How Long is a Day on Mercury?

1/3 the distance from the Sun than Earth, it should be no surprise that a day on Mercury is a real scorcher with temperatures soaring over 400 ºC. But in addition to its solar proximity it also has an extremely slow rotation: a single day on Mercury is 58.6 Earth days long… and you thought your Mondays lasted forever!

To be even more precise, for every 2 Mercury years, 3 Mercury days pass — a 3:2 spin-orbit resonance, caused by the planet’s varying elliptical orbit. (This also makes for some interesting motions of the Sun in Mercury’s sky.)

To illustrate this, UK’s The Open University has published a new video in their 60 Second Adventures in Astronomy series… check it out above (and see more of their excellent and amusing animations here.)

Video: The Open University. Narrated by David Mitchell.

NASA’s Final 2012 Doomsday Debunking Video (We Hope)


Despite countless articles published over the course of several years to the contrary, despite videos and interviews with some of the world’s most prominent and well-respected astronomers, despite new archaeological discoveries and well-established knowledge, despite the laws of physics, for crying out loud (and, curiously enough, even despite the fact that parts of the world are, at the time of this writing, already well within the supposed “doomsday” with nary a Nibiru in sight) many people are still wondering what will happen on the much-touted December 21, 2012, aka “doomsday” per the end of the 13th b’ak’tun of the Maya calendar (or something like that.) After all, if it’s trending on Twitter it must be important, right?

Well, yes and no. No because there’s not a shred of truth to the whole thing (except for the fact that there were Maya and they had a calendar) but yes because many people are actually very concerned about… well, I guess about the safety of the world. (Don’t believe me? Read this.) Which is in itself reasonable, I suppose. So in the nature of public outreach and the attempt to spread real information to combat the other kind, NASA’s has released yet one more video interview with astrophysicist David Morrison, director of the Carl Sagan Center for Study of Life in the Universe at the SETI Institute. I don’t know if David could tell you how to replace a broken head gasket or perform an appendectomy, but when it comes to space he knows his stuff. So check out the video, be not alarmed, and pass it on to anyone you know who might still be feeling the b’ak’tun blues.

See you on the 22nd! (Still skeptical? Check out some other videos and links below.)

Read more: How Have the 2012 Doomsday Myths Become Part of Our Accepted Lexicon?

And here’s a “reality check” from JPL’s Don Yeomans, an expert on near-Earth objects and asteroids:

Read more: No Doom in 2012: Stop the Insanity!

So rest assured, the only astronomical event expected for the 21st is the winter solstice (summer in the south), which happens every year on every planet with an axial tilt with no ill effects (besides perhaps a sudden sinking realization that you’re nowhere near done with your holiday shopping.) Happy solstice!

Star Trek Teaser: “Into Darkness” Trailer Released

James T. Kirk and the crew of the Enterprise will be back for a second pre-quel of the young original Enterprise crew with next summer’s “Star Trek Into Darkness.” From this new teaser trailer just released today, it certainly looks dark, with lots of explosions, fight scenes, women screaming, Chris Pine’s Kirk having omnipresent cuts on his face, and what looks like a starship falling into an ocean.

The description of the film on the IMDb website:

After the crew of the Enterprise find an unstoppable force of terror from within their own organization, Captain Kirk leads a manhunt to a war-zone world to capture a one man weapon of mass destruction.

The bad guy (actor Benedict Cumberbatch) has a British accent (wasn’t that big in the 1960’s?) and rumors are starting to surface with Cumberbatch playing either a villain similar to the classic ‘Trek’ nemesis Gary Mitchell, who gains glassy eyes and superpowers and tries to take over the world in the second pilot episode “Where No Man Has Gone Before” for the 60’s TV series, or Khan, the genetically-engineered tyrant who first appeared in the original Trek TV series episode “Space Seed” but was killed in the “Star Trek II: Wrath of Khan” movie. So, in my mind, revisiting Khan would would cause the Trek world to get complicated.

But while the villain hasn’t yet been revealed, it is someone who “has returned,” so expect it to be a familiar name.

From the teaser, it appears all the main actors from the 2009 “Star Trek” film have returned, but does Spock have a new haircut?

A disclaimer: this was posted for all our Trek fans, so don’t complain that this isn’t space or astronomy news, because in our Trekkie minds it is space news.

Pale Blue Dot: an Animated Contemplation

Every now and then, someone takes Carl Sagan’s wonderful reading of his iconic “Pale Blue Dot” narrative and turns it into an animated presentation, usually combining images and video footage of space exploration and Earthly vistas to create something undeniably spellbinding (Sagan’s narratives do have a tendency to have that effect!) Artist Adam Winnik went a slightly different route, however, creating an illustrated animation to go along with Sagan’s reading for his thesis project in 2011. The result is no less poignant… check it out above.

See more of Adam’s work on his website here.

Video: Adam Winnik. Music: Hans Zimmer “You’re So Cool”

40 Years After Apollo, the Moon Still Beckons

A lunar mining facility harvests oxygen from the resource-rich volcanic soil of the eastern Mare Serenitatis.Credit: NASA/Pat Rawlings

40 years ago this week, the final Apollo mission, Apollo 17, launched to the Moon. In this new video produced by author Andrew Chaikin, geologist Paul Spudis of the Lunar and Planetary Institute explains why the Moon still beckons, “not just to visit, not just put a footprint there, but to go and understand it, to collect its rock and understand its history, to recover a lost chapter of a previous existence.” Right now, we understand just a small part of the history of our Solar System, and the Moon holds that history in its rocks. Additionally, newly found water on the Moon — estimates say about 600 million metric tons could be at the lunar poles — could allow us to “live off the land” in space.

A lunar mining facility harvests oxygen from the resource-rich volcanic soil of the eastern Mare Serenitatis. Credit: NASA/Pat Rawlings.

Stunning Star Trails Mania

You like star trails? We’ve got star trails! One of our favorite timelapse gurus, Gavin Heffernan from Sunchaser Pictures shot this stunning footage, and as he says, no special effects of any kind are needed to create star trails: just leave your shutter open and the natural rotation of Earth takes care of the rest!

But wait… there’s more!

Have you ever compared how different star trails look in the northern hemisphere compared to the southern hemisphere?

César Cantú has:

From the northern hemisphere, stars appear to move counterclockwise around the north pole of the sky; but if you stand at any point in the earth’s southern hemisphere, the stars appear to move clockwise around the south pole of the sky. César, who mans the Chilidog Observtory, took star trail footage from Mexico and Africa and combined the two to create an incredible “Hemispheric Countersense” video. See more about it here.

Combining star trails from Mexico and Africa. Credit: César Cantú

Scene from Sunchaser Star Trails. Credit: Gavin Heffernan. Footage shot in Big Bear Lake, Joshua Tree, and also Canada. Used Canon 5D & 7D, with a 24mm/1.4 lens and a 28mm/1.8.

SUNCHASER STAR TRAILS from Sunchaser Pictures on Vimeo.

In the Shadow of the Moon: Experience a Solar Eclipse From 37 Kilometers Up

The Moon’s shadow stretches over the Earth in this balloon-mounted camera view of the November 14 solar eclipse (Catalin Beldea, Marc Ulieriu, Daniel Toma et. al/Stiinta&Tehnica)

On November 14, 2012, tens of thousands of viewers across northeastern Australia got a great view of one of the most awe-inspiring sights in astronomy — a total solar eclipse. Of course many fantastic photos and videos were taken of the event, but one team of high-tech eclipse hunters from Romania went a step further — or should I say higher — and captured the event from a video camera mounted on a weather balloon soaring over 36,800 meters (120,000 feet) up!

Their video can be seen below:

During a solar eclipse the Moon passes in front of the disk of the Sun, casting its shadow upon the Earth. Any viewers within the darkest part of the shadow — the umbra — will experience a total eclipse, while those within the wider, more diffuse shadow area along the perimeter — the penumbra — will see a partial eclipse.

By launching a weather balloon carrying a wide-angle camera into the stratosphere above Queensland, eclipse hunter and amateur astronomer Catalin Beldea, ROSA research scientist Florin Mingireanu and others on the team were able to obtain their incredible video of the November 14 total eclipse from high enough up that the shadow of the Moon was visible striking Earth’s atmosphere. Totality only lasted a couple of minutes so good timing was essential… but they got the shot. Very impressive!

The mission was organized by teams from the Romanian Space Agency (ROSA) and  Stiinta&Tehnica.com, with the video assembled by Daniel Toma and posted on YouTube by editor-in-chief Marc Ulieriu. Music by Shamil Elvenheim.

The Man Who Shoots Space: Interview with Thierry Legault

Thierry Legault with the equipment he uses for satellite images. Images courtesy of Thierry Legault.

We’ve written many articles to share the incredible astrophotography of Thierry Legault, and have also interviewed him extensively about his work. If you’ve enjoyed his imagery and stories, you’ll appreciate this new video interview from VICE which shows Legault at work, and allows him to tell his story in his own words.

[/caption]

If you aren’t familiar with the work of Legault, he has taken images such as the space shuttle and space station as they transited across the Sun, the first-ever ground-based image of astronaut in spacewalk, and images of spy satellites in orbit. He lives in the suburbs of Paris, but will easily travel 3,000 and 4,000 kilometers — and sometimes to another continent — to capture a specific image.

And usually, the events he captures last only about a half-second and he never sees them live with his own eyes.

“For transits I have to calculate the place, and considering the width of the visibility path is usually between 5-10 kilometers, but I have to be close to the center of this path,” Legault explained in a previous interview with UT, “because if I am at the edge, it is just like a solar eclipse where the transit is shorter and shorter. And the edge of visibility line of the transit lasts very short. So the precision of where I have to be is within one kilometer.”

Legault studies maps, and has a radio synchronized watch to know very accurately when the transit event will happen.

“My camera has a continuous shuttering for 4 seconds, so I begin the sequence 2 seconds before the calculated time,” he said. “I don’t look through the camera – I never see the space station when it appears, I am just looking at my watch!”

For a transit event, he gets get a total of 16 images – 4 images every second, and only after he enlarges the images will he know if he succeeded or not.

“There is a kind of feeling that is short and intense — an adrenaline rush!” Legault said.

Enjoy the new video interview, and see Legault’s imagery at his website.

Unraveling the Secrets of Type Ia Supernovae: a New Two-Minute Thesis

The folks over at PHD Comics have put together a new video in their Two-Minute Thesis series, this one featuring Ph.D candidate Or Graur of the University of Tel Aviv and the American Museum of Natural History discussing the secret lives — and deaths — of astronomers’ “standard candles” of universal distance, Type Ia supernovae.

Judging distances across intergalactic space isn’t easy, so in order to figure out how far away galaxies are astronomers have learned to use the light from Type Ia supernovae, which flare up with the brilliance of 5 billion Suns… and rather precisely so.

Type Ia supernovae are thought to be created from a pairing of two stars: one super-dense white dwarf which draws in material from a binary companion until a critical mass — about 40% more mass than the Sun – is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions and explodes in an incredibly bright outburst of material and energy.

But exactly what sorts of stellar pairs lead to Type Ia supernovae and how frequently they occur aren’t known, and that’s what Ph.D candidate Or Graur is aiming to learn more about.

Read more: A New Species of Type Ia Supernova?

“We don’t really know what kind of star it is that leads to these explosions, which is kind of embarrassing,” says Graur. “The companion star could be a regular star like our Sun, a red giant or supergiant, or another white dwarf.”

Because stars age at certain rates, by looking deeper into space with the Hubble and Subaru telescopes Graur hopes to determine how often and when in the Universe’s history Type Ia supernovae occur, and thus figure out what types of stars are most likely responsible.

“My rate measurements favor a second white dwarf as the binary companion,” Graur says, “but the issue is far from settled.”

Watch the video for the full story, and visit PHD TV and PHD Comics for more great science illustrations.

Video: PHDComics. Animation: Jorge Cham. Series Producer: Meg Rosenburg. Inset image: merging white dwarfs causing a Type Ia supernova. (NASA/CXC/M Weiss)