Winds of Change at the Edge of the Solar System

As the venerable Voyager 1 spacecraft hurtles ever outward, breaking through the very borders of our solar system at staggering speeds upwards of 35,000 mph, it’s sending back information about the curious region of space where the Sun’s outward flow of energetic particles meets the more intense cosmic radiation beyond — a boundary called the heliosheath.

Voyager 1 has been traveling through this region for the past seven years, all the while its instruments registering gradually increasing levels of cosmic ray particles. But recently the levels have been jumping up and down, indicating something new is going on… perhaps Voyager 1 is finally busting through the breakers of our Sun’s cosmic bay into the open ocean of interstellar space?

Data sent from Voyager 1 — a trip that currently takes the information nearly 17 hours to make — have shown steadily increasing levels of cosmic radiation as the spacecraft moves farther from the Sun. But on July 28, the levels of high-energy cosmic particles detected by Voyager jumped by 5 percent, with levels of lower-energy radiation from the Sun dropping by nearly half later the same day. Within three days both levels had returned to their previous states.

The last time such a jump in levels occurred was in May — and that spike took a week to happen.

“The increase and the decrease are sharper than we’ve seen before, but that’s also what we said about the May data,” said Edward Stone, the Voyager project scientist based at the California Institute of Technology. “The data are changing in ways that we didn’t expect, but Voyager has always surprised us with new discoveries.”

The graph below shows the jump in cosmic particles detected starting May 2012.

Over 11 billion miles (18 billion km) from home, Voyager 1 has been cruising through space since its launch on September 5, 1977. Its twin, Voyager 2, was launched two weeks earlier and is currently 9.3 billion miles (15 billion km) away. Both spacecraft are healthy and continue to communicate with Earth, and will both eventually break through the borders of our solar system and enter true interstellar space. If they are still operational when that happens — and there’s no reason that they shouldn’t be — we will finally get a sense of what conditions are like “out there”.

Although Voyager 1 is registering intriguing fluctuations in radiation from both inside and outside the Solar System, it’s not quite there yet.

“Our two veteran Voyager spacecraft are hale and healthy as they near the 35th anniversary of their launch,” said Suzanne Dodd, Voyager project manager based at JPL in Pasadena. “We know they will cross into interstellar space. It’s just a question of when.”

Read more about Voyager’s ongoing breakout here.

“We are certainly in a new region at the edge of the solar system where things are changing rapidly. But we are not yet able to say that Voyager 1 has entered interstellar space.”

–  Edward Stone, Voyager project scientist, Caltech

Images: NASA/JPL-Caltech

Voyager 1 Breaking Through the Borders of the Solar System

After almost 35 years traveling at over 35,000 mph, the venerable (and still operational!) Voyager 1 spacecraft is truly breaking through to the other side, crossing the outermost boundaries of our solar system into interstellar space — over 11 billion miles from home.

Data received from Voyager 1 — a trip that currently takes the information 16 hours and 38 minutes to make — reveal steadily increasing levels of cosmic radiation, indicating that the spacecraft is leaving the relatively protected bubble of the Sun’s influence and venturing into the wild and wooly space beyond.

From the JPL press release:

“The laws of physics say that someday Voyager will become the first human-made object to enter interstellar space, but we still do not know exactly when that someday will be,” said Ed Stone, Voyager project scientist at the California Institute of Technology in Pasadena. “The latest data indicate that we are clearly in a new region where things are changing more quickly. It is very exciting. We are approaching the solar system’s frontier.”

The data making the 16-hour-38 minute, 11.1-billion-mile (17.8-billion-kilometer), journey from Voyager 1 to antennas of NASA’s Deep Space Network on Earth detail the number of charged particles measured by the two High Energy telescopes aboard the 34-year-old spacecraft. These energetic particles were generated when stars in our cosmic neighborhood went supernova.

“From January 2009 to January 2012, there had been a gradual increase of about 25 percent in the amount of galactic cosmic rays Voyager was encountering,” said Stone. “More recently, we have seen very rapid escalation in that part of the energy spectrum. Beginning on May 7, the cosmic ray hits have increased five percent in a week and nine percent in a month.”

This marked increase is one of a triad of data sets which need to make significant swings of the needle to indicate a new era in space exploration. The second important measure from the spacecraft’s two telescopes is the intensity of energetic particles generated inside the heliosphere, the bubble of charged particles the sun blows around itself. While there has been a slow decline in the measurements of these energetic particles, they have not dropped off precipitously, which could be expected when Voyager breaks through the solar boundary.

“When the Voyagers launched in 1977, the space age was all of 20 years old. Many of us on the team dreamed of reaching interstellar space, but we really had no way of knowing how long a journey it would be — or if these two vehicles that we invested so much time and energy in would operate long enough to reach it.”

– Ed Stone, Voyager project scientist, Caltech

Read more on the JPL site here.

Addition: Check out the accompanying video from Science@NASA below:

Top image: Artist’s concept showing NASA’s two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. Credit: NASA/JPL-Caltech. Secondary image: Artist’s concept of NASA’s Voyager spacecraft. Credit: NASA/JPL-Caltech.

 

Voyager Mission Is Cooling Its Jets

Artist's concept of NASA's Voyager spacecraft. Image credit: NASA/JPL-Caltech

[/caption]

Or, more appropriately, Voyager 1 is cooling its instruments. To help conserve power, the mission managers at NASA have decided to cut the electricity to a heating element – one that’s part of the nearby infrared spectrometer that’s not been in operation for some 14 years. This power cut will lower the temperature of the ultraviolet spectrometer by about 23 degrees Celsius (41 degrees Fahrenheit)… a temperature that’s mild compared to the below minus 79 degrees Celsius (minus 110 degrees Fahrenheit) that the instrument has dropped to in previous times. It’s not a drastic measure, however, but all part of a crucial plan to manage electrical power to keep the spacecraft operational and transmitting data for another 13 years.

Just because the power is cut back doesn’t mean the instrument quit working. At the present, the spectrometer is continuing to gather and transmit data. The resilient system was designed to work in temperatures as frosty as minus 35 degrees Celsius (minus 31 degrees Fahrenheit) and has even operated beyond the call of duty when heaters were switched off over the last 17 years. While it was taking a chance that the equipment might malfunction, the engineering team was confident since the spectrometer has worked at minus 56 degrees Celsius (minus 69 degrees Fahrenheit.) since 2005. “The spectrometer is likely operating at a temperature somewhat lower than minus 79 degrees Celsius, or minus 110 degrees Fahrenheit,” says the team. “But the temperature detector does not go any lower.”

While it has been awhile since Voyager 1’s encounter with Jupiter and Saturn which made the spectrometer busy, that doesn’t mean its data will be disregarded. Both scientists and mission management specialists will continue to monitor performance levels and an international team of scientists will further review spectrometer data.

Live long and prosper, Voyager!

Original Story Source: JPL News Release.

Voyager 1 Spacecraft Enters New Region of Solar System

The Voyager 1 spacecraft has started to transverse what JPL has dubbed as a "cosmic purgatory" between our solar system - and interstellar space. Image Credit: NASA/JPL

[/caption]

Voyager 1 is in uncharted territory. The long-lived spacecraft has entered a new region of space that lies between where our solar system ends and where interstellar space begins. This area is not a place of sightseeing however, as a NASA press release referred to it as a kind of “cosmic purgatory.”

Here, the solar winds ebb somewhat, the magnetic field increases and charged particles from within our solar system – is leaking out into interstellar space. This data has been compiled from information received from Voyager 1 over the course of the last year.

The Voyager spacecraft's compliment of scientific instruments have provided scientists back on Earth with information about what the space environment at the fringes of our sun's influence is truly like. Image Credit: NASA/JPL - Caltech

“Voyager tells us now that we’re in a stagnation region in the outermost layer of the bubble around our solar system,” said Ed Stone, Voyager project scientist at the California Institute of Technology in Pasadena. “Voyager is showing that what is outside is pushing back. We shouldn’t have long to wait to find out what the space between stars is really like.”

Despite the fact that Voyager 1 is approximately 11 billion miles (18 billion kilometers) distant from the sun – it still has not encounter interstellar space. The information that scientists have gleaned from the Voyager 1 spacecraft indicates that the spacecraft is still located within the heliosphere. The heliosphere is a “bubble” of charged particles that the sun blows around itself and its retinue of planets.

Voyager 1 has traveled far past the realm of the gas or even ice giants and is now in uncharted territory where scientists are learning more and more about the dynamic environment at the far-flung edges of our solar system. Image Credit: NASA/JPL - Caltech

The latest findings were made using Voyager’s Low Energy Charged Particle instrument, Cosmic Ray Subsystem and Magnetometer.

Experts are not certain how long it will take the Voyager 1 spacecraft to finally breach this bubble and head out into interstellar space. Best estimates place the length of time when this could happen anywhere from the next few months – to years. These findings counter findings announced in April of 2010 that showed that Voyager 1 had essentially crossed the heliosphere boundary. The discoveries made during the past year hint that this region of space is far more dynamic than previously thought.

Voyager 1 has entered into a region of space between the sun's influence and the beginning of interstellar space that NASA has dubbed the "stagnation region." Image Credit: NASA/JPL - Caltech

The magnetometer aboard Voyager 1 has picked up an increase in the intensity of the magnetic field located within this “stagnation field.” Essentially the inward pressure from interstellar space is compressing the magnetic field to twice its original density. The spacecraft has also detected a 100-fold increase in the intensity of high-energy electrons diffusing into our solar system from outside – this is yet another indicator that Voyager 1 is approaching the heliosphere.

The interplanetary probe was launched from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41) on Sept. 5, 1977, Voyager 1’s sister ship, Voyager 2 is also in good health and is about 9 billion miles (15 billion kilometers) from the sun (it too was launched in 1977). The spacecraft itself was built by NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“Voyager is a mission of discovery and it’s at the edge of the solar system still making discoveries,” said Stone said. “The stagnation is the latest in the whole journey of discovery. We are all excited because we believe it means we’re getting very close to boundary of heliosphere and the entry into interstellar space.”

Both of the Voyager spacecraft were thrust to orbit by the powerful Titan boosters - and both in the same year - 1977. Photo Credit: NASA