What’s Up this Week: May 7 – May 13, 2007

2007-0507ngc2903.thumbnail.jpg

Monday, May 7 – Before we leave Leo to softly exit west, there is another galaxy that is so worth your time to visit that even binoculars can spot it. You’ll need to identify slightly fainter Lambda to the southwest of Epsilon and head south about one fingerwidth for NGC 2903.

This awesome oblique spiral galaxy was discovered by William Herschel in 1784. At a little brighter than magnitude 9, it is easily in range of most binoculars. It is odd that Messier missed this one considering both its brightness and the fact that three of the comets he discovered passed by it! Perhaps it was cloudy when Messier was looking, but we can thank Herschel for cataloging NGC 2903 as H I 56.

While small optics will only perceive this 25 million light-year distant beauty as a misty oval with a slightly brighter core region, larger aperture will light this baby up. Soft suggestions of its spiral arms and concentrations will begin to appear. One such knot is star cloud NGC 2905 – a detail in a distant galaxy so prominent that it received its own New General Catalog designation.

NGC 2903 is roughly the same size as our own Milky Way, and includes a central bar – yet the nucleus of our distant cousin has “hot spots” that were studied by the Hubble Telescope and extensively by the Arecibo telescope. While our own galactic halo is filled with ancient globular clusters, this galaxy sports brand new ones!

Be sure to mark your notes with your observations, because many different organizations consider this to be on their “Best of” lists.

Tuesday, May 8 – Tonight we’ll start with an object that can be viewed unaided from a dark location and is splendid in binoculars. Just northeast of Beta Leonis, look for a hazy patch of stars known as Melotte 111. Often called the “Queen’s Hair,” this five degree span of 5th to 10th magnitude stars is wonderfully rich and colorful. As legend has it, Queen Berenice offered her beautiful long tresses to the gods for the King’s safe return from battle. Touched by her love, the gods took Berenice’s sacrifice and immortalized it in the stars.

The cluster is best in binoculars because of its sheer size, but you’ll find other things of interest there as well. Residing about 260 light-years away, this collection is one of the nearest of all star clusters, including the Pleiades and the Ursa Major moving group. Although Melotte 111 is more than 400 million years old, it contains no giant stars, but its brightest members have just begun their evolution. Unlike the Pleiades, The Queen’s Hair has no red dwarfs and a low stellar concentration which leads astronomers to believe it is slowly dispersing.

Like many clusters, it contains double stars – most of which are spectroscopic. For binoculars, it is possible to split star 17, but it will require very steady hands.

Wednesday, May 9 – While our destination tonight isn’t quite so romantic, I think you’ll enjoy getting a “Blackeye.” You’ll find it located just one degree east-northeast of 35 Coma Berenices and it is most often called M64.

Originally discovered by Bode about a year before Messier cataloged it, M64 is about 25 million light-years away and holds the distinction of being one of the more massive and luminous of spiral galaxies. It has a very unusual structure and is classified as an Sa spiral in some catalogs and an Sb in others. Overall, its arms are very smooth and show no real resolution to any scope – yet its bright nucleus has a incredible dark dustlane that consumes the north and eastern regions around its core – giving rises to its nickname – the Blackeye Galaxy.

In binoculars, this 8.5 magnitude galaxy can be perceived as a small oval with a slightly brighter center. Small telescope users will pick out the nucleus more easily, but will require both magnification and careful attention to dark adaptation to catch the dustlane. In larger telescopes, the structure is easily apparent and you may catch the outer wisps of arms on nights of exceptional seeing.

No matter what you use to view it, this is one compact and bright little galaxy!
Today in 1962, the first Earth-based laser was aimed at crater Albategnius. When the Moon rises tonight, Albategnius will be just west of the terminator and 1.5 light seconds away!

Thursday, May 10 – If you’re up before dawn this morning, you’ll find Neptune less than two degrees north of the Moon!

Tonight let’s use our binoculars and telescopes to hunt down one of the best globular clusters for the northern hemisphere – M3. You will discover this ancient beauty about halfway between the pair of Arcturus and Cor Caroli – just east of Beta Comae. The more aperture you use, the more stars you will resolve. Discovered by Charles Messier on May 3, 1764, this ball of approximately a half million stars is one of the oldest formations in our galaxy. At around 40,000 light-years away, this awesome globular cluster spans about 220 light-years and is believed to be as much as 10 billion years old. To get a grasp on this concept, our own Sun is less than half that age!

Let’s further our understanding of distance and how it affects what we see. As you know, light travels at an amazing speed of about 300,000 kilometers per second. To get a feel for this, how many seconds are there in a minute? An hour? A week? A month? How about a year? Ah, you’re beginning to see the light! For every second – 300,000 kilometers.

M3 is 40,000 years away traveling at the speed of light. In terms of kilometers – that’s far more zeros than most of us can possibly understand – yet we can still see this great globular cluster. Now let’s locate M53 near Alpha Comae. Aim your binoculars or telescopes there and you will find M53 about a degree northeast.

This very rich, magnitude 8.7 globular cluster is almost identical to M3, but look at what a difference an additional 25,000 light-years can make to how we see it! Binoculars can pick up a small round fuzzy, while larger telescopes will enjoy the compact bright core as well as resolution at the cluster’s outer edges. As a bonus for scopes, look one degree to the southeast for the peculiar round cluster NGC 5053. Classed as a very loose globular, this magnitude 10.5 grouping is one of the least luminous objects of its type due to its small stellar population and the wide separation between members – yet its distance is almost the same as that of M3.

Friday, May 11 РTonight, start by locating 5th magnitude 6 Comae Berenices about three fingerwidths east of Beta Leonis. Remember this star! We are going on a galaxy hop to a M̩chain discovery that is less than a degree west, and its designation is M98.

At magnitude 10, this beautiful galaxy is a telescope-only challenge and a bit on the difficult side for small aperture. Long considered to be part of the Virgo Cluster, M98 is approaching us at a different rate than other cluster members, giving rise to speculation that it may simply be in the line of sight. Quite simply put, it has a blue shift instead of red! But considering that all these galaxies (and far fainter ones than we can see), are in close proximity leads some researchers to believe it is a true member by virtue of the extreme tidal forces which must exist in the area – pushing it toward us at this point in time, rather than away.

In a small telescope, M98 will appear like a slim line with a slightly brighter nucleus – a characteristic of an edge-on galaxy. To large aperture, its galactic disk is hazy and contains patchiness in structure. These are regions of newly forming stars and vast regions of dust – yet the nucleus remains a prominent feature. It’s a very large galaxy, so be sure to use a minimum of magnification and plenty of aversion to make out small details in this fine Messier object!

Saturday, May 12 – It would well be worth getting up early this morning, as Uranus is occulted by the Moon. Be sure to check IOTA for times and locations. If nothing else, nearby Mars makes for an equally inspiring sight!

Tonight we’ll return once again to 6 Coma Berenices and head no more than a half degree southwest for another awesome galaxy – M99.

Discovered by Pierre Méchain on the same night as he found M98, this is one of the largest and brightest of the spiral galaxies in the Virgo Cluster. Recognized second after M51 for its structure, Lord Rosse proclaimed it to be “a bright spiral with a star above.” It is an Sc class, and unlike its similarly-structured neighbors – it rotates clockwise. Receding from us at 2324 kilometers per second, its speedy retreat through the galaxy fields and close pass to approaching M98 may be the reason that it is asymmetrical – with a wide arm extending to the southwest. Three documented supernovae have been recorded in M99 – in 1967, 1972 and 1986.

Possible in large binoculars with excellent conditions, this roughly 9th magnitude object is low surface brightness and requires clean skies to see details. For a small telescope, you will see this one as fairly large, round, wispy, and with a bright nucleus. But, unleash aperture if you have it!

For large scopes, the spiral pattern is very prominent and the western arm shows well. Areas within the structure are patchworked with bright knots of stars and thin dustlanes which surround the concentrated core region. During steady seeing, a bright, pinpoint stellar nucleus will come out of hiding. A worthy study!

Sunday, May 13 – Tonight we’ll return again to 6 Comae and our hunt will be for the last of the three galaxies discovered by Méchain on that same wonderful night in 1781. You’ll find it just a fingerwidth northeast of 6. Its name is M100.

M100 is one of the brightest member galaxies of the Virgo Cluster of galaxies – and its design is much like our own galaxy. From our point of view, we see M100 “face on,” and even Lord Rosse in 1850 was able to detect a spiral form. Thanks to its proximity to other galactic members, it has two grand arms in which recently-formed, young, hot, massive stars reside. Regardless of what seems to be perfect form, the nucleus shows that younger stars have formed more to the south side than the north. Perhaps interaction with its dwarf neighbors?

Achievable in binoculars as a soft round glow, and about the same in a small telescope, extensive photography has shown M100 to be far larger than previously believed – with a substantial portion of its mass contained in faint outer regions. The Hubble Telescope discovered over 20 Cepheids variables and one nova contained inside our spiral friend and was more able to accurately determine its distance at 6 million light-years. In addition, NASA’s Ultraviolet Imaging Telescope has shown starburst and formation activity at the edges of M100’s inner spiral arms.

Larger telescopes will see this galaxy’s intense core region as slightly elliptical and sometimes reveal patchiness in the structure. With good sky conditions, even smaller scopes can reveal a spiral pattern, and this improves significantly with aperture. Be sure to look carefully because five supernovae events have been observed in this hot galaxy – one as recently as February 2006!

What’s Up this Week: April 30 – May 6, 2007

2007-0501fullmoon.thumbnail.jpg

Monday, April 30 – Karl Frederich Gauss was born on this day in 1777. Known as the “Prince of Mathematics,” Gauss contributed to the field of astronomy in many ways – from computing asteroid orbits to inventing the heliotrope. Out of Gauss’ many endeavors, he is most recognized for his work in magnetism. We understand the term “gauss” as a magnetic unit – a refrigerator magnet carries about 100 gauss while an average sunspot might go up to 4000. On the most extreme ends of the magnetic scale, the Earth produces about 0.5 gauss at its poles, while a magnetar can produce as much as 10 to the 15th power in gauss units!

While we cannot directly observe a magnetar, those living in the Southern Hemisphere can view a region of the sky where magnetars are known to exist – the Large Magellanic Cloud – or you can use the projection method to view a sunspot! If you have a proper solar filter, magnetism distorts sunspots as they near the limb – called the “Wilson Effect”

While both magnetars and sunspots are areas of awesome magnetic energy, what happens when you find magnetism in a very unlikely place? Tonight have a look at the lunar surface just a little southeast of the grey oval of Grimaldi. The area we are looking for is called the Sirsalis Rille and on an orb devoid of magnetic fields – it’s magnetic! Like a dry river bed, this ancient “crack” on the surface runs 480 kilometers along the surface and branches in many areas. Be sure to look for Spica nearby!

Tuesday, May 1 – On this day in 1949 Gerard Kuiper discovered Nereid, a satellite of Neptune. If you’re game, you can find Neptune about two fingerwidths northeast of Gamma Capricorni about an hour before dawn. While it can be seen in binoculars as a bluish “star,” it takes around a 6″ telescope and some magnification to resolve its disc. Today’s imaging technology can even reveal its moons!

While you’re out this morning, keep an eye on the sky for the peak of the Phi Bootid meteor shower, whose radiant is near the constellation of Hercules. While the best time to view a meteor shower is around 2:00 a.m. local time, you will have best success watching for these meteors when the Moon is as far west as possible. The average fall rate is about 6 per hour.

This is the beginning of Astronomy Week for amateurs the world over. While the Moon is incredibly near full, it will still be an awesome sight for those who have never seen it through a telescope. Invite someone to visit with you, or offer to take your telescope to a public area. Power up on bright features like Tycho’s rays, it’s an inspiring sight!
Another great target for a bright night is Delta Corvi. 125 light-years away, it displays a yellowish color primary and slightly blue secondary that’s an easily split star in any telescope, and a nice visual double with Eta in binoculars. Use low power and see if you can frame this bright grouping of stars in the same eyepiece field.

Wednesday, May 2 – Tonight is Full Moon. By May in most areas, flowers are everywhere, so it’s not hard to imagine how this became to be known as the “Full Flower Moon.” Since the Earth is awakening again, agriculture has re-emerged and so it is sometimes known as the “Full Corn Planting Moon,” or the “Milk Moon.” No matter what you call it, it’s still majestic to watch rise!

To participate in another lunar club challenge and do some outreach work, you can demonstrate the “Moon Illusion” to someone. While we know it’s purely psychological and not physical – the fact remains that the Moon seems larger on the horizon. Using a small coin held at arm’s length, compare it to Luna as it rises, and then again as it seems to “shrink” as it gets higher! You’ve now qualified for extra credit…

Even though the Moon is very bright when full, try using colored or Moon filters to have a look at the many surface features which throw amazing patterns across its surface. If you have none, a pair of sunglasses will suffice. Look for things you might not ordinarily notice – such as the huge streak which emanates from crater Menelaus. Look at the pattern projected from Proclus – or the intense little dot of little-known Pytheas north of Copernicus. It’s hard to miss the blinding beacon of Aristarchus! Check the southeastern limb where the edge of Furnerius lights up the landscape…or how a nothing crater like Censorinus shines on the southeast shore of Tranquillitatis, while Dionysus echoes it on the southwest. Could you believe Manlius just north of central could be such a perfect ring – or that Anaxagoras would look like a northern polar cap?

While it might be tempting to curse the Moon for hiding the stars when it’s full, there is no other world out there that we can view in such detail… Even if you just look with your eyes!

Thursday, May 3 – With just a little bit of time before the Moon rises, let’s take a look at the constellation of Leo and its brightest stars. For our first destination we’ll travel 85 light-years to learn about “The Little King” – Regulus.

Ranking as the twenty-first brightest star in the night sky, 1.35 magnitude Alpha Leonis is a helium type star about 5 times larger and 160 times brighter than our own Sun. Speeding away from us at 3.7 kilometers per second, Regulus is also a multiple system whose 8th magnitude companion is easily seen in small telescopes. The companion is itself a double at around magnitude 13 and is a dwarf of an uncertain type. There is also a 13th magnitude fourth star in this grouping, but it is believed that it is not associated with Regulus since the “Little King” is moving toward it and will be about 14″ away in 785 years.

Northeast of Regulus by about a fistwidth is 2.61 magnitude Gamma Leonis – also known as Algieba. This is one of the finest double stars in the sky, but a little difficult at low power since the pair is both bright and close. Separated by about twice the diameter of our own solar system, this 90 light-year distant pair is slowly widening.

Another two fingerwidths north is 3.44 magnitude Zeta – also named Aldhafera. Located about 130 light-years away, this excellent star has an optical companion which is viewable in binoculars – 35 Leonis. Remember this pair, because it will lead you to galaxies later!

Before we leave, let’s have a look east at 3.34 magnitude Theta. Also known as Chort, mark this one in your memory, as well as 3.94 magnitude Iota to the south as markers for a galaxy hop. Last is easternmost 2.14 magnitude Beta. Denebola is the “Lion’s Tail” and has several faint optical companions.

Friday, May 4 – Tonight there will be a short while for us to enjoy a galaxy hop before the Moon interferes. Using our knowledge of Leo, this galaxy pair is relatively easy for larger binoculars and small telescopes. You’ll find them almost perfectly mid-way between Theta and Iota and their names are M65 and M66.

Discovered by Méchain in March 1780, apparently Mr. Messier didn’t notice the bright pair when a comet passed between them in 1773. At around 35 million light-years away, you will find M66 to be slightly brighter than its 200,000 light-year distant western neighbor – M65. While both are Sb classed spirals, the two couldn’t appear more different. M65 has a bright nucleus and a smooth spiral structure with a dark dustlane at its eastern edge. M66 has a more stellar core region with thick, bright arms that show knots to larger scopes – as well as a wonderful extension from the southern edge.

If you are viewing with a larger scope, you may notice to the north of this famous pair yet another galaxy! NGC 3628 is a similar magnitude edge-on beauty with a great dissecting dark dustlane. This pencil-slim, low surface brightness galaxy is a bit of a challenge for smaller scopes, but larger ones will find its warped central disc well worth high power study.

Congratulations on spotting the “Leo Trio” and a member of the Arp’s Peculiar Galaxy Catalog! Now be sure to watch as the Moon rises bringing with it Antares a half degree away. Be sure to check IOTA for possible occultations!

Saturday, May 5 – In 1961 Alan Shepard became the first American in “space” (as we now refer to that region above the sky), taking a 15 minute suborbital ride aboard the Mercury craft Freedom 7.

Tonight let’s head for another trio of galaxies that are suited best for mid-to-large aperture telescopes. Begin by heading west about a fistwidth from Regulus and identify 52 Leonis. Our mark is one and a half degrees south. At lower power you will see a triangle of galaxies.

The largest and brightest is M105, discovered by Méchain on March 24, 1781. This dense elliptical galaxy would appear to be evenly distributed, but the Hubble Space Telescope revealed a huge area within its core to be equal to about 50 million solar masses. The companion elliptical to the northeast – NGC 3384 – will reveal a bright nucleus as well as an elongated form. The faintest of this group – NGC 3389 – is a receding spiral and for larger scopes will reveal “patchiness” in structure.

Continue another degree south and enjoy another galactic pair. The widely spaced M96 and M95 are part of the galaxy grouping known as Leo I. The dusty spiral – M96 – will appear as a silver oval, whose nucleus is much sharper than its faint spiral arms. M96 hosted a supernova as recently as 1998. To its west, you will discover one very beautiful barred spiral – M95. While both of these were discovered by Méchain only four days earlier than M105, it wasn’t until recent years that they became a prime target of the Hubble Space Telescope. We enjoy M95 for its unique ring-like arms and unmistakable barred core, but the HST was looking for Cepheid variables to help determine the Hubble Constant. While we don’t need a space telescope to view this group of galaxies, we can now appreciate knowing that we can see 38 million light-years away from our own backyard!

If you’re still out when the Moon rises, be sure to look for Jupiter about a fistwidth away.

Sunday, May 6 – For those who like curiosities, our target for tonight will be 1.4 degrees northwest of 59 Leonis, which is itself about a degree southwest of Xi. While this type of observation may not be for everyone, what we are looking for is a very special star – a red dwarf named Wolf 359 (RA 10 56 28.99 Dec +07 00 52.0). Although it is faint at approximately 13th magnitude, you will find it precisely at the center of the highly accurate half degree field photo below.

Discovered photographically by Max Wolf in 1959, charts from that time period will no longer be accurate because of the star’s large proper motion. It is one of the least luminous stars known, and we probably wouldn’t even know it was there except for the fact that it is the third closest star to our solar system. Located only 7.5 light-years away, this miniature star is about 8% the size of our Sun – making it roughly the size of Jupiter. Oddly enough, it is also a “flare star” – capable of jumping another magnitude brighter at random intervals.

It might be faint and difficult to spot in mid-sized scopes, but Wolf 359 is definitely one of the most unusual things you will ever observe!

What’s Up this Week: April 23 – April 29, 2007

Cassini Crater. Image credit: Wes HigginsMonday, April 23 – Pioneer quantum physicist Max Planck was born on this day in 1858. In 1900, Max developed the Planck equation to explain the shape of blackbody spectra (a function of temperature and wavelength of emission). A “blackbody” is any object that absorbs all incident radiation – regardless of wavelength. For example, heated metal has blackbody properties because the energy it radiates is thermal. The blackbody spectrum’s shape remains constant, and the peak and height of an emitter can be measured against it – be it cosmic background radiation or our own bodies.
Continue reading “What’s Up this Week: April 23 – April 29, 2007”

What’s Up this Week: April 16 – April 22, 2007

M83. Credit: Bill Schoening/NOAO/AURA/NSFMonday, April 16 – Before binocular observers begin to feel that we have deserted them, let’s drop in on a binocular and very small telescope galaxy that resides roughly a handspan below Spica – M83. Starhop instructions are not easy for this one, but look for a pair of twin stars just west of the easily recognized “box” of Corvus – Gamma and R Hydrae. You’ll find it about four fingerwidths further south of R.
Continue reading “What’s Up this Week: April 16 – April 22, 2007”

What’s Up this Week: April 2 – April 8, 2007

First image of the Sun. Image credit: NASAMonday, April 2 – Today in 1889, the Harvard Observatory’s 13″ refractor arrived at Mt. Wilson. Just one month later, it went into astronomical service at Lick Observatory, located at Mt. Hamilton. It was here that the largest telescopes in the world resided from 1908 to 1948. The 60″ for the first decade, followed by the 100″. This latter mirror is still the largest solid piece ever cast in plate glass and weighed 4.5 tons. Would you believe it’s just 13 inches thick?
Continue reading “What’s Up this Week: April 2 – April 8, 2007”

What’s Up this Week: March 12 – March 18, 2007

NGC 2354. Image credit: Caltech/PalomarMonday, March 12 – Tonight let’s return again to NGC 2362 and start at the cluster’s north-northeast corner to have a look at a single, unusual star – UW Canis Majoris. At magnitude 4.9, this super-giant spectroscopic binary is one of the most massive and luminous in our galaxy. Its two stars are separated by only 27 million kilometers (17 million miles_ and revolve around each other at a frenzied pace – in less than four and a half days. This speed means the stars themselves are flattened and would appear to be almost egg-shaped. The primary itself is shedding material that’s being collected by the secondary star.
Continue reading “What’s Up this Week: March 12 – March 18, 2007”

What’s Up this Week: February 26 – March 4, 2007

Sombrero Galaxy. M104. Image credit: Hubble/SpitzerMonday, February 26 – Today is the birthdate of Camille Flammarion. Born in 1842, he became a widely read author in astronomy and conceived the idea that we were not alone – the idea of extraterrestrial life. Yet, Flammarion was just a little bit more than the great-grandfather of SETI. In 1877, Flammarion had an unusual chance that most of us only dream of. He had his hands on a personal copy and notes of the Messier Catalog. Using it as a reference, he later revised it, but his studies led him to identify M102 with NGC 5866 before 1917. By 1921, Flammarion had added M104 – now known as NGC 4594 – to the catalog as well, and it became the first of many additions.
Continue reading “What’s Up this Week: February 26 – March 4, 2007”