Venus Express Discovers Venusian Ozone Layer

Venus Express has two solar cell panels per wing comprising alternating rows of standard triple junction solar cells as well as highly reflective mirrors to reduce the operating temperatures. There is twice as much sunlight in Venus's orbit as there is in Earth's orbit, plus additional thermal input from the Venusian surface and atmosphere – 75% of sunlight being reflected up from it. In certain cases, this results in Venus Express receiving an equivalent of the thermal input from 3.5 Suns. Credit: ESA

Every day brings on new discoveries and now ESA’s Venus Express spacecraft has delivered another… the red-hot planet has an ozone layer. Located high in the Venusian atmosphere, this planetary property will help us further understand how such features compare to Earth and Mars – along with refining our search for extra-terrestrial life.

This wonderful discovery was made while Venus Express was busy watching stars at the periphery. When seen through the planet’s atmosphere, the SPICAV instrument was able to distinguish gas types spectroscopically. By picking apart the wavelengths, ozone was detected through its absorption of ultraviolet light. It forms when sunlight breaks down the carbon dioxide molecules and releases oxygen. From there, they are distributed by planetary winds where the oxygen atoms will either combine into two-atom oxygen molecules, or form three-atom ozone.

“This detection gives us an important constraint on understanding the chemistry of Venus’ atmosphere,” says Franck Montmessin, who led the research.

This is an animation of Venus Express performing stellar occultation at Venus. Venus Express is the first mission ever to apply the technique of stellar occultation at Venus. The technique consists of looking at a star through the atmospheric limb. By analysing the way the starlight is absorbed by the atmosphere, one can deduce the characteristics of the atmosphere itself. Credits: ESA (Animation by AOES Medialab)

To date, ozone has been the sole property of Earth and Mars – but this type of discovery method could aid astronomers in searching for life on other worlds. Why is it important? Because ozone absorbs most of the Sun’s harmful ultra-violet rays… and because it is believed to be a by-product of life itself. When combined with carbon dioxide, this could create a signature as a strong signal for life. But don’t get too excited at the prospects, yet. The amount of ozone detected is also critical to refining models. It will need to be at least 20% of Earth’s value to even be considered.

“We can use these new observations to test and refine the scenarios for the detection of life on other worlds,” says Dr Montmessin.

While we know that chances are almost non-existent that Venus has life, it still brings it one step closer to planets like Mars and Earth.

“This ozone detection tells us a lot about the circulation and the chemistry of Venus’ atmosphere,” says Hakan Svedhem, ESA Project Scientist for the Venus Express mission. “Beyond that, it is yet more evidence of the fundamental similarity between the rocky planets, and shows the importance of studying Venus to understand them all.”

Original Story Source: ESA Space Science News.

New Research Finds Venus’ Winds, They Are A-Changin’

Image of Venus in ultraviolet light by ESA's Venus Express.

 

[/caption]

Venus, Earth’s hotheaded neighbor, may have more variability in its weather patterns than previously believed. Using infrared data obtained by ground-based telescopes in Hawaii and Arizona researchers have found that Venus’ mesosphere and thermosphere are less consistent in temperature than layers closer to its surface.

But first let’s talk about Venus itself.

Possibly the most inhospitable of planets in our solar system, Venus is the victim of a runaway greenhouse effect. Our neighboring world is a virtual oven… with a rocky surface baked by 800ºF temperatures and crushed beneath the weight of its own incredibly dense atmosphere, standing “sea level” on Venus would be like being 3,300 feet underwater, just in terms of pressure per square inch. And as if the heat and pressure weren’t enough, Venus’ skies are full of clouds made of corrosive sulphuric acid, lit by bolts of lightning and and whipped along by hurricane-force planetwide winds. All Earth-based probes that have ever landed there only lasted moments on the surface before succumbing to Venus’ destructive environment.

Venus is, quite literally, hellish.

Venus' south polar vortex imaged in infrared. A darker region corresponds to higher temperature and thus lower altitude. Credit: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA.

Unlike Earth, Venus does not have much of an axial tilt. This means there’s little, if any, seasonal variation on Venus. (Actually it does have a tilt… Venus is rotated almost completely upside-down relative to its poles, and so in effect still has very little axial tilt.) And since its cloud cover is so dense and it lacks a hydrologic cycle to move heat energy around, it pretty much stays at a constant level of “extreme broil” all across Venus’ surface.

Surface weather on Venus, although unpleasant, is consistent.

Yet based on an international team’s new research this is not the case higher up in Venus’ atmosphere. A new look at old data has uncovered changing weather patterns visible in infrared light at about 68 miles (110 kilometers) above the planet’s surface in the cold, clear air above the acid clouds.

“Any variability in the weather on Venus is noteworthy, because the planet has so many features to keep atmospheric conditions the same,” said Dr. Tim Livengood, a researcher with the National Center for Earth and Space Science Education and the University of Maryland, now stationed at NASA’s Goddard Space Flight Center in Greenbelt.

Dr. Theodor Kostiuk of NASA Goddard explains further: “Although the air over the polar regions in these upper atmospheric layers on Venus was colder than the air over the equator in most measurements, occasionally it appeared to be warmer. In Earth’s atmosphere, a circulation pattern called a ‘Hadley cell’ occurs when warm air rises over the equator and flows toward the poles, where it cools and sinks. Since the atmosphere is denser closer to the surface, the descending air gets compressed and warms the upper atmosphere over Earth’s poles. We saw the opposite on Venus.”

Many factors could be contributing to Venus’ upper-atmospheric variabilities, such as interactions between opposing winds blowing around the planet at over 200 mph, giant vortexes that churn around its poles, and possibly even solar activity, like solar storms and coronal mass ejections which may create turbulence in Venus’ upper atmosphere.

“The mesosphere and thermosphere of Venus are dynamically active. Wind patterns resulting from solar heating and east to west zonal winds compete, possibly resulting in altered local temperatures and their variability over time.”

– Lead author Dr. Guido Sonnabend, University of Cologne, Germany

Artist concept of Venus' surface. (NASA)

The team also found that the temperatures of Venus’ atmosphere change over time, spanning weeks, months, years… even decades. Temperatures measured in 1990-91 are warmer than in 2009, and equatorial temperatures were even warmer in 2007.

“In addition to all these changes, we saw warmer temperatures than those predicted for this altitude by the leading accepted model,” said Kostiuk. “This tells us that we have lots of work to do updating our upper atmospheric circulation model for Venus.”

Even though Venus is compositionally similar to Earth and has a similar size as well, at some point in its history it lost all of its water to space and became the cloud-covered oven it is today. Studying Venus will help scientists learn how this may have happened and – hopefully! –  learn how to prevent the same fate from ever befalling Earth.

The paper, led by Dr. Guido Sonnabend of the University of Cologne, Germany and co-authored by Drs. Livengood and Kostiuk, appeared July 23 in the online edition of the journal Icarus.

Read more on the NASA feature article here.

Planets Party In The Morning April 28-May 1

April's Morning Conjunction Credit: Adrian West

[/caption]

Set your alarm clocks for an early treat about a half an hour before sunrise on Thursday April 28 through Sunday, May 1, 2011, as there will be a planetary delight in store! Go out and with either a pair of binoculars, a small telescope, or just use your naked eyes and find an unobscured view of the Eastern horizon to see a conjunction (objects near each other in the sky) of the planets Jupiter, Mars, Venus and Mercury, below and to the left of the thin crescent moon.

Bright Venus will be easy to spot first, then Mercury followed by Jupiter. The real challenge is to find Mars which will be very close to Jupiter. See the above diagram for help on where each object is located.

If you are unlucky on the first morning, try again the following day for a chance to see this rare planetary occurrence.

While observing this close to the Sun take care and never look at the sun directly with your eyes and never through an optical instrument, as this will permanently damage your eyesight or blind you!

Only special purpose made solar telescopes and filters are safe for viewing the sun.

A Varying Venusian Vortex

Animation of Venus' southern polar vortex made from VIRTIS thermal infrared images; white is cooler clouds at higher altitudes.

Our neighboring planet Venus really is a world of extremes; searing surface temperatures, crushing air pressure, sulfuric acid clouds…Venus pretty much pushes the envelope on every aspect of rocky-planet existence. And now here’s one more thing that made scientists do a double-take: a shape-shifting vortex swirling around Venus’ south pole!

The presence of a cyclonic storm around Venus’ poles – both north and south –  has been known since Mariner 10’s pass in 1974 and then afterwards during the Pioneer Venus mission when a downwardly-spiraling formation of clouds over the planet’s north pole was imaged in infrared. It wasn’t until ESA’s Venus Express orbiter arrived in 2006 that the cyclone at the south pole was directly observed via the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument…and it proved to be much stranger than anything previously expected. Continue reading “A Varying Venusian Vortex”

First-Time Solar System Mosaic From the Inside Out

MESSENGER's new solar system portrait, from the inside out

[/caption]

Say cheese! The MESSENGER spacecraft has captured the first portrait of our Solar System from the inside looking out. The images, captured Nov. 3 and 16, 2010, were snapped with the Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) of MESSENGER’s Mercury Dual Imaging System (MDIS).

All of the planets are visible except for Uranus and Neptune, which at distances of 3.0 and 4.4 billion kilometers were too faint to detect with even the longest camera exposure time of 10 seconds. Their positions are indicated. The dwarf-planet Pluto, smaller and farther away, would have been even more difficult to observe.

Earth’s Moon and Jupiter’s Galilean satellites (Callisto, Ganymede, Europa, and Io) can be seen in the NAC image insets. Our Solar System’s perch on a spiral arm provided a beautiful view of part of the Milky Way galaxy, bottom center.

The following is a graphic showing the positions of the planets when the graphic was acquired:

The new mosaic provides a complement to the Solar System portrait – that one from the outside looking in – taken by Voyager 1 in 1990.

These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). Credit: NASA/JPL

“Obtaining this portrait was a terrific feat by the MESSENGER team,” says Sean Solomon, MESSENGER principal investigator and a researcher at the Carnegie Institution. “This snapshot of our neighborhood also reminds us that Earth is a member of a planetary family that was formed by common processes four and a half billion years ago. Our spacecraft is soon to orbit the innermost member of the family, one that holds many new answers to how Earth-like planets are assembled and evolve.”

Source: MESSENGER

JAXA Considering Second Try at Akatsuki-Venus Rendezvous One Year Earlier than Planned

Artist’s impression of the Venus Climate Orbiter (aka. “Akatsuki”) by Akihiro Ikeshita. Image Credit: JAXA

The Japan Aerospace Exploration Agency (JAXA) is now considering making a second attempt to insert the Akatsuki probe into Venus’ orbit one year earlier than originally planned, in five years instead of six. After a malfunctioning valve in the spacecraft’s fuel pressure system caused the engine to function abnormally, Akatsuki failed to enter Venus’ orbit on Dec. 7, 2010 as planned. JAXA had said the spacecraft’s orbit around the Sun would put it in position for another orbit insertion attempt in about six years. But because the spacecraft’s speed has slowed more than expected, the agency now says it may be possible to slowly decelerate Akatsuki even more and let Venus “catch up with it,” according to a report in the Mainichi Daily News. Therefore, an attempt to enter orbit may be made sometime in 2015. A quicker return to Venus is also advantageous in terms of the lifespan of the probe and its equipment.

“At the speed the probe was moving under our first retry plan, it would probably have been impossible to make the orbital insertion,” said a JAXA official, quoted in the Japanese online news site. “We hope to explore every possibility, and make an exploration of Venus a reality.”

After the original mission failure, JAXA had calculated that Akatsuki would make 11 trips around the Sun for every 10 Venus made, putting the next closest encounter between the spacecraft and planet sometime in December 2016 or January 2017. But subsequent examination of data showed Ataksuki’s engine power had dropped by almost 60 percent, slowing the spacecraft and making it possible to make a second attempt at entering orbit a year earlier. The bad news is that the slowdown is possibly caused by a malfunction in the fuel supply system or damage to the engine nozzle. If that is the case, the prospects for restoring full function are very low.

Additionally, if the engine nozzle has been weakened, it will be difficult to decelerate the Akatsuki enough for orbital insertion when it again closes with Venus. But after consultations with engineers, JAXA is now considering trying to decelerate the craft a little bit at a time, allowing it to make eight orbits around the sun before Venus catches up with it in five years.

Source: The Daily Mainichi News

Faulty Valve Caused Akatsuki Failure at Venus

Artists concept of Japan’s Akatsuki spacecraft at Venus. Credit: JAXA

[/caption]

The Japanese space agency has deduced that a faulty engine valve was the reason the Akatsuki spacecraft did not go into orbit around Venus as planned on December 6, 2010. According to the Daily Yomiuri, a malfunctioning valve in the probe’s fuel pressure system caused the engine to function abnormally. The valve is a standard component in many previous space missions, JAXA said, and it was not modified at all for Akatsuki.

Earlier, JAXA reported that Akatsuki’s engine did perform a burn to slow it down, but 152 seconds into the burn the fuel pressure dropped and the probe became unbalanced. Because the retrofiring of the rockets failed to slow down the probe enough for Venus to capture it, it was unable to enter into orbit around the planet, and then went into safe mode.

The JAXA investigation identified five possible causes of the mishap and all stemmed from the valve’s failure to open. JAXA also said they intend “to further investigate why the valve did not open, and how much damage was caused to Akatsuki’s thruster nozzle, by conducting tests that also will indicate whether the probe will be able to go into orbit around Venus when it comes near the planet six years from now.”

After Akatsuki’s launch in May, the functions of its main engine were tested in June. However, the engine was fired for too short a time to detect the problem with the valve, JAXA said.

The findings were presented to the Education, Culture, Sports, Science and Technology Ministry’s Space Activities Commission.

Source: Daily Yomiuri

Akatsuki Update: Fuel Pressure Drop Likely Caused Insertion Failure

An image showing Venus from three of Akatsuki's different instruments, taken during a functions check of the probe. From left to right: the ultraviolet imager (UVI), 1 micron camera (IR1) and long wave infrared camera (LIR). Image Credit: ISAS

[/caption]

While JAXA is still trying to get an exact handle on the problems that the Akatsuki probe sent to Venus encountered, there is a little bit of news leaking out. JAXA held a press conference last night, and the Yomiuri Shimbun newspaper has a brief recap of the conference. During some of the systems checks on the probe, it also took a few images of Venus, and many of the instruments on the probe appear to be working okay – it’s the engine that’s having the most problems.

Here’s what is known so far: Akatsuki’s engine did perform a burn to slow it down, but 152 seconds into the burn the fuel pressure dropped and the probe became unbalanced. Because the retrofiring of the rockets failed to slow down the probe enough for Venus to capture it, it was unable to enter into orbit around the planet, and then went into safe mode.

As to what caused the sudden drop in fuel, JAXA currently suspects that there is a damaged pipe or valve that reduced the flow of helium into the engine, but that is still speculative. As the engine burns propellant (Akatsuki uses a hydrazine/nitrogen tetroxide engine), helium flows into the tank to maintain the pressure. Something failed in the helium injection flow, and precipitated a drop in internal tank pressure, reducing the flow of propellant and causing the engines to stop burning.

The ceramic nozzle of the engine is also thought to have been damaged by the misfiring, which may make the task of trying to get the probe to Venus when the chance comes around again in six years a daunting one.

An image of Venus taken by Akatsuki's Ultraviolet imager (UVI) at the 365 nm wavelength, the color is artificial. Field of View: 12 deg x 12 deg Image Credit: ISAS

JAXA is planning on doing some tests on the ground to maybe come to a workaround of this problem. There seems to be plenty of fuel left, which is good news, but the damaged nozzle is not. Maybe they’ll call in some Hayabusa team members, and pull it through.

The Christian Science Monitor reported yesterday that there is some speculation that something may have struck the probe, though this most recent press conference from JAXA makes no mention of it.

Also, Emily Lakdawalla at The Planetary Society Blog reprinted some tweets translated from Japanese that summarize details from the press conference, as well as the Yomiuri Shimbun article.

Source: Yomiuri Shimbun, ISAS, the Planetary Society Blog,

Venus Has a Moon?

Venusian quasi-satellite 2002 VE68. Illustration: NASA/JPL/Caltech

[/caption]

Astronomers have been busy trying to determine the spin period and composition of Venus’ moon. December 8, 2010, results were announced by JPL/Caltech scientists, led by Michael Hicks.

“Wait a minute; back up”, I hear you ask. “Venus has a Moon?”
Of course it does. Well, kind of…
Let me explain.

It has the rather unfortunate name of 2002 VE68. That is because it was discovered on November 11, 2002 by LONEOS, the Lowell Observatory Near Earth Object Search. 2002 VE68 is an earth orbit-crossing asteroid that has been designated a Potential Hazardous Asteroid by the Minor Planet Center. For obvious reasons, this makes it a very interesting subject of study for JPL scientists.

2002 VE68 used to be a run of the mill, potential impact threat, Near Earth Object. But approximately 7000 years ago it had a close encounter with Earth that kicked it into a new orbit. It now occupies a place in orbit around the Sun where at its closest it wanders inside the orbit of Mercury and at its furthest it reaches just outside the orbit of the Earth. It is now in a 1:1 orbital resonance with Venus.

An orbital resonance is when two orbiting bodies exert a regular, periodic gravitational influence on each other due to their orbital periods being related by a ratio of two small numbers. For example, Pluto and Neptune are in an orbital resonance of 2:3, which simply means for every two times Pluto goes around the Sun, Neptune makes three trips around.

In the case of Venus and 2002 VE68, they both take the same time to orbit the Sun once. They are in a 1:1 orbital resonance. So by definition, 2002 VE68 is considered a quasi-satellite of Venus. If you watch the Orbital Viewer applet at the JPL small body page you can watch this celestial dance as the two bodies orbit the Sun and each other as 2002 VE68 dodges Earth and Mercury in the process.

Often these resonances result in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. In this case, scientists believe 2002 VE68 will only remain a Venusian quasi-satellite for another 500 years or so.

So getting back to the story, Hicks and his team used the recent close apparition of 2002 VE68 to do photometric measurements over the course of three nights in November using the JPL Table Mountain 0.6m telescope near Wrightwood, California. From the color data they obtained they determined that 2002 VE68 is an X type asteroid. This is a group of asteroids with very similar spectra that could potentially have a variety of compositions. They are further broken down into Tholen classification types as either E, M or P types. Unfortunately Hicks’ team was not able to resolve the sub-classification with their equipment.

They were able to determine the approximate size of the asteroid to be 200 meters in diameter, based on its absolute magnitude, and they determined a spin rate of 13.5 hours. The amplitude of the fluctuation on the light curve of 2002 VE68 could imply hat it is actually a contact binary, two clumps of asteroidal material orbiting a center of mass in contact with each other.

For more information on some of the strange and curious beasts in the asteroidal zoo, visit the NASA Near Earth Object Program website.

Akatsuki Fails to Enter Orbit of Venus

Artist’s impression of the Venus Climate Orbiter (aka. “Akatsuki”) by Akihiro Ikeshita. Image Credit: JAXA

JAXA announced that the Akatsuki spacecraft failed to enter orbit around Venus. The orbit insertion maneuver was performed, the space agency said in a statement, but “unfortunately, we have found that the orbiter was not injected into the planned orbit as a result of orbit estimation.” While extremely disappointing, perhaps not all is lost. If the spacecraft can be stabilized, there is a chance it could enter orbit in 6 years when it passes by Venus again.

At a press conference, project manager Masato Nakamura said (from translated reports) that the spacecraft is functioning but has put itself in a standby mode with its solar panels facing towards the Sun. It is also spinning slowly — about every 10 minutes — and radio contact is possible only for 40 seconds at a time. Engineers are using ground antennas in Japan as well as NASA’s Deep Space Network to send commands to stabilize the spacecraft and to determine its trajectory.

JAXA said they have set up an investigation team to study the cause of the failure, and will provide updates with the countermeasures and investigation results.

Japan had a similar situation occur with their Nozomi spacecraft at Mars in 2003, when they lost contact with the spacecraft just 5 days before orbit insertion around the Red Planet.

Akatsuki was launched from the Tanegashima Space Center on May 21, 2010.