chris Ferguson, the commander of the final mission of the shuttle program, STS-135 has announced that he will leave the space agency. Photo Credit: NASA.gov

[/caption]

On Dec. 9, 2011, NASA will witness the departure of the astronaut who served as commander for the final space shuttle mission STS-135. Chris Ferguson has announced his plans to retire from the space agency so that he can enter the private sector. With Ferguson’s departure, all of the commanders who flew the final three shuttle missions have left or will be departing NASA.

With no defined human space flight mission objectives in place and with the only ride to space currently being Russia’s Soyuz Spacecraft many astronauts are leaving the agency for other prospects. The space agency is losing an astronaut at the rate of one astronaut every two months. As of Dec. 9 NASA will have 58 astronauts in its active roster.

Ferguson has flown into space, twice on space shuttle Atlantis, logging over 40 days in space. Photo Credit: NASA.gov

Ferguson is a retired U.S. Navy captain – his command of Atlantis’ final flight marked his third trip into space. The 13-day mission was a resupply flight to the International Space Station and saw some 10,000 pounds of supplies and spare parts delivered to the orbiting outpost. With the final landing, conducted on July 21, 2011, Ferguson and his crew wrapped up the shuttle program’s 30 year history.

“Chris has been a great friend, a tremendous professional and an invaluable asset to the NASA team and the astronaut office,” said Peggy Whitson, chief of the Astronaut Office. “His exceptional leadership helped ensure a perfect final flight of the space shuttle,
a fitting tribute to the thousands who made the program possible.”

Ferguson (third from left) has opted to leave NASA to pursue a job in the private sector. His departure comes at a time when NASA is losing many of its experienced space flyers. Image Credit: NASA.gov

Ferguson’s very first mission, STS-115, was also on Atlantis. He served as the pilot on this mission which took place in 2006 and delivered the P3 and P4 truss segments to the space station. His next shuttle flight was STS-126 on shuttle Endeavour, this mission saw water reclamation and habitation systems transported to the ISS (as well as conducting a crew swap out). Ferguson has over 40 days of space flight experience.

Ferguson joined NASA’s astronaut corps in 1998. Upon his completion of initial astronaut training, he performed technical duties related to the shuttle’s main engines (SSMEs), the orbiter’s large, orange external tank, solid rocket boosters (SRBs) as well as software utilized on the shuttles. Before he was given the nod to be the commander of STS-135, Ferguson was the deputy chief of the Astronaut Office at NASA’s Johnson Space Center located in Houston, Texas.

“Chris has been a true leader at NASA,” said NASA Administrator Charles Bolden, “not just as a commander of the space shuttle, but also as an exemplary civil servant, a distinguished Navy officer and a good friend. I am confident he will succeed in his next career as he brings his skill and talents to new endeavors.”

Chris Ferguson has served NASA in a variety of roles since being accepted as an astronaut in 1998. Photo Credit: NASA.gov