What’s Up this Week: September 24 – September 30, 2007

2007-0925kepler.thumbnail.jpg

Monday, September 24 – In 1970, the first unmanned, automated return of lunar material to the Earth occurred on this day when the Soviet’s Luna 16 returned with three ounces of the Moon. Its landing site was eastern Mare Fecunditatis. Look just west of the bright patch of Langrenus.

Tonight our primary lunar study is crater Kepler. Look for it as a bright point, slightly lunar north of center near the terminator. Its home is the Oceanus Procellarum – a sprawling dark mare composed primarily of dark minerals of low reflectivity (albedo) such as iron and magnesium. Bright, young Kepler will display a wonderfully developed ray system. The crater rim is very bright, consisting mostly of a pale rock called anorthosite. The “lines” extending from Kepler are fragments that were splashed out and flung across the lunar surface when the impact occurred. The region is also home to features known as “domes” – seen between the crater and the Carpathian Mountains. So unique is Kepler’s geological formation that it became the first crater mapped by U.S. Geological Survey in 1962.

Tuesday, September 25 – Tonight Uranus will be a little less than two degrees south of the Moon, but we’re going to have a look at a lunar feature that goes beyond simply incredible – it’s downright weird. Start your journey by identifying Kepler and head due west across Oceanus Procellarum until you encounter the bright ring of crater Reiner. Spanning 30 kilometers, this crater isn’t anything in particular – just shallow-looking walls with a little hummock in the center. But, look further west and a little more north for an anomaly – Reiner Gamma.

Well, it’s bright. It’s slightly eye-shaped. But what exactly is it? Possessing no real elevation or depth above the lunar surface, Reiner Gamma could very well be an extremely young feature caused by a comet. Only three other such features exist – two on the lunar far side and one on Mercury. They are high albedo surface deposits with magnetic properties. Unlike a lunar ray of material ejected from below the surface, Reiner Gamma can be spotted during the daylight hours – when ray systems disappear. And, unlike other lunar formations, it never casts a shadow.

Reiner Gamma also causes a magnetic deviation on a barren world that has no magnetic field. This has many proposed origins, such as solar storms, volcanic gaseous activity, or even seismic waves. But, one of the best explanations for its presence is a cometary strike. It is believed that a split-nucleus comet, or cometary fragments, once impacted the area and the swirl of gases from the high velocity debris may have somehow changed the regolith. On the other hand, ejecta from an impact could have formed around a magnetic “hot spot,” much like a magnet attracts iron filings.

No matter which theory is correct, the simple act of viewing Reiner Gamma and realizing that it is different from all other features on the Moon’s earthward facing side makes this journey worth the time!

Wednesday, September 26 – This is the Universal date the Moon will become Full and it will be the closest to the Autumnal Equinox. Because its orbit is more nearly parallel to the eastern horizon, it will rise at dusk for the next several nights in a row. On the average, the Moon rises about 50 minutes later each night, but at this time of year it’s around 20 minutes later for mid-northern latitudes and even less farther north. Because of this added light, the name “Harvest Moon” came about because it allowed farmers more time to work in the fields.

Often times we perceive the Harvest Moon as being more orange than at any other time of the year. The reason is not only scientific enough – but true. Coloration is caused by the scattering of the light by particles in our atmosphere. When the Moon is low, like now, we get more of that scattering effect and it truly does appear more orange. The very act of harvesting itself produces more dust and often times that coloration will last the whole night through. And we all know the size is only an “illusion”…

So, instead of cursing the Moon for hiding the deep sky gems tonight, enjoy it for what it is…a wonderful natural phenomenon that doesn’t even require a telescope!

And if you’d like to visit another object that only requires eyes, then look no further than Eta Aquilae one fist-width due south of Altair…
Discovered by Pigot in 1784, this Cepheid-class variable has a precision rate of change of over a magnitude in a period of 7.17644 days. During this time it will reach of maximum of magnitude 3.7 and decline slowly over 5 days to a minimum of 4.5… Yet it only takes two days to brighten again! This period of expansion and contraction makes Eta very unique. To help gauge these changes, compare Eta to Beta on Altair’s same southeast side. When Eta is at maximum, they will be about equal in brightness.

Thursday, September 27 – Tonight we’ll begin with an easy double star and make our way towards a more difficult one. Beautiful, bright and colorful, Beta Cygni is an excellent example of an easily split double star. As the second brightest star in the constellation of Cygnus, Albireo lies roughly in the center of the “Summer Triangle” making it a relatively simple target for even urban telescopes.

Albireo’s primary (or brightest) star is around magnitude 4 and has a striking orangish color. Its secondary (or B) star is slightly fainter at a bit less than magnitude 5, and often appears to most as blue, almost violet. The pair’s wide separation of 34″ makes Beta Cygni an easy split for all telescopes at modest power, and even for larger binoculars. At approximately 410 light-years away, this colorful pair shows a visual separation of about 4400 AU, or around 660 billion kilometers. As Burnham noted, “It is worth contemplating, in any case, the fact that at least 55 solar systems could be lined up, edge-to-edge, across the space that separates the components of this famous double!”

Now let’s have a look at Delta. Located around 270 light-years away, Delta is known to be a more difficult binary star. Its duplicity was discovered by F. Struve in 1830, and it is a very tough test for smaller optics. Located no more than 220 AU away from the magnitude 3 parent star, the companion orbits anywhere from 300 to 540 years and is often rated as dim as 8th magnitude. If skies aren’t steady enough to split it tonight, try again! Both Beta and Delta are on many challenge lists.

Friday, September 28 – Tonight we’ll have a look at the central star of the “Northern Cross” – Gamma Cygni. Also known as Sadr, this beautiful main sequence star lies at the northern edge of the “Great Rift.” Surrounded by a field of nebulosity known as IC 1310, second magnitude Gamma is very slowly approaching us, but still maintains an average distance of about 750 light-years. It is here in the rich, starry fields that the great dust cloud begins its stretch toward southern Centaurus – dividing the Milky Way into two streams. The dark region extending north of Gamma towards Deneb is often referred to as the “Northern Coalsack,” but its true designation is Lynds 906.

If you take a very close look at Sadr, you will find it has a well-separated 10th magnitude companion star, which is probably not related – yet in 1876, S. W. Burnham found that it itself is a very close double. Just to its north is NGC 6910, a roughly 6th magnitude open cluster which displays a nice concentration in a small telescope. To the west is Collinder 419, another bright gathering that is nicely concentrated. South is Dolidze 43, a widely spaced group with two brighter stars on its southern perimeter. East is Dolidze 10, which is far richer in stars of various magnitudes and contains at least three binary systems.

Whether you use binoculars or telescopes, chances are you won’t see much nebulosity in this region – but the sheer population of stars and objects in this area makes a visit with Sadr worthy of your time!

Saturday, September 29 – Tonight let’s head about a fingerwidth south of Gamma Cygni to have a look at an open cluster well suited for all optics – M29.

Discovered in 1764 by Charles Messier, this type D cluster has an overall brightness of about magnitude 7, but isn’t exactly rich in stars. Hanging out anywhere from 6000 to 7200 light-years away, one would assume this to be a very rich cluster and it may very well have hundreds of stars – but their light is blocked by a dust cloud a thousand times more dense than average.

Approaching us at around 28 kilometers per second, this loose grouping could be as old as 10 million years and appears much like a miniature of the constellation of Ursa Major at low powers. Even though it isn’t the most spectacular in star-rich Cygnus, it is another Messier object to add to your list!

Sunday, September 30 – Today in 1880, Henry Draper must have been up very early indeed when he took the first photo of the Great Orion Nebula (M42). Although you might not wish to set up equipment before dawn, you can still use a pair of binoculars to view this awesome nebula! You’ll find Orion high in the southeast for the Northern Hemisphere, and M42 in the center of the “sword” that hangs below its bright “belt” of three stars.

Tonight before the Moon rises and we leave Cygnus for the year, try your luck with IC 5070, also known as the “Pelican Nebula.” You’ll find it just about a degree southeast of Deneb and surrounding the binary star 56 Cygni.

Located around 2000 light-years away, the Pelican is an extension of the elusive North American Nebula, NGC 7000. Given its great expanse and faintness, catching the Pelican does require clean skies, but it can be spotted best with large binoculars. As part of this huge star forming region, look for the obscuring dark dust cloud Lynds 935 to help you distinguish the nebula’s edges. Although it is every bit as close as the Orion Nebula, this star hatchery isn’t quite as easy!

What’s Up this Week: September 10 – September 16, 2007

2007-0917ranger6.thumbnail.jpg

Monday, September 17 – Today in 1789, William Herschel discovered Saturn’s moon Mimas. Tonight we’ll discover our own Moon as we have a look at one of the last lunar challenges that occur during the first few days of the Moon’s appearance – Piccolomini. You’ll find it to the southwest of the shallow ring of Fracastorius on Mare Nectaris’ southern shore.

Piccolomini is a standout lunar feature – mainly because it is a fairly fresh impact crater. Its walls have not yet been destroyed by later impacts and the interior is nicely terraced. Power up and look carefully at the northern interior wall where perhaps a rock slide has slipped towards the crater floor. While the floor itself is fairly featureless, the central peak is awesome. Rising up a minimum of two kilometers above the floor, it’s even higher than the White Mountains in New Hampshire!

Now let’s take a look at a double which has a close separation – Epsilon Lyrae. Known to most of us as the “Double Double,” look about a finger width northeast of Vega. Even the slightest optical aid will reveal this tiny star as a pair, but the real treat is with a telescope – for each component is a double star! Both sets of stars appear as primarily white and both are very close to each other in magnitude. What is the lowest power that you can use to split them?

Tuesday, September 18 – Tonight as the skies darken, look for the beautiful red Antares less than a degree north of the Moon. Such a close union might mean an occultation, so be sure to check IOTA! Also joining this celestial array is Jupiter just a few more degrees north.

Tonight we’ll use a well-known lunar feature to help guide us to another challenge that is a little less easy to identify – crater Plinius. Starting with the grand visage of Posidonius, trace your way south past the ruined walls of Le Monnier and look for the long north/south wrinkle of Dorsa Smirnov running parallel to the terminator. Where it ends in the Promontorium Archerusia, look for the bright circle of Plinius.

Spanning approximately 43 kilometers, it is far from a prominent crater, yet will remain a very bright ring as the Moon grows full. Formed by an impact, its walls are bright and sharp with an irregular floor and jagged central peaks that will appear at times like two small impact craters.

It is near this rather inconspicuous feature that the remains of Ranger 6 lay forever preserved after “crash-landing” on February 2nd, 1964. Unfortunately, technical errors prevented Ranger 6 from transmitting lunar pictures. Not so Ranger 8! On a very successful mission to the same basic area, NASA received 7137 “postcards from the near side of the Moon” for 23 minutes before a very hard landing. On the “softer side,” Surveyor 5 touched down near this area safely after two days of malfunctions on September 10, 1967. Incredibly, the tiny Surveyor 5 endured temperatures of up to 283 degrees F, but still spectrographically analyzed the area’s soil and also managed to televise over 18,000 frames of “home movies” from its distant lunar location.

Wednesday, September 19 – On this day in 1848, William Boyd was watching Saturn – and discovered its moon Hyperion. Also today in 1988, Israel launched its first satellite. How long has it been since you’ve watched an ISS pass or an iridium flare? Both are terrific events that don’t require any special equipment to be seen. Be sure to check with Heavens Above for accurate times and passes in your location and enjoy!

For binoculars and telescopes, the Moon will provide a piece of scenic history as we take an in-depth look at crater Albategnius. This huge, hexagonal mountain-walled plain will appear near the terminator about one-third the way north from the south limb. This 136 kilometer wide crater is approximately 4390 meters deep and the west wall will cast a black shadow on the dark floor. Albategnius is a very ancient formation, filled partially with lava at one point in its development, and is home to several wall craters like Klein (which will appear telescopically on its southwest wall). Albategnius holds more than just the distinction of being a prominent crater tonight – it holds a place in history. On May 9, 1962 Louis Smullin and Giorgio Fiocco of the Massachusetts Institute of technology aimed a red laser beam toward the lunar surface and Albategnius became the first lunar object to be illuminated and detected by a laser from Earth!

On March 24, 1965 Ranger 9 took this snapshot of Albategnius (in the lower right) from an altitude of approximately 2500 kilometers. Companion craters in the image are Ptolemaeus and Alphonsus, which will be revealed tomorrow night. Ranger 9 was designed by NASA for one purpose – to achieve a lunar impact trajectory and to send back high-resolution photographs and high-quality video images of the lunar surface. It carried no other scientific experiments, and its only destiny was to take pictures right up to the moment of final impact. It is interesting to note that Ranger 9 slammed into Alphonsus approximately 18.5 minutes after this photo was taken. They called that…a “hard landing.”

Thursday, September 20 – Let’s walk upon the Moon this evening as we take a look at sunrise over one of the most often studied and mysterious of all craters – Plato. Located on the northern edge of Mare Imbrium and spanning 95 kilometers in diameter, Class IV Plato is simply a feature that all lunar observers check because of the many reports of unusual happenings. Over the years, mists, flashes of light, areas of brightness and darkness, and the appearance of small craters have become a part of Plato’s lore.

On October 9, 1945 an observer sketched and reported “a minute, but brilliant flash of light” inside the western rim. Lunar Orbiter 4 photos later showed where a new impact may have occurred. While Plato’s interior craterlets average between less than one and up to slightly more than two kilometers in diameter, many times they can be observed – and sometimes they cannot be seen at all under almost identical lighting conditions. No matter how many times you observe this crater, it is ever changing and very worthy of your attention!

Now let the Moon head west, because on this night in 1948, the 48″ Schmidt telescope at Mt. Palomar was busy taking pictures. The first photographic plate was being exposed on a galaxy by the same man who ground and polished the corrector plate for this scope – Hendricks. His object of choice was reproduced as panel 18 in the Hubble Atlas of Galaxies and tonight we’ll join his vision as we take a look at the fantastic M31 – the Andromeda Galaxy.

Seasoned amateur astronomers can literally point to the sky and show you the location of M31, but perhaps you have never tried. Believe it or not, this is an easy galaxy to spot even under the moonlight. Simply identify the large diamond-shaped pattern of stars that is the “Great Square of Pegasus.” The northernmost star is Alpha, and it is here we will begin our hop. Stay with the north chain of stars and look four finger-widths away for an easily seen star. The next along the chain is about three finger-widths away… And we’re almost there. Two more finger-widths to the north and you will see a dimmer star that looks like it has something smudgy nearby. Point your binoculars there, because that’s no cloud – it’s the Andromeda Galaxy!

Friday, September 21 – Tonight’s featured lunar crater will be located on the south shore of Mare Imbrium right where the Apennine mountain range meets the terminator. Eratosthenes is unmistakable at 58 kilometers in diameter and 375 meters deep. Named after the ancient mathematician, geographer and astronomer Eratosthenes, this splendid Class 1 crater will display a bright west wall and a deep interior which contains its massive crater-capped central mountain reaching up to 3570 meters high! Extending like a tail, an 80 kilometer long mountain ridge angles away to the southwest. As beautiful as Eratosthenes appears tonight, it will fade away to total obscurity as the Moon becomes more Full. See if you can spot it in five days!

Now let’s journey to a very pretty starfield as we head toward the western wingtip in Cygnus to have a look at Theta – also known as 13 Cygni. It is a beautiful main sequence star that is also considered by modern catalogs to be a double. For large telescopes, look for a faint (13th magnitude) companion to the west… But it’s also a wonderful optical triple!

Also in the field with Theta to the southeast is the Mira-type variable R Cygni, which ranges in magnitude from around 7 to 14 in slightly less than 430 days. This pulsating red star has a really quite interesting history that can be found at AAVSO, and is circumpolar for far northern observers. Check it out!

Saturday, September 22 – Tonight on the Moon, let’s take an in-depth look at one of the most impressive of the southern lunar features – Clavius.
Although you cannot help but be drawn visually to this crater, let’s start at the southern limb near the terminator and work our way up. Your first sighting will be the large and shallow dual rings of Casatus with its central crater and Klaproth adjoining it. Further north is Blancanus with its series of very small interior craters, but wait until you see Clavius. Caught on the southeast wall is Rutherford with its central peak and crater Porter on the northeast wall. Look between them for the deep depression labeled D. West of D you will also see three outstanding impacts: C, N and J; while CB resides between D and Porter. The southern and southwest walls are also home to many impacts, and look carefully at the floor for many, many more! It has been often used as a test of a telescope’s resolving power to see just how many more craters you can find inside tremendous old Clavius. Power up and enjoy!
Now let’s head for the northeast corner of the little parallelogram that is part of Lyra for easy unaided eye and binocular double Delta 1 and 2 Lyrae.

The westernmost Delta 1 is about 1100 light-years away and is a class B dwarf, but take a closer look at brighter Delta 2. This M-class giant is only 900 light-years away. Perhaps 75 million years ago, it, too, was a B class star, but it now has a dead helium core and it keeps on growing. While it is now a slight variable, it may in the future become a Mira-type. A closer look will show that it also has a true binary system nearby – a tightly matched 11th magnitude system. Oddly enough they are the same distance away as Delta-2 and are believed to be physically related.

Sunday, September 23 – Today is the Autumnal Equinox. This marks the first day of the fall season for the Northern Hemisphere and we astronomers welcome back earlier dark skies! On this day in 1846, Johann Galle of the Berlin Observatory makes a visual discovery. While at the telescope, Galle sees and identifies the planet Neptune for the first time in history. Would you like to try for Neptune? It’s fairly easy – especially seeing as how it’s only about a degree north of the Moon tonight! This could be an occultation event for some areas, so be sure to check IOTA!

Tonight exploring the Moon will be in order as one of the most graceful and recognizable lunar features will be prominent – Gassendi. As an ancient mountain-walled plain that sits proudly at the northern edge of Mare Humorum, Gassendi sports a bright ring and a triple central mountain peak that are within the range of binoculars.

Telescopic viewers will appreciate Gassendi at high power in order to see how its southern border has been eroded by lava flow. Also of note are the many rilles and ridges that exist inside the crater and the presence of the younger Gassendi A on the north wall. While viewing the Mare Humorum area, keep in mind that we are looking at an area about the size of the state of Arkansas. It is believed that a planetoid collision originally formed Mare Humorum. The incredible impact crushed the surface layers of the Moon resulting in a concentric “anticline” that can be traced out to twice the size of the original impact area. The floor of this huge crater then filled in with lava, and was once thought to have a greenish appearance but in recent years has more accurately been described as reddish. That’s one mighty big crater!

On this day in 1962, the prime time cartoon “The Jetsons” premiered. Think of all the technology this inspired as tonight we kick back to watch the Alpha Aurigid meteor shower. Relax, face northeast and look for the radiant near Capella. The fall rate is around 12 per hour, and they are fast and leave trails!

Monday, September 24 – In 1970, the first unmanned, automated return of lunar material to the Earth occurred on this day when the Soviet’s Luna 16 returned with three ounces of the Moon. Its landing site was eastern Mare Fecunditatis. Look just west of the bright patch of Langrenus.

Tonight our primary lunar study is crater Kepler. Look for it as a bright point, slightly lunar north of center near the terminator. Its home is the Oceanus Procellarum – a sprawling dark mare composed primarily of dark minerals of low reflectivity (albedo) such as iron and magnesium. Bright, young Kepler will display a wonderfully developed ray system. The crater rim is very bright, consisting mostly of a pale rock called anorthosite. The “lines” extending from Kepler are fragments that were splashed out and flung across the lunar surface when the impact occurred. The region is also home to features known as “domes” – seen between the crater and the Carpathian Mountains. So unique is Kepler’s geological formation that it became the first crater mapped by U.S. Geological Survey in 1962.

Tuesday, September 25 – Tonight Uranus will be a little less than two degrees south of the Moon, but we’re going to have a look at a lunar feature that goes beyond simply incredible – it’s downright weird. Start your journey by identifying Kepler and head due west across Oceanus Procellarum until you encounter the bright ring of crater Reiner. Spanning 30 kilometers, this crater isn’t anything in particular – just shallow-looking walls with a little hummock in the center. But, look further west and a little more north for an anomaly – Reiner Gamma.

Well, it’s bright. It’s slightly eye-shaped. But what exactly is it? Possessing no real elevation or depth above the lunar surface, Reiner Gamma could very well be an extremely young feature caused by a comet. Only three other such features exist – two on the lunar far side and one on Mercury. They are high albedo surface deposits with magnetic properties. Unlike a lunar ray of material ejected from below the surface, Reiner Gamma can be spotted during the daylight hours – when ray systems disappear. And, unlike other lunar formations, it never casts a shadow.

Reiner Gamma also causes a magnetic deviation on a barren world that has no magnetic field. This has many proposed origins, such as solar storms, volcanic gaseous activity, or even seismic waves. But, one of the best explanations for its presence is a cometary strike. It is believed that a split-nucleus comet, or cometary fragments, once impacted the area and the swirl of gases from the high velocity debris may have somehow changed the regolith. On the other hand, ejecta from an impact could have formed around a magnetic “hot spot,” much like a magnet attracts iron filings.

No matter which theory is correct, the simple act of viewing Reiner Gamma and realizing that it is different from all other features on the Moon’s earthward facing side makes this journey worth the time!

Wednesday, September 26 – This is the Universal date the Moon will become Full and it will be the closest to the Autumnal Equinox. Because its orbit is more nearly parallel to the eastern horizon, it will rise at dusk for the next several nights in a row. On the average, the Moon rises about 50 minutes later each night, but at this time of year it’s around 20 minutes later for mid-northern latitudes and even less farther north. Because of this added light, the name “Harvest Moon” came about because it allowed farmers more time to work in the fields.

Often times we perceive the Harvest Moon as being more orange than at any other time of the year. The reason is not only scientific enough – but true. Coloration is caused by the scattering of the light by particles in our atmosphere. When the Moon is low, like now, we get more of that scattering effect and it truly does appear more orange. The very act of harvesting itself produces more dust and often times that coloration will last the whole night through. And we all know the size is only an “illusion”…

So, instead of cursing the Moon for hiding the deep sky gems tonight, enjoy it for what it is…a wonderful natural phenomenon that doesn’t even require a telescope!

And if you’d like to visit another object that only requires eyes, then look no further than Eta Aquilae one fist-width due south of Altair…
Discovered by Pigot in 1784, this Cepheid-class variable has a precision rate of change of over a magnitude in a period of 7.17644 days. During this time it will reach of maximum of magnitude 3.7 and decline slowly over 5 days to a minimum of 4.5… Yet it only takes two days to brighten again! This period of expansion and contraction makes Eta very unique. To help gauge these changes, compare Eta to Beta on Altair’s same southeast side. When Eta is at maximum, they will be about equal in brightness.

Thursday, September 27 – Tonight we’ll begin with an easy double star and make our way towards a more difficult one. Beautiful, bright and colorful, Beta Cygni is an excellent example of an easily split double star. As the second brightest star in the constellation of Cygnus, Albireo lies roughly in the center of the “Summer Triangle” making it a relatively simple target for even urban telescopes.

Albireo’s primary (or brightest) star is around magnitude 4 and has a striking orangish color. Its secondary (or B) star is slightly fainter at a bit less than magnitude 5, and often appears to most as blue, almost violet. The pair’s wide separation of 34″ makes Beta Cygni an easy split for all telescopes at modest power, and even for larger binoculars. At approximately 410 light-years away, this colorful pair shows a visual separation of about 4400 AU, or around 660 billion kilometers. As Burnham noted, “It is worth contemplating, in any case, the fact that at least 55 solar systems could be lined up, edge-to-edge, across the space that separates the components of this famous double!”

Now let’s have a look at Delta. Located around 270 light-years away, Delta is known to be a more difficult binary star. Its duplicity was discovered by F. Struve in 1830, and it is a very tough test for smaller optics. Located no more than 220 AU away from the magnitude 3 parent star, the companion orbits anywhere from 300 to 540 years and is often rated as dim as 8th magnitude. If skies aren’t steady enough to split it tonight, try again! Both Beta and Delta are on many challenge lists.

Friday, September 28 – Tonight we’ll have a look at the central star of the “Northern Cross” – Gamma Cygni. Also known as Sadr, this beautiful main sequence star lies at the northern edge of the “Great Rift.” Surrounded by a field of nebulosity known as IC 1310, second magnitude Gamma is very slowly approaching us, but still maintains an average distance of about 750 light-years. It is here in the rich, starry fields that the great dust cloud begins its stretch toward southern Centaurus – dividing the Milky Way into two streams. The dark region extending north of Gamma towards Deneb is often referred to as the “Northern Coalsack,” but its true designation is Lynds 906.

If you take a very close look at Sadr, you will find it has a well-separated 10th magnitude companion star, which is probably not related – yet in 1876, S. W. Burnham found that it itself is a very close double. Just to its north is NGC 6910, a roughly 6th magnitude open cluster which displays a nice concentration in a small telescope. To the west is Collinder 419, another bright gathering that is nicely concentrated. South is Dolidze 43, a widely spaced group with two brighter stars on its southern perimeter. East is Dolidze 10, which is far richer in stars of various magnitudes and contains at least three binary systems.

Whether you use binoculars or telescopes, chances are you won’t see much nebulosity in this region – but the sheer population of stars and objects in this area makes a visit with Sadr worthy of your time!

Saturday, September 29 – Tonight let’s head about a fingerwidth south of Gamma Cygni to have a look at an open cluster well suited for all optics – M29.

Discovered in 1764 by Charles Messier, this type D cluster has an overall brightness of about magnitude 7, but isn’t exactly rich in stars. Hanging out anywhere from 6000 to 7200 light-years away, one would assume this to be a very rich cluster and it may very well have hundreds of stars – but their light is blocked by a dust cloud a thousand times more dense than average.

Approaching us at around 28 kilometers per second, this loose grouping could be as old as 10 million years and appears much like a miniature of the constellation of Ursa Major at low powers. Even though it isn’t the most spectacular in star-rich Cygnus, it is another Messier object to add to your list!

Sunday, September 30 – Today in 1880, Henry Draper must have been up very early indeed when he took the first photo of the Great Orion Nebula (M42). Although you might not wish to set up equipment before dawn, you can still use a pair of binoculars to view this awesome nebula! You’ll find Orion high in the southeast for the Northern Hemisphere, and M42 in the center of the “sword” that hangs below its bright “belt” of three stars.

Tonight before the Moon rises and we leave Cygnus for the year, try your luck with IC 5070, also known as the “Pelican Nebula.” You’ll find it just about a degree southeast of Deneb and surrounding the binary star 56 Cygni.

Located around 2000 light-years away, the Pelican is an extension of the elusive North American Nebula, NGC 7000. Given its great expanse and faintness, catching the Pelican does require clean skies, but it can be spotted best with large binoculars. As part of this huge star forming region, look for the obscuring dark dust cloud Lynds 935 to help you distinguish the nebula’s edges. Although it is every bit as close as the Orion Nebula, this star hatchery isn’t quite as easy!

What’s Up this Week: September 10 – 16, 2007

2007-0910ngc6826.thumbnail.jpg

Monday, September 10 – Today is the birthday of James E. Keeler. Born in 1857, the American Keeler was a pioneer in the field of spectroscopy and astrophysics. In 1895, Keeler proved that different areas in Saturn’s rings rotate at different velocities. This clearly showed that Saturn’s rings were not solid, but were instead a collection of smaller particles in independent orbits.

While we are studying some of the summer’s finest objects, we’d be very remiss if we didn’t look at another cosmic curiosity – “The Blinking Planetary.” Located a couple of degrees east of visible star Theta Cygni, and in the same lower power field as 16 Cygni, it is formally known as NGC 6826.

Viewable in even small telescopes at mid to high power, you’ll learn very quickly how its name came about. When you look directly at it, you can only see the central 9th magnitude star. Now, look away. Focus your attention on visual double 16 Cygni. See that? When you avert, the nebula itself is visible. This is actually a trick of the eye. The central portion of our vision is more sensitive to detail and will only see the central star. At the edge of our vision, we are more likely to see dim light, and the planetary nebula appears. Located around 2,000 light-years from our solar system, it doesn’t matter if the “Blinking Planetary” is a trick of the eye or not… Because it’s cool!

Also known as Herschel IV.73 and Caldwell object 16, this tiny planetary shows an abundance of carbon and dust pockets in its structure. It skyrocketed to fame when viewed by the Hubble Space Telescope which revealed the mysterious red “FLIERS,” whose bow shocks point towards this planetary nebula – instead of away from it.

Tuesday, September 11 – For viewers in South America, you’re in for a partial solar eclipse on this Universal date. Be sure to check local information for precise times and viewing locations. Wishing you clear skies!

Today celebrates the birthday of Sir James Jeans. Born in 1877, English-born Jeans was an astronomical theoretician. During the beginning of the 20th century, Jeans worked out the fundamentals of the process of gravitational collapse. This was an important contribution to the understanding of the formation of solar systems, stars, and galaxies.

Tonight is New Moon and a great opportunity to have another look at all the things we’ve studied this week. However, I would encourage those of you with larger binoculars and telescopes to head for a dark sky location, because tonight we are going on a quest…the quest for the holy “Veil.”

By no means is the Veil Nebula Complex an easy one. The brightest portion, NGC 6992, can be spotted in large binoculars and you can find it just slightly south of a central point between Epsilon and Zeta Cygni. NGC 6992 is much better in a 6″ scope however, and low power is essential to see the long ghostly filaments which span more than a degree of sky. About two and a half degrees west-southwest, and incorporating star 52, is another long narrow ribbon of what may be classified as a supernova remnant. When aperture reaches the 12″ range, so does the true breadth of this fascinating complex. It is possible to trace these long filaments across several fields of view. They sometimes dim and at other times widen, but like a surreal solar flare, you will not be able to tear your eyes away from this area. Another undesignated area lies between the two NGCs, and the whole 1,500 light-year distant area spans over two and a half degrees. Sometimes known as the Cygnus Loop, it’s definitely one of late summer’s finest objects.

Wednesday, September 12 – Today in 1959, the USSR’s Luna 2 scored a mark as it became the first manmade object to hit the moon. The successful mission landed in the Paulus Putredinus area. Today also celebrates the 1966 Gemini 11 launch.

Tonight let’s take the time to hunt down an often overlooked globular cluster – M56.

Located roughly midway between Beta Cygni and Gamma Lyrae (RA 19 15 35.50 Dec +30 11 04.2), this class X globular was discovered by Charles Messier in 1779 on the same night he discovered a comet, and was later resolved by Herschel. At magnitude 8 and small in size, it’s a tough call for a beginner with binoculars, but is a very fine telescopic object. With a general distance of 33,000 light-years, this globular resolves well with larger scopes, but doesn’t show as much more than a faint, round area with small aperture. However, the beauty of the chains of stars in the field makes it quite worth the visit!

While you’re there, look carefully: M56 is one of the very few objects for which the photometry of its variable stars was studied strictly with amateur telescopes. While one bright variable had been known previously, up to a dozen more have recently been discovered. Of those, six had their variability periods determined using CCD photography and telescopes just like yours!

Thursday, September 13 – Today in 1922, the highest air temperature ever recorded at the surface of the Earth occurred. The measurement was taken in Libya and burned in at a blistering 136°F (58°C), but did you know that the temperatures in the sunlight on the Moon double that? Your first challenge for tonight will be to see if you can spot the slender crescent Moon right after sunset. If so, keep your binoculars on hand and look for Mercury about 2 degrees to the north. If you thought the surface of the Moon was a bit too warm for comfort, then know surface temperatures on the closest planet to the Sun can reach up to 800°F (427°C) at the equator during the day! As odd as it may sound, even that close to the Sun – Mercury could very well have ice deposits hidden below the surface at its poles.

Tonight we’ll move on to Aquila and look at the hot central star of an interesting planetary nebula – NGC 6804. You’ll find it almost 4 degrees due west of Altair (RA 19 31 35.17 Dec +09 13 32.0). Discovered by Herschel and classed as open cluster H VI.38, it wasn’t until Pease took a closer look that its planetary nature was discovered. Interacting with clouds of interstellar dust and gases, NGC 6804 is a planetary in decline, with its outer shell around magnitude 12 and the central star at about magnitude 13. While only larger telescopes will get a glimpse of the central, it’s one of the hottest objects in space – with temperatures around 30,000°K!

Friday, September 14 – Tonight as the Moon rises, look for the splendid appearance of Spica about 1.7 degrees to the north. Before it overpowers the sky, let’s use this opportunity to have a look at one of the prettiest clusters in the night – M11.

Discovered in 1681 by German astronomer Gottfried Kirch at the Berlin Observatory, M11 was later cataloged by Charles Messier in 1764 and first dubbed the “Wild Duck” by Admiral Smyth. To our modern telescopes and binoculars, there is little doubt as to how this rich galactic cluster earned its name – for it has a distinctive wedge-shaped pattern that closely resembles a flight of ducks. This fantastic open cluster of several thousand stars (about 500 of them are magnitude 14 or brighter) is approximately 250 million years old.

M11 is easily located by identifying Altair, the brightest star in Aquila. By counting two stars down the “body” of Aquila and stopping on Lambda, you will find your starhop guide. Near Lambda you will see three stars, the centermost is Eta Scuti. Now just aim! Even small binoculars will have no problem finding M11, but a telescope is required to start resolving individual stars. The larger the telescope’s aperture the more stars will be revealed in this most concentrated of all open clusters!

Saturday, September 15 – In 1991 the Upper Atmosphere Research Satellite (UARS) was launched from Space Shuttle Discovery. The successful mission lasted well beyond its life expectancy – sending back critical information about our ever-changing environment. After 14 years and 78,000 orbits, UARS remains a scientific triumph.

Tonight your lunar mission is to journey to the edge of the east limb and slightly south of central to identify crater Humboldt. Seen on the curve, this roughly 200 km wide crater holds a wealth of geographical details. Its flat, cracked floor has central peaks and a small mountain range, as well as radial rille structure. If libration and steadiness of skies are in your favor, power up and look for dark pyroclastic areas and a concentric inner crater.
Now, let’s have a look at Beta and Gamma Lyrae, the lower two stars in the “Harp.” Beta is actually a quick changing variable which drops to less than half the brightness of Gamma in around 12 days. For a few days the pair will seem of almost equal brightness and then you will notice the star closest to Vega fades away. Beta is one of the most unusual spectroscopic stars in the sky, and it is possible that its eclipsing binary companion may be the prototype of the “collapsar” (yep, a black hole!), rather than a true luminous body.

Sunday, September 16 – If you were unable to identify Humboldt last night, try again tonight with Petavius as your guide. Although we have studied Petavius before, now is your chance once again to mark your studies of the Petavius Wall. Look for unusual features, such as 57 kilometer diameter Wrottesley on Petavius’ northwest wall, or 83 kilometer wide Hase to the south, with its deep interior impact… Or how about long, shallow Legendre and Phillips on Humboldt’s west wall? If libration is good you might even spot the edge of Barnard on Humboldt’s southeast edge!

While the Moon will dominate tonight’s sky, we can still take a very unusual and beautiful journey to a bright and very colorful pair of stars known as Omicron 1 Cygni. Easily located about halfway between Alpha (Deneb) and Delta on the western side, this is a pure delight in binoculars or any size telescope. The striking gold color of 3.7 magnitude 31 Cygni (Omicron 1) is easily highlighted against the blue of its same-field companion, 5th magnitude 30 Cygni. Although this wide pairing is only an optical one, the K-type giant is a double star – an eclipsing variable around 150 times larger than or own Sun – and is surrounded by a gaseous corona more than double the size of the star itself. If you are using a scope, you can easily spot the blue tinted, 7th magnitude B star about one-third the distance between the two giants. Although our true pair are some two billion kilometers apart, they are oriented nearly edge-on from our point of view – allowing the smaller star to be totally eclipsed during each revolution. This total eclipse lasts for 63 days and happens about every 10.4 years, but don’t stay up too late… We’ve still got five years to wait!

What’s Up this Week: September 2 – 8, 2007

collinder_399.thumbnail.jpg

Monday, September 2 – Tonight we’ll hunt with the “Fox” as we head to Vulpecula to try two more open star cluster studies. The first can be done easily with large binoculars or a low power scope. It’s a rich beauty that lies in the constellation of Vulpecula, but is more easily found by moving around 3 degrees southeast of Beta Cygni.

Known as Stock 1, this stellar swarm contains around 50 or so members of varying magnitudes that you will return to often. With a visual magnitude of near 5, loose associations of stars – like Stock clusters – are the subject of recent research. The latest information indicates that the members of this cluster are truly associated with one another.

A little more than a degree to the northeast is NGC 6815. While this slightly more compressed open cluster has no real status amongst deep sky objects, it is another one to add to your collection of things to do and see!

Tuesday, September 3 – Tonight we’ll start with an asterism known as the “Coat Hanger,” but it is also known as Brocchi’s Cluster, or Collinder 399. Let the colorful double star Beta Cygni – Albireo – be your guide as you move about 4 degrees to its south-southwest. You will know this cluster when you see it, because it really does look like a coat hanger! Enjoy its red stars.

First discovered by Al Sufi in 964 AD, this 3.5 magnitude collection of stars was again recorded by Hodierna. Thanks to its expansive size of more than 60 arc minutes, it escaped the catalogues of both Messier and Herschel. Only around a half dozen stars share the same proper motion, which may make it a cluster much like the Pleiades, but studies suggest it is merely an asterism…but one with two binary stars at its heart.

And for larger scopes? Fade east to the last prominent star in the cluster and power up. NGC 6802 awaits you! At near magnitude 9, Herschel VI.14 is a well compressed open cluster of faint members. The subject of ongoing research in stellar evolution, this 100,000 year old cluster is on many observing challenge lists!

Wednesday, September 4 – Twenty-four hours ago in 1976, the Viking 2 lander successfully touched down on Mars. If you’ve been waiting on your opportunity to see the Red Planet again, you’ll find it 5.8 degrees south of the Moon as the new day begins.

Tonight we’ll start with the brightest star in Vulpecula – Alpha. Although it is not a true binary star, it is quite attractive in the telescope and an easy split for binoculars. Alpha itself is a 4.4 magnitude red giant which makes a nice color contrast with the unrelated yellow field star which is two magnitudes dimmer.

Now head around one half degree northwest for open cluster NGC 6800. Also known as Herschel VIII.21, this cluster is suitable for even smaller scopes but requires aperture to resolve completely. Discovered by Sir William in this month (10th) in 1784, you’ll like this ring-like arrangement of stars!

Now drop 2.7 degrees southwest of Alpha for yet another open cluster – NGC 6793. Discovered by Herschel in 1789 and logged as catalog object VIII.81, you’ll find a few more bright stars here. The challenge in this cluster is not so much being able to see it in a smaller telescope – but being able to discern a cluster from a starfield!

Thursday, September 5 – Tonight we’ll return again to Vulpecula – but with a different goal in mind. What we’re after requires dark skies – but can be seen in both binoculars and a small telescope. Once you’ve found Alpha, begin about two fingerwidths southeast and right on the galactic equator you’ll find NGC 6823.

The first thing you will note is a fairly large, somewhat concentrated magnitude 7 open cluster. Resolved in larger telescopes, the viewer may note these stars are the hot, blue/white variety. For good reason. NGC 6823 only formed about 2 billion years ago. Although it is some 6000 light-years away and occupies around 50 light-years of space, it’s sharing the field with something more – a very large emission/reflection nebula, NGC 6820.

In the outer reaches of the star cluster, new stars are being formed in masses of gas and dust as hot radiation is shed from the brightest of the stellar members of this pair. Fueled by emission, NGC 6820 isn’t always an easy visual object – it is faint and covers almost four times as much area as the cluster. But trace the edges very carefully, since the borders are much more illuminated than the region of the central cluster. Take the time to really observe this one! Its processes are very much like those of the “Trapezium” area in the Orion nebula.

Be sure to mark your observing notes. NGC 6823 is Herschel VII.18 and NGC 6820 is also known as Marth 401!

Friday, September 6 – Today celebrates the founding of the Astronomical and Astrophysical Society of America. Started in 1899, it is now known as the American Astronomical Society.

Tonight we are going to take a journey once again toward an area which has intrigued this author since I first laid eyes on it with a telescope. Some think it difficult to find, but there is a very simple trick. Look for the primary stars of Sagitta just to the west of bright Albireo. Make note of the distance between the two brightest and look exactly that distance north of the “tip of the arrow” and you’ll find M27.

Discovered in 1764 by Messier in a 3.5 foot focal length telescope, I discovered this 48,000 year old planetary nebula for the first time in a 4″ telescope. I was hooked immediately. Here before my eager eyes was a glowing green “apple core” which had a quality about it that I did not understand. It somehow moved… It pulsated. It appeared “living.”

For many years I quested to understand the 850 light-year distant M27, but no one could answer my questions. I researched and learned it was made up of doubly ionized oxygen. I had hoped that perhaps there was a spectral reason to what I viewed year after year – but still no answer. Like all amateurs, I became the victim of “aperture fever” and I continued to study M27 with a 12″ telescope, never realizing the answer was right there – I just hadn’t powered up enough.

Several years later while studying at the Observatory, I was viewing through a friend’s identical 12″ telescope and, as chance would have it, he was using about twice the magnification that I normally used on the “Dumbbell.” Imagine my total astonishment as I realized for the very first time that the faint central star had an even fainter companion that made it seem to wink! At smaller apertures or low power, this was not revealed. Still, the eye could “see” a movement within the nebula – the central, radiating star and its companion.

Do not sell the Dumbbell short. It can be seen as a small, unresolved area in common binoculars, easily picked out with larger binoculars as an irregular planetary nebula, and turns astounding with even the smallest of telescopes. In the words of Burnham, “The observer who spends a few moments in quiet contemplation of this nebula will be made aware of direct contact with cosmic things; even the radiation reaching us from the celestial depths is of a type unknown on Earth…”

Saturday, September 7 – When skies are dark, it’s time for us to head directly between the two southernmost stars in the constellation of Lyra and grab the “Ring.” What summer would be complete without it?

First discovered by French astronomer Antoine Darquier in 1779, the Ring Nebula was cataloged later that year by Charles Messier as M57. In binoculars the Ring will appear as slightly larger than a star, yet it cannot be focused to a sharp point. To a modest telescope at even low power, M57 turns into a glowing donut against a wonderful stellar backdrop. The average accepted distance to this unusual structure is 1,400 light-years, and how you see the Ring on any given night is mostly attributable to conditions. As aperture and power increase, so do details, and it is not impossible to see braiding in the nebula’s structure with scopes as small as eight inches on a fine night, or to pick up the star caught on the edge in even smaller apertures.

Like all planetary nebulae, seeing the central star is considered the ultimate of viewing. The central itself is a peculiar bluish dwarf which gives off a continuous spectrum and might very well be a variable. At times, this shy, near 15th magnitude star can be seen with ease with a 12″ telescope, yet be elusive to 31″ in aperture weeks later. No matter what details you may see, reach for the “Ring” tonight. You’ll be glad you did.

Saturday, September 8 – Today in 1966, a legend was born as the television program, “Star Trek” premiered. Created by Gene Roddenberry, it was instrumental in inspiring several generations’ interest in space, astronomy, and technology. The short-running series still airs in repeats, along with many movie and series sequels. May it continue to “live long and prosper.”

As your starry mission this evening, we’ll continue our studies in Vulpecula with a spectacular open cluster – NGC 6940. At close to magnitude 6, you’ll find this unsung symphony of stars around three fingerwidths southwest of Epsilon Cygni (RA 20 34 24.00 Dec +28 17 -0.0).

Discovered by Sir William Herschel on Oct 15, 1784, and logged as H VIII.23, this intermediate aged galactic cluster will blow your mind in larger aperture. Visible in binoculars, as size increases the field explodes into about 100 stars in a highly compressed, rich cloud. Although it is not an often visited cluster, it is part of many observing challenge lists. Use low power to get the full effect of this stunning starfield!

If you see a shooting star while you’re out, it may belong to the Piscid meteor stream which will reach its peak tonight with an expected maximum of around 5 meteors per hour. This particular shower favors the southern hemisphere. While this branch of the Piscids is a rather unstudied, it is an unusual and diffuse stream that is active all month.

What’s Up this Week: August 27 – September 1, 2007

lunareclipse.thumbnail.jpg

Monday, August 27 – While it’s going to be very hard to ignore the presence of the Moon tonight, Neptune is a little more than a degree north, and there may be a visible occultation event. Be sure to check IOTA for the most up-to-date information.

Think having all this Moon around is the pits? Then let’s venture to Zeta Sagittarii and have a look at Ascella – “The Armpit of the Centaur.” While you’ll find Zeta easily as the southern star in the handle of the teapot formation, what you won’t find is an easy double. With almost identical magnitudes, Ascella is one of the most difficult of all binaries. Discovered by W. C. Winlock in 1867, the components of this pair orbit each other very quickly – in just a little more than 21 years. While they are about 140 light-years away, this gravitationally bound pair waltz no further apart than our own Sun and Uranus!

Too difficult? Then have a look at Nu Sagittarii – Ain al Rami, or the “Eye of the Archer.” It’s one of the earliest known double stars and was recorded by Ptolemy. While Nu 1 and Nu 2 are actually not physically related to one another, they are an easy split in binoculars. Eastern Nu 2 is a K type spectral giant that is around 270 light-years from our solar system. But take a very close look at the western Nu 1 – while it appears almost as bright, this one is 1850 light-years away! As a bonus, power up in the telescope, because this is one very tight triple star system!

Tuesday, August 28 – In 1789 on this day, Sir William Herschel discovered Saturn’s moon Enceladus. But if Sir William were around tonight, he’d be napping the early evening hours away as the Moon heads quietly for the Earth’s shadow and a total lunar eclipse is about to occur. For those living in the eastern portions of North and South America, the event will begin not long before dawn. The further west you live, the better your chances of observing totality, with the event in progress at moonrise for observers in far eastern Europe, New Zealand and Australia. No matter if you’re staying out late, or getting up early, a total lunar eclipse is well worth watching!

One of the most breathtaking adventures you can undertake is to watch the Moon through a telescope during an eclipse, both at ingress and egress. Craters take on new dimensions and subtle detail as the shadow races across the surface. If you are lucky enough to see totality… Look at the stars around the Moon. What a wonder it is to behold that which is normally hidden by the light!

Try and judge the Danjon scale for yourself. An L4 is an orange moon with a blue shadow at the edge of the dark umbral cone. L3 is brick red with a grey rim. L2 is deep red, with the umbra very dark with a bright outer edge. L1 is a dark eclipse, where the Moon turns almost brown, while a rare L0 means the Moon becomes almost invisible.

Enjoy your eclipse experience and remember to try your hand at photography!

Wednesday, August 29 – Tonight we’ll hop about two fingerwidths north of Nu Sagittarii to have a look at an open cluster that’s a bit more off the beaten path – NGC 6716. Comprised of around 75 genuine cluster members, this 100 million year old cluster will appear almost like a loose globular cluster, with brighter stars superimposed over the field of a mid-sized telescope in a distinctive horseshoe pattern. At magnitude 7.5 it’s not only within range of larger binoculars, but part of challenge lists as well. Be sure not to confuse it with the far more open Collinder 394 about half a degree southwest. Like all Collinder clusters, it’s a large, sparse open one that only contains a handful of stars in a V pattern.

If you’re still feeling adventurous with a larger scope, drop back and take a much closer look at the Nu Sagittarii system. On the southern edge of eastern Nu 2’s influence, you just might catch globular cluster NGC 6717. If not, keep trying because you need a Palomar globular for your studies! At very near magnitude 10, this loose, class VIII globular was discovered by Sir William Herschel on Aug 7th, 1784, and listed as H III.143. Although it will appear as nothing more than a faint, round unresolved area, it truly is a globular cluster. At one time a small cluster of stars was designated as IC 4802 with surrounding nebulosity – but tonight we’ll log it as Palomar 9!

And if you still can’t find Uranus? Try looking about 1.7 degrees south of the Moon after it rises…

Thursday, August 30 – Today celebrates the Yohkoh Mission, launched in 1991. It was a joint effort of both Japan and the United States to monitor solar flares and the corona. While its initial mission was quite successful, on December 14, 2001 the signal was lost during a total eclipse. Unable to reposition the satellite back towards the Sun, the batteries discharged and Yohkoh became inoperable.

Before the Moon rises tonight, let’s have a look at a very curious planetary nebula located around three fingerwidths (RA 17 13 44.21 Dec -37 06 15.9) west of Lambda Scorpii – NGC 6302, better known as the “Bug” nebula.

With a rough visual magnitude of 9.5, the Bug belongs to the telescope – but it’s history as a very extreme planetary nebula belongs to all. At its center is a 10th magnitude star, one of the hottest known. Appearing in the telescope as a small bowtie, or figure-8 shape, huge amounts of dust exist – very special dust. Early studies showed it consisted of hydrocarbons, carbonates and iron. At one time, carbonates were believed associated with liquid water, and NGC 6302 is one of two such regions known is space to contain carbonates – perhaps in a crystalline form.

Ejected at high speed in a bi-polar outflow, further research has shown the presence of calcite and dolomite, causing scientists to rethink where carbonates might be formed. The processes that formed the Bug may have begun 10,000 years ago – meaning it may have by now stopped losing material. Hanging out about 4000 light-years from our own solar system, we’ll never see NGC 6302 as well as the Hubble Telescope presents its beauty, but that won’t stop you from enjoying one of the most fascinating of planetary nebulae!

Friday, August 31 – Tonight we will begin entering the stream of the Andromedid meteor shower, which peaks off and on for the next couple of months. For those of you in the northern hemisphere, look for the lazy “W” of Cassiopeia to the northeast. This is the radiant – or relative point of origin – for this meteor stream. At times, this shower has been known to be spectacular, but let’s stick with an accepted fall rate of around 20 per hour. These are the offspring of Beila’s Comet, one that split apart leaving radically different streams – much like 73/P Schwassman-Wachmann did last year. These meteors have a reputation for red fireballs with spectacular trains, so watch for them in the weeks ahead.

While we’re waiting, let’s head over to the dark side as we take a look at the Barnard 72 Dark Nebula (RA 17 23 02.00 Dec -23 33 48.0), located about a fingerwidth north of Theta Ophiuchi.

While sometimes dark nebulae are hard to visualize because they are simply an absence of stars, patient observers will soon learn to “see in the dark.” The trained eye often realizes the presence of unresolved stars as a type of background “noise” that we simply take for granted – but not E.E. Barnard. He was sharp enough to realize that there were at least 182 places in the sky where these particular areas of nothingness existed, and he correctly assumed they were due to obscuring dark nebulae.

Unlike bright emission and reflection nebulae, these dark clouds are interstellar masses of dust and gas that remain unilluminated. We would probably not even realize they were there except for the fact that they eradicate star fields we know to be present! It is possible that one day they may form stars of their own, but until that time we can enjoy these objects as splendid mysteries – and one of the most fascinating of all is the “Snake.”

Put in a wide field eyepiece and relax… It will come to you. Barnard 72 is only a few light-years in expanse and a relatively short 650 light-years away. If at first you don’t see it, don’t worry. Like many objects, spotting dark nebulae takes some practice.

Sunday, September 1 – On this day 1859, solar physicist Richard Carrington (who originally assigned sunspot rotation numbers) observed the first solar flare ever recorded. Naturally enough, an intense aurora followed the next day. 120 years later in 1979, Pioneer 11 made history as it flew by Saturn. And where is Saturn? Hanging out with the Sun!

As the nights begin to cool and darken earlier for those in the north, it’s time for us to fly with the “Swan” as the graceful arch of the Milky Way turns overhead. Tonight we’ll start by taking a look at a bright star cluster that’s equally great in either binoculars or telescope – M39.

Located about a fist’s width northeast of Deneb (Alpha Cygni), you will easily see a couple of dozen stars in a triangular pattern. M39 is particularly beautiful because it will seem almost three dimensional against its backdrop of fainter stars. Younger than the Coma Berenices cluster, and older than the Pleiades, the estimated age of M39 is at least 230 million years. This loose, bright galactic cluster is around 800 light-years away. Its members are all main sequence stars and the brightest of them are beginning to evolve into giants.

For more of a challenge, try dropping about a degree south-southwest for NGC 7082 – also known as H VII.52. While it is a less rich, less bright and far less studied open cluster, at magnitude 7.5 it is within range of binoculars, and is on many open cluster observing lists. With only a handful of bright stars to its credit, larger telescopes are needed to resolve out many of the fainter members. Be sure to mark your notes for both objects!

What’s Up this Week: August 20 – August 26, 2007

659px-hipparchuscrater.thumbnail.jpg

Monday, August 20 – Our first order of business for the evening will be to pick up a lunar club challenge that we haven’t noted yet – Hipparchus.

Located just slightly south of the central point of the Moon and very near the terminator, this is not truly a crater – but a hexagonal mountain-walled plain. Spanning about 150 kilometers in diameter with walls around 3320 meters high, it is bordered just inside its northern wall by crater Horrocks. This deep appearing “well” is 30 kilometers in diameter and its rugged interior drops down an additional 2980 meters below the floor. To the south and just outside the edge of the plain is crater Halley. Slightly larger at 36 kilometers in diameter, this crater named for Sir Edmund is a little shallower at 2510 meters deep – but it has a very smooth floor. To the east you’ll see a series of three small craters, the largest of which is Hind.

Now, relax! Tonight is the peak of the Kappa Cygnid meteor shower. Although the Moon will interfere early in the evening, wait until it has set and watch the area near Deneb. Discovered in the late 1800’s, the Kappa Cygnids are often overlooked because the grander, more prolific Perseids tend to get more attention. Although the stream has been verified, peak dates and fall rates vary from year to year. The average fall rate is usually no more than 5 per hour, but it is not uncommon to see 12 or more per hour with many fireballs. The stream’s duration is around 15 days. Clear skies!

Tuesday, August 21 – When we begin our observations tonight, we’ll start by having a look at another great study crater – Archimedes. You’ll find it located in the Imbrium plain north of the Apennine Mountains and west of Autolycus.

Under this lighting, the bright ring of this class V walled plain extends 83 kilometers in diameter. Even though it looks to be quite shallow, it still has impressive 2150 meter high walls. To its south is a feature not often recognized – the Montes Archimedes. Though this relatively short range is well eroded, it still shows across 140 kilometers of lunar topography. Look for a shallow rima that extends southeast across Palus Putredinus towards the Apennines. Mark your challenge notes!

Now let’s go have a look at a star buried in one of the spiral arms of our own galaxy – W Sagittarii…

Located less than a fingerwidth north of Gamma, the tip of the “teapot spout,” W is a Cepheid variable that’s worth keeping an eye on. While its brightness only varies by less than a magnitude, it does so in less than 8 days! Normally holding close to a magnitude 4, nearby field stars will help you correctly assess when minimum and maximum occur. While it’s difficult for a beginner to see such changes, watch it over a period of time. At maximum, it will be only slightly fainter than Gamma to the south. At minimum, it will be only slightly brighter than the stars to its northeast and southwest.

While you watch W go through its changes – think on this: not only is W a Cepheid variable (a standard for distance measurements), but it is also one that periodically changes its shape. Not enough? Then think twice… Because W is also a Cepheid binary. Still not enough? Then you might like to know that recent research points toward W having a third companion as well!

Wednesday, August 22 – Tonight as the skies darken, look for Antares less than a degree north of moon. For some areas of the world, this could be an occultation event so be sure to check IOTA… And while you’re watching, check out Jupiter about 5 degrees further to the north!

Tonight will be another opportunity to note a lunar challenge feature you may have missed earlier in the year – The Straight Wall. Begin in the lunar south where you can’t miss the outstanding rings of craters Ptolemaeus, Alphonsus, Arzachel, Purbach and Walter descending from north to south. To the west, identify the beginnings of Mare Nubium. Look between Purbach and Walter for the small, bright ring of Thebit and further west and for a long, thin, dark “line” cutting across the mare. It is properly known as Rupes Recta – but more commonly called “The Straight Wall.” It’s one of the steepest slopes on the lunar surface and only visible when the lighting is just right. If you can’t see it tonight, try again in 15 days when the sunlight changes the viewing angle!

Although it will be tough to locate with the unaided eye thanks to the Moon, let’s take a closer look at one of the most unsung stars in this region of sky – Eta Sagittarii. This M-class giant star will show a wonderful color contrast to binoculars or scopes, being slightly more orange than the surrounding field. Located 149 light-years away, this irregular variable star is a source of infrared radiation and is a little larger than our own Sun – yet 585 times brighter. At around 3 billion years old, Eta has either expended its helium core or just begun to use it to fuse carbon and oxygen – creating an unstable star capable of changing its luminosity by about 4%. But have a closer look… For Eta is also a binary system with an 8th magnitude companion!

Thursday, August 23 – Do you remember a few days ago in history when Lunar Orbiter 1 was launched? Well, on this day in history it made headlines as it sent back the very first photo of Earth seen from space!

Tonight let’s do a little lunar orbiting of our own as we head to the western shore of Mare Cognitum and look along the terminator for the Montes Riphaeus – “The Mountains In The Middle of Nowhere.” But are they really mountains? Let’s take a look.

At the widest, this unusual range spans about 38 kilometers and runs for a distance of around 177 kilometers. Less impressive than most lunar mountain ranges, some peaks reach up to 1250 meters high, making these summits about the same height as our volcano Mt. Kilauea. While we are considering volcanic activity, consider that these peaks are all that is left of Mare Cognitum’s walls after lava filled it in. At one time this may have been amongst the tallest of lunar features!

Now let’s have a look at the brightest star in the “Archer” – Epsilon Sagittarii. Known as Kaus Australis, or the “Southern Bow,” Epsilon holds a respectable magnitude 1.8 and is located around 120 light-years from Earth. This sparkling blue/white star is 250 times brighter than our own Sun. While a major challenge would be to spot Epsilon’s 14th magnitude companion star located about 32″ away, even the smallest of telescopes and most binoculars can try for the 7th magnitude visual companion widely spaced to the north-northwest.

Friday, August 24 – Today in 1966 from an Earth-orbiting platform, the Luna 11 mission was launched on a three day trip. After successfully achieving orbit, the mission went on to study many things, including lunar composition and nearby meteoroid streams.

Tonight let’s start our lunar observations with features that can be seen with both binoculars and telescopes. Just slightly north of center along the terminator, look for the bright point of Kepler. Watch as this feature develops a bright ray system in the coming days. To the north you will see equally bright Aristarchus – quite probably one of the youngest of the prominent features at around 50 million years old. It will also develop a ray system.

Now, grab your telescope and look west of Aristarchus for less prominent crater Herodotus. Just to the north you will see a fine white thread known as Vallis Schroteri – or Schroter’s Valley. Winding its way across the Aristarchus plain, this feature is about 160 kilometers long, from 3 to 8 kilometers wide, and about 1 kilometer deep – but what is it?

Schroter’s Valley a prime example of a collapsed lava tube – created when molten rock flowed over the surface. This may have been from a major meteor strike, such as the formation of Aristarchus crater, or early volcanic activity. What is left is a long, narrow cave on the surface which only shows well when the lighting is correct. Like many sinuous rilles covering the surface, collapse has occurred. If intact tubes can be found on the lunar surface they could conceivably provide shelter for future settlers!

Saturday, August 25 – Tonight we’ll start our observations in the lunar southwest as we look along the terminator to identify challenge crater Schickard. Look for an elongated grey oval that’s more than just another cool crater…

Named for Dutch mathematician and astronomer Wilhelm Schickard, this 227 kilometer diameter feature is a ringed plain and very old. At high power you’ll see a variegated floor and dark areas near the walls – yet the center is creased by a lighter coloration. It is believed Schickard was formed by an early impact before Mare Nectaris formed. Its floor may have contained vents which allowed it to fill with lava during the Imbrium period. As it cooled and matured another impact event occurred nearby which formed the Orientale Basin and splashed material its way. But Schickard wasn’t done evolving yet… Lava continued to flow and left even more dark evidence for us to observe. How do we know this is so? If you’re able to resolve Schickard’s tiny interior impacts, you’ll see that far fewer of them occur over newer material. Older formations bear the scars of time and impact while younger features are fresh and unmarked!

Tonight is also the peak of the Northern Iota Aquarid meteor shower. While the Moon will totally interfere, you still might catch a bright streak!

Sunday, August 26 – Tonight we’ll continue our journey of lunar evolution as we have a look at another walled plain just south of Grimaldi.

Named for English naturalist Charles Darwin, this equally old feature bears the scars of the impact the created the Orientale Basin. Look carefully at the slopes in the northeast, for this may very well be material that was thrown there and left to slide back down to the crater floor. Spanning around 130 kilometers in diameter, Darwin’s actual size is only diminished by the fact that we view it on a curve. Its northern and southern shores have almost completely eroded, yet evidence remains of its eastern margin broken by the Rima Darwin which stretches for 280 kilometers. Was there lava here as well? Yes. Evidence still exists in the form of a dome along Darwin’s battered western edge.

On this date in 1981, Voyager 2 made a fly-by of Saturn. Eight years later in 1989, Voyager 2 flew by Neptune on this date. Why don’t we make a “date” tonight to have a look at this distant blue world? You’ll find it on the ecliptic plane east of the Moon. While large binoculars can pick up Neptune’s very tiny blue orb, you’ll need a telescope tonight to spot it through the lunar glare.

What’s Up this Week: August 13 – August 19, 2007

m24-1.thumbnail.jpg

Monday, August 13 – Tonight, begin with just your eyes as you gaze about four fingerwidths above the top of the Sagittarius “teapot dome” for an open window on the stars and the magnificent M24…

This huge, hazy patch of stars is in reality an area of space known as “Baade’s Window” – an area free of obscuring gas and dust. Cataloged by Messier in 1764 as object 24, even small binoculars will reveal the incredible vista of the “Sagittarius Star Cloud.” Although it’s actually not a cluster, but rather a clean view of an area of our own galaxy’s spiral arm, that will not lessen the impact when viewed through a telescope. Spanning a degree and a half of sky, it is one of the few areas in which even a novice can easily perceive areas of dark dust.

For larger telescopes, look for the dim, open cluster NGC 6603 in the northeastern position of the Window. There are two very notable dark nebulae, B92 and B93, located in the northern segment as well. Near teardrop shaped B92 and its single central star, you should spot open cluster Collinder 469 and also Markarian 38 south of B93. You’ll find B86 near Gamma Sagittarii . At the southern edge of the star cloud, look for emission nebula IC 1283-1284, along with the reflection nebulae NGC 6589 and NGC 6590 and open cluster NGC 6595. Still up for more? Then head west to see if you can find 12th-magnitude planetary nebula NGC 6567.

Even if you don’t accept these challenges, you can still enjoy looking at a 560 light-year swatch of stars from one of the Milky Way’s loving arms! (If you’re out late, look for Mira… It was discovered by Fabricius on this date in 1596.)

Tuesday, August 14 – Your first challenge for tonight will be to see if you can spot the tender, slender, beginnings of the Moon as it graces the sky just as the Sun sets. It isn’t easy, but it doesn’t take any special equipment – just clear skies and a good view of the western horizon!

Tonight let’s venture about three fingerwidths northeast of Lambda Sagittarii to visit a well-known but little visited galactic cluster – M25.

First discovered by Chéseaux and then cataloged by Messier, it was observed and recorded by William Herschel, Johann Elert Bode, Admiral Smythe and T. W. Webb…but never added to the NGC catalog of John Herschel! Thanks to J.L.E. Dreyer, it did make the second Index Catalog as IC 4725.

Seen with even the slightest optical aid, this 5th magnitude cluster contains two G-type giants as well as a Delta Cephei-type variable with the designation of U, which changes about one magnitude in a period of less than a week. It’s very old for an open cluster, perhaps near 90 million years, and the light you see tonight left the cluster over 2000 years ago. While binoculars will see around a double handful of bright stars overlaying fainter members, telescopes will reveal more and more as aperture increases. At one time it was believed to have only about 30 members, but this was later revised to 86. But recent studies by Archinal and Hynes indicate it may have as many as 601 member stars!

Wednesday, August 15 – Tonight the Moon just after sunset will become a little more obvious, but it soon will be gone – leaving us to head back to Scorpius to have a look at three pristine open clusters. Begin your starhop at the colorful southern Zeta pair and head north less than one degree for NGC 6231.

Wonderfully bright in binoculars and well resolved to the telescope, this tight open cluster was first discovered by Hodierna before 1654. De Chéseaux cataloged it as object 9, Lacaille as II.13, Dunlop as 499, Melotte as 153, and Collinder as 315. No matter what catalog number you chose to put in your notes, you’ll find the 3.2 million year young cluster shining as the “Northern Jewelbox!” For high power fans, look for the brightest star in this group – it’s van den Bos 1833, a splendid binary.

About another degree north is loose open cluster Collinder 316, with its stars scattered widely across the sky. Caught on its eastern edge is another cluster known as Trumpler 24, a site where new variables might be found. This entire region is encased in a faint emission nebula called IC 4628 – making this low power journey through southern Scorpius a red hot summer treat!

Thursday, August 16 – If you did not get a chance to look at the Northern Jewelbox region in Scorpius, return again and sweep the area tonight. For those with larger telescopes, we’re going to hop about a degree and a half south of twin Nu for NGC 6242.

Discovered by Lacaille and cataloged as I.4, it is also known as Dunlop 520, Melotte 155 and Collinder 317. At roughly magnitude 6, this open cluster is within binocular range, but truly needs a telescope to appreciate its fainter stars. While NGC 6242 might seem like nothing more than a pretty little cluster with a bright double star, it contains an x-ray binary which is a “runaway” black hole. It is surmised that it formed near the galactic center and was vaulted into an eccentric orbit when the progenitor star exploded. Its kinetic energy is much like a neutron star or a millisecond pulsar, and it was the first black hole confirmed to be in motion.

Now head a little more than a degree east-southeast for NGC 6268. At a rough magnitude of 9, this small open cluster can be easily observed in smaller scopes and resolved in larger ones. The cluster itself is somewhat lopsided, with more of its members concentrated on the western half of its borders. While it, too, might not seem particularly interesting, this young cluster is highly evolved and contains some magnetic, chemically peculiar stars and Be class, or metal-weak, members.

Friday, August 17 – Today in 1966 Pioneer 7 was launched. It was the second in a series of satellites sent to monitor the solar wind, and study cosmic rays, interplanetary space, and magnetic fields.

Tonight it’s going to be very hard to ignore the Moon, so why don’t we start by studying it and picking up another lunar club challenge? Your mission is to locate crater Petavius along the southeast shore of Mare Fecunditatis and have a look at the Petavius Wall…

While you’re admiring Petavius and its branching rima, keep in mind this 80 kilometer long crack is a buckle in the lava flow across the crater floor. Now look along the terminator for the long, dark runnel which is often considered to be the Petavius Wall but is actually the fascinating crater Palitzsch. This 41 kilometer wide crater is confluent with a 110 kilometer long valley that is outstanding at this phase!

Although skies are bright, return to previous study star Lambda Scorpii and hop three fingerwidths northeast… We’re hunting the “Butterfly!”

Easily seen in binoculars and tremendous in the telescope, this brilliant magnitude 4 open cluster was first discovered by Hodierna before 1654 and independently discovered by de Chéseaux as his object 1, before being cataloged by Messier as M6. Containing around 80 stars, the light you see tonight left its home in space around the year 473 A.D. It is believed to be around 95 million years old and contains a single yellow supergiant – the variable BM Scorpii. While most of M6’s stars are hot, blue main sequence, the unique shape of this cluster gives it not only visual appeal, but wonderful color contrast as well!

Saturday, August 18 – Tonight as the Sun sets and the stars begin to appear, look for Spica no more than a fingerwidth north of the Moon. As the skies darken, we’ll venture to the surface near previous study Posidonius to have a look at the incredible Serpentine Ridge. Known more properly as Dorsa Smirnov, it meanders for 130 kilometers north to south across Mare Serenitatis. Can you spot tiny the crater Very in its center?

On this day in 1868, Norman Lockyer was very busy as he was the first to see helium absorption lines in the Sun’s spectrum. Tonight we’ll take a walk from helium rich Lambda Scorpii about three fingerwidths east-northeast to an even more prominent area of stars that was known to Ptolemy as far back as 130 AD.

Astronomers throughout the ages have spent time with this cluster: Hodierna as Ha II.2; Halley in 1678 as number 29, Derham in 1733 as number 16, De Chéseaux as number 10, Lacaille as II.14; Bode as 41; once for William Herschel and again for John as h 3710; Dreyer as NGC 6475… But we know it best as Messier Object 7.

Set against the backdrop of the Milky Way, even the smallest of binoculars will enjoy this bright open cluster while telescopes can resolve its 80 members. Roughly 800 light-years away, it contains many different spectral types in various stages of evolution, giving the cluster an apparent age of about 260 million years. Full of binaries and close doubles, an extreme test of tonight’s lighting conditions would be to see if you can spot the 11th magnitude globular cluster NGC 6543 to the northwest!

Sunday, August 19 – Born today in 1646, let’s have a look at John Flamsteed. He was an English astronomer with a passion for what he did. Despite a rather difficult childhood and no formal education, he went on to become the First Observer at the Royal Observatory and his catalog of 3000 stars was perhaps the most accurate yet published. Flamsteed star numbers are still in use. Also born on this day was Orville Wright, in 1871, and in 1891, Milton Humason, a colleague of Edwin Hubble at Mts. Wilson and Palomar. The latter was instrumental in measuring the faint spectra of galaxies, which in turn provided evidence for the expansion of the universe.

So… Are you ready to do a lunar walk for a challenge crater we haven’t listed yet? Then look to the northwest shore of Mare Serenitatis for the pair of Aristoteles and Eudoxus. What’s that? You see more? Then mark your notes for Eudoxus and let’s have a look at many other studies you may not have noted yet!

1) Burg, 2) Barrow, 3) Grove, 4) Daniel, 5) Posidonius, 6) Apollo 17 Landing Area, 7) Plinius, 8) Bessel, 9) Menelaus, 10) Manilius, 11) Apennine Mountains, 12) Conon, 13) Palus Putredinus, 14) Mons Hadley, 15) Archimedes, 16) Autolycus, 17) Aristillus, 18) Mons Piton, 19) Cassini, 20) Caucasus Mountains, 21) Calippus, 22) Alexander, 23) Eudoxus, 24) Mare Serenitatis, 25) Linné, 26) Haemus Mountains.

What’s Up this Week: August 6 – August 12, 2007

2007-0806m54.thumbnail.jpg

Monday, August 6 – Today in 2001 the Galileo spacecraft made its flyby of the moon Io sending back incredible images of the surface. For southern hemisphere observers, be on watch as the Iota Aquarid meteor shower peaks on this Universal date.

Studies continue as we look deeper into structure. As a rule, globular clusters normally contain a large number of variable stars, and most are usually the RR Lyrae type such as in earlier study M54. At one time they were known as “cluster variables,” with their number differing from one globular to another. Many globulars also contain vast numbers of white dwarfs. Some have neutron stars which are detected as pulsars, but out of all 151, only four have planetary nebulae in them… Read on!

Tonight our studies will take us toward the emerging constellation of Pegasus and the magnitude 6.5, class IV M15. Easily located with even small binoculars about four degrees northwest of Enif, this magnificent globular cluster is a true delight in a telescope. Amongst the globulars, M15 ranks third in variable star population with 112 identified. As one of the densest of clusters, it is surprising that it is considered to be only class III. Its deeply concentrated core is easily apparent, and has begun the process of core collapse. The central core itself is very small compared to the cluster’s true size and almost half M15’s mass is contained within it. Although it has been studied by the Hubble, we still do not know if this density is caused by the cluster stars’ mutual gravity, or if it might disguise a supermassive object similar to those in galactic nuclei.

M15 was the first globular cluster in which a planetary nebula, known as Pease 1, could be identified. Larger aperture scopes can easily see it at high power. Surprisingly, M15 also is home to 9 known pulsars, which are neutron stars left behind from previous supernovae during the cluster’s evolution, and one of these is a double neutron star. While total resolution is impossible, a handful of bright stars can be picked out against that magnificent core region and wonderful chains and streams of members await your investigation tonight!

Tuesday, August 7 – On this date in 1959, Explorer 6 became the first satellite to transmit photographs of the Earth from its orbit.

Tonight, let’s return again to look at two giants roughly equal in size, but not equal in class. To judge them fairly, you must use the same eyepiece. Start first by re-locating previous study M4. This is a class IX globular cluster. Notice the powder-like qualities. It might be heavily populated, but it is not dense. Now return to previous study M13. This is a class V globular cluster. Most telescopes will make out at least some resolution and a distinct core region. It is the level of condensation that determines the class. It is no different from judging magnitudes and simply takes practice.

Try your hand at M55 along the bottom of the Sagittarius “teapot” – it’s a class XI. Although it is a full magnitude brighter than class I M75, which we looked at earlier in the week, can you tell the difference in concentration? For those with GoTo systems, take a quick hop through Ophiuchus and look at the difference between NGC 6356 (class II) and NGC 6426 (class IX). If you want to try one that they can’t even classify? Look no further than M71 in Sagitta. It’s all a wonderful game and the most fun comes from learning!

In the meantime, don’t forget all those other wonderful globular clusters such as 47 Tucanae, Omega Centauri, M56, M92, M28 and a host of others!

Wednesday, August 8 – Today in 2001, the Genesis Solar Particle Sample Return mission was launched. In September of 2004, it crash landed in the Utah desert with its precious payload. Although some of the specimens were contaminated, some did survive the mishap. So what is “star stuff?” Mostly highly charged particles generated from a star’s upper atmosphere and flowing out in a state of matter known as plasma…

Tonight let’s study one of the grandest of all solar winds as we seek out an area about three fingerwidths above the Sagittarius “teapot’s spout” as we have a look at the magnificent M8, the “Lagoon Nebula.”

Visible to the unaided eye as a hazy spot in the Milky Way, fantastic in binoculars, and an area truly worth study in any size scope, this 5200 light-year area of emission, reflection and dark nebulae has a rich history. Its involved star cluster – NGC 6530 – was first discovered by Flamsteed around 1680, and the nebula by Le Gentil in 1747. Cataloged by Lacaille as III.14 about 12 years before Messier listed it as number 8, its brightest region was recorded by John Herschel and the dark nebulae were discovered by Barnard.

Tremendous areas of starbirth are taking place in this region; while young, hot stars excite the gases in a are known as the “Hourglass,” around Herschel star 36 and 9 Sagittarius. Look closely around cluster NGC 6530 for Barnard dark nebulae B89 and B296 at the nebula’s southern edge. No matter how long you chose to swim in the “Lagoon” you will sure find more and more things to delight both the mind and the eye!

Thursday, August 9 – Today in 1976, the Luna 24 mission was launched on a return mission of its own – not to retrieve solar winds samples, but lunar soil! Remember this mission as we take a look at its landing site in the weeks ahead.

Tonight we’ll return to the nebula hunt as we head about a fingerwidth north and just slightly west of M8 for the “Trifid”…

It was discovered by Messier on June 5, 1764, and much to his credit, he described it as a cluster of stars encased in nebulosity. This is truly a wonderful observation since the Trifid could not have been easy given his equipment. Some 20 years later William Herschel (although he usually avoided repeating Messier objects) found M20 of enough interest to assign separate designations to parts of this nebula – IV.41, V.10, V.11, V.12. The word “Trifid” was used to describe its beauty by John Herschel.

While M20 is a very tough call in binoculars, it is not impossible with good conditions to see the light of an area that left its home nearly a millennium ago. Even smaller scopes will pick up this round, hazy patch of both emission and reflection, but you will need aversion to see the dark nebula which divides it. This was cataloged by Barnard as B85. Larger telescopes will find the Trifid as one of the very few objects that actually appears much in the eyepiece as it does in photographs – with each lobe containing beautiful details, rifts and folds best seen at lower powers. Look for its cruciform star cluster and its fueling multiple system while you enjoy this triple treat tonight!

Friday, August 10 – Today in 1966 Lunar Orbiter 1 was successfully launched on its mission to survey the Moon. In the days ahead, we’ll take a look at what this mission sent back!

Tonight we’ll look at another star forming region as we head about a palm’s width north of the lid star (Lambda) in the Sagittarius teapot as we seek out “Omega”…

Easily viewed in binoculars of any size and outstanding in every telescope, the 5000 light-year distant Omega Nebula was first discovered by Philippe Loys de Chéseaux in 1745-46 and later (1764) cataloged by Messier as object 17. This beautiful emission nebula is the product of hot gases excited by the radiation of newly born stars. As part of a vast region of interstellar matter, many of its embedded stars don’t show in photographs, but reveal themselves beautifully to the eye of the telescope. As you look at its unique shape, you realize that many of these areas are obscured by dark dust, and this same dust is often illuminated by the stars themselves.

Often known as the “Swan,” M17 will appear as a huge, glowing check mark or ghostly “2” in the sky – but power up if you use a larger telescope and look for a long, bright streak across its northern edge, with extensions to both the east and north. While the illuminating stars are truly hidden, you will see many glittering points in the structure itself and at least 35 of them are true members of this region spanning about 40 light-years that could contain up to 800 solar masses. It is awesome…

Saturday, August 11 – On this date in 1877, Asaph Hall of the U.S. Naval Observatory was very busy. This night would be the first time he would see Mars’ outer satellite Deimos! Six nights later, he observed Phobos, giving Mars its grand total of two moons.

Tonight after midnight is the peak of the Perseid meteor shower, and this year there’s no Moon! Now let’s sit back and talk about the Perseids while we watch…

The Perseids are undoubtedly the most famous of all meteor showers and never fail to provide an impressive display. Their activity appears in Chinese history as far back as 36 AD. In 1839, Eduard Heis was the first observer to give an hourly count, and discovered their maximum rate was around 160 per hour at that time. He, and other observers, continued their studies in subsequent years to find that this number varied.

Giovanni Schiaparelli was the first to relate the orbit of the Perseids to periodic comet Swift-Tuttle (1862 III). The fall rates have both risen and fallen over the years as the Perseid stream was studied more deeply, and many complex variations were discovered. There are actually four individual streams derived from the comet’s 120 year orbital period which peak on slightly different nights, but tonight through tomorrow morning at dawn is our accepted peak.

Meteors from this shower enter Earth’s atmosphere at a speed of 60 km/sec (134,000 miles per hour), from the general direction of the border between the constellations Perseus and Cassiopeia. While they can be seen anywhere in the sky, if you extend their paths backward, all the true members of the stream will point back to this region of the sky. For best success, position yourself so you are generally facing northeast and get comfortable. The radiant will continue to climb higher in the sky as dawn approaches and the Moon officially becomes new. If you are clouded out, don’t worry. The Perseids will be around for a few more days yet, so continue to keep watch!

Sunday, August 12 – Did you mark your calendar to be up before dawn to view the Perseid meteor shower? Good! Because today is the official date of the New Moon, and hidden from our view the Moon is occulting Mercury as it heads between the Earth and the Sun.

Tonight while darkest skies are on our side, we’ll fly with the “Eagle” as we hop another fingerwidth north of M17 and head for one of the most famous areas of starbirth – IC 4703.

While the open cluster NGC 6611 was first discovered by Chéseaux in 1745-6, it was Charles Messier who cataloged the object as M16 and he was the first to note the nebula IC 4703, more commonly known as the “Eagle.” At 7000 light-years distant, this roughly 7th magnitude cluster and nebula can be spotted in binoculars, but at best it is a hint. As part of the same giant cloud of gas and dust as neighboring M17, the Eagle is also a place of starbirth illuminated by these hot, high energy stellar youngsters which are only about five and a half million years old.

In small to mid-sized telescopes, the cluster of around 20 brighter stars comes alive with a faint nebulosity that tends to be brighter in three areas. For larger telescopes, low power is essential. With good conditions, it is very possible to see areas of dark obscuration and the wonderful “notch” where the Pillars of Creation lie. Immortalized by the Hubble Space telescope, you won’t see them as grand or colorful as it did, but what a thrill to know they are there!

What’s Up this Week: July 30 – August 5, 2007

m22.thumbnail.jpg

Monday, July 30 – Today’s history celebrates the 2001 flyby of the Moon by the Wilkinson Microwave Anisotropy Probe (WMAP) on its way to Lagrange Point 2 to study the cosmic microwave background radiation. Tonight we’ll also fly right by the Full Buck Moon as we continue our studies to have a look at Mu 1 and Mu 2 Scorpii about two fingerwidths north of Zeta.

Very close to the same magnitude and spectral type, the twin Mu stars are easy to separate visually and most definitely worth a look in telescopes or binoculars. They are considered an actual physical pair because they share the exact same distance and proper motion, but they are separated by less than one light-year.

Hanging out in space some 520 light-years away, western Mu 1 is a spectroscopic binary – the very first discovered to have double lines. This Beta Lyrae-type star has an orbiting companion that eclipses it around every day and a half, yet causes no significant visual drop in magnitude – even though the orbiting companion is only 10 million kilometers away from it! While that sounds like plenty of distance, when the two pass, their surfaces would nearly touch each other!

Now, relax and enjoy the peak of the Capricornid meteor shower. Although it is hard for the casual observer to distinguish these meteors from the Delta Aquarids, no one minds. Again, face southeast and enjoy! The fall rate for this shower is around 10 to 35 per hour, but unlike the Aquarids, this stream produces those great “fireballs” known as bolides. Enjoy…

Tuesday, July 31 – Tonight with the slightly later rise of the Moon, we’ll take the opportunity to look at two multiple star systems – Nu and Xi Scorpii.

Starting with Nu about a fingerwidth east and slightly north of bright Beta, we find a handsome duo of stars in a field of nebulosity that will challenge telescopic observers much the way that Epsilon Lyrae does. With any small telescope, the observer will easily see the widely separated A and C stars. Add just a little power and take your time… The C star has a D companion to the southwest! For larger telescopes, take a very close look at the primary star. Can you separate the B companion to the south?

Now let’s hop to Xi about four fingerwidths north of Beta.

Discovered by Sir William Herschel in 1782, this 80 light-year distant system poses a nice challenge for mid-sized scopes. The yellow-hued A and B pair share a very eccentric orbit about the same distance as Uranus is from our Sun. During the 2007 observing year they should be fairly well spaced, and the slightly fainter secondary should appear to the north. Look a good distance away for the 7th magnitude orange C component and south for yet another closely-matched double of 7th and 8th magnitude – the D and E stars.

For the larger scope, this multiple star system does display a little bit of color. Most will see the A and B components as yellow/white, the C star as slightly orange, and the D/E pair as slightly tinged with blue. Be sure to mark your observations for this is one of the finest!

Wednesday, August 1 – Today is the birthdate of Maria Mitchell. Born in 1818, Mitchell became the first woman to be elected as an astronomer to the American Academy of Arts and Sciences. She later rocketed to worldwide fame when she discovered a bright comet in 1847.

Tonight, let’s continue our exploration of globular clusters. These gravitationally bound concentrations of stars contain anywhere from ten thousand to one million members and attain sizes of up to 200 light-years in diameter. At one time, these fantastic members of our galactic halo were believed to be round nebulae. Perhaps the very first to be discovered was M22 in by Abraham Ihle in 1665. This particular globular is easily seen in even small binoculars and can be located just slightly more than two degrees northeast of the “teapot’s lid,” Lambda Sagittarii.

Ranking third amongst the 151 known globular clusters in total light, M22 is probably the nearest of these incredible systems to our Earth with an approximate distance of 9600 light-years, and it is also one of the nearest globulars to the galactic plane. Since it resides less than a degree from the ecliptic, it often shares the same eyepiece field with a planet. At magnitude 6, the class VII M22 will begin to show individual stars to even modest instruments and will burst into stunning resolution for larger aperture. About a degree west-northwest, mid-sized telescopes and larger binoculars will capture smaller 8th magnitude NGC 6642. At class V, this particular globular will show more concentration toward the core region than M22. Enjoy them both!

Thursday, August 2 – As we know, most globular clusters congregate around the galactic center in the Ophiuchus/Sagittarius region. Tonight let’s explore what creates a globular cluster’s form… We’ll start with the “head of the class,” M75.

Orbiting the galactic center for billions of years, globular clusters endured a wide variety of disturbances. Their component stars escape when accelerated by mutual encounters and the tidal force of our own Milky Way pulls them apart when they are near periapsis, that is, closest to the galactic center. Even close encounters with other masses, such as other clusters and nebulae, can affect them! At the same time, their stellar members are also evolving and this loss of gas can contribute to mass loss and deflation of these magnificent clusters. Although this happens far less quickly than in open clusters, our observable globular friends may only be the survivors of a once larger population, whose stars have been spread throughout the halo. This destruction process is never-ending, and it is believed that globular clusters will cease to exist in about 10 billion years.

Although it will be later evening when M75 appears on the Sagittarius/Capricornus border, you will find the journey of about 8 degrees southwest of Beta Capricorni worth the wait. At magnitude 8, it can be glimpsed as a small round patch in binoculars, but a telescope is needed to see its true glory. Residing around 67,500 light-years from our solar system, M75 is one of the more remote of Messier’s globular clusters. Since it is so far from the galactic center – possibly 100,000 light-years distant – M75 has survived almost intact for billions of years to remain one of the few Class I globular clusters. Although resolution is possible in very large scopes, note that this globular cluster is one of the most concentrated in the sky, with only the outlying stars resolvable to most instruments.

Friday, August 3 – Tonight let’s return to earlier evening skies as we continue our studies with one of the globulars nearest to the galactic center – M14. Located about sixteen degrees (less than a handspan) south of Alpha Ophiuchi, this ninth magnitude, class VIII cluster can be spotted with larger binoculars, but will only be fully appreciated with the telescope.

When studied spectroscopically, globular clusters are found to be much lower in heavy element abundance than stars such as own Sun. These earlier generation stars (Population II) began their formation during the birth of our galaxy, making globular clusters the oldest of formations that we can study. In comparison, the disk stars have evolved many times, going through cycles of starbirth and supernovae, which in turn enrich the heavy element concentration in star forming clouds and may cause their collapse. Of course, as you may have guessed, M14 breaks the rules. It contains an unusually high number of variable stars – in excess of 70 – with many of them known to be the W Virginis type. In 1938, a nova appeared in M14, but it was undiscovered until 1964 when Amelia Wehlau of the University of Ontario was surveying the photographic plates taken by Helen Sawyer Hogg. The nova was revealed on eight of these plates taken on consecutive nights, and showed itself as a 16th magnitude star – and was believed to be at one time almost 5 times brighter than the cluster members. Unlike 80 years earlier with T Scorpii in M80, actual photographic evidence of the event existed. In 1991, the eyes of the Hubble were turned its way, but neither the suspect star nor traces of a nebulous remnant were discovered. Then six years later, a carbon star was discovered in M14.

To a small telescope, M14 will offer little to no resolution and will appear almost like an elliptical galaxy, lacking in any central condensation. Larger scopes will show hints of resolution, with a gradual fading towards the cluster’s slightly oblate edges. A true beauty!

Saturday, August 4 – As we explore globular clusters, we simply assume them all to be part of the Milky Way galaxy, but that might not always be the case. We know they are basically concentrated around the galactic center, but there may be four of them that actually belong to another galaxy. Tonight we’ll look at one such cluster being drawn into the Milky Way’s halo. Set your sights just about one and a half degrees west-southwest of Zeta Sagittarii for M54.

At around magnitude 7.6, M54 is definitely bright enough to be spotted in binoculars, but its rich class III concentration is more notable in a telescope. Despite its brightness and deeply concentrated core, M54 isn’t exactly easy to resolve. At one time we thought it to be around 65,000 light-years distant, and rich in variables – with 82 known RR Lyrae types. We knew it was receding, but when the Sagittarius Dwarf Elliptical Galaxy was discovered in 1994, it was noted that M54 was receding at almost precisely the same speed! When more accurate distances were measured, we found M54 to coincide with the SagDEG distance of 80-90,000 light-years, and M54’s distance is now calculated to be 87,400 light-years. No wonder it’s hard to resolve – it’s outside our galaxy!

Sunday, August 5 – Today we celebrate the 76th birthday of Neil Armstrong, the first human to walk on the moon. Congratulations! Also on this date in 1864, Giovanni Donati made the very first spectroscopic observations of a comet (Tempel, 1864 II). His observations of three absorption lines led to what we now know as the Swan bands, from a form of the carbon radical C2.

Our study continues tonight as we move away from the galactic center in search of a remote globular cluster that can be viewed by most telescopes. As we have learned, radial velocity measurements show us the majority of globulars are involved in highly eccentric elliptical orbits, which take them far outside the plane of the Milky Way. These orbits form a sort of spherical “halo” which tends to be more concentrated toward our galactic center. Reaching out several thousands of light-years, this halo is actually larger than the disk of our own galaxy. Since globular clusters aren’t involved in our galaxy’s disk rotation, they may possess very high relative velocities. Tonight let’s head toward the constellation of Aquila and look at one such globular – NGC 7006.

Located about half a fist’s width east of Gamma Aquilae, NGC 7006 is speeding towards us at a velocity of around 345 kilometers per second. At 150,000 light-years from the center of our galaxy, this particular globular could very well be an extra-galactic object. At magnitude 11.5, it’s not for the faint of heart, but can be spotted in scopes as small as 150mm, and requires larger aperture to look like anything more than a suggestion.

Given its tremendous distance from the galactic center, it’s not hard to realize this is a class I – although it is quite faint. Even the largest of amateur scopes will find it unresolvable!

What’s Up this Week: July 23 – July 29, 2007

2007-0723prospector.thumbnail.jpg

Monday, July 23 – Tonight let’s continue our look at the lunar poles by returning to previous study crater Plato. North of Plato you will see a long horizontal area with a gray floor – Mare Frigoris. North of it you will note a double crater. This elongated diamond-shape is Goldschmidt and the crater which cuts across its western border is Anaxagoras. The lunar north pole isn’t far from Goldschmidt, and since Anaxagoras is just about one degree outside of the Moon’s theoretical “arctic circle,â€? the lunar sun will never go high enough to clear the southernmost rim. As proposed with Saturday’s study, this permanent darkness must mean there is ice! For that very reason, NASA’s Lunar Prospector probe was sent there to explore. Did it find what it was looking for? Answer – Yes!

The probe discovered vast quantities of cometary ice which have hidden inside the crater’s depths untouched for millions of years. If this sounds rather boring to you, then realize that this type of resource will greatly improve the prospects of establishing a manned base on the lunar surface!


On March 5, 1998, NASA announced that Lunar Prospector’s neutron spectrometer data showed that water ice had been discovered at both lunar poles. The first results showed the ice was mixed in with lunar regolith (soil, rocks and dust), but long term data confirmed near pure pockets hidden beneath about 40 cm of surface material – with the results being strongest in the northern polar region. It is estimated there may be as much as 6 trillion kg (6.6 billion tons) of this valuable resource! If this still doesn’t get your motor running, then realize that without it, we could never establish a manned lunar base because of the tremendous expense involved in transporting our most basic human need – water.

The presence of lunar water could also mean a source of oxygen, another vital material we need to survive! And for returning home or voyaging further, these same deposits could provide hydrogen which could be used as rocket fuel. So as you view Anaxagoras tonight, realize that you may be viewing one of mankind’s future “homesâ€? on a distant world!

Tuesday, July 24 – Tonight let’s take an entirely different view of the Moon as we do a little “mountain climbing!” The most outstanding feature on the Moon will be the emerging Copernicus, but since we’ve delved into the deepest areas of the lunar surface, why not climb to some of its peaks?

Using Copernicus as our guide, to the north and northwest of this ancient crater lie the Carpathian Mountains, ringing the southern edge of Mare Imbrium. As you can see, they begin well east of the terminator, but look into the shadow! Extending some 40 kilometers beyond the line of daylight, you will continue to see bright peaks – some of which reach 2072 meters high! When the area is fully revealed tomorrow, you will see the Carpathian Mountains eventually disappear into the lava flow that once formed them. Continuing onward to Plato, which sits on the northern shore of Imbrium, we will look for the singular peak of Pico. It is between Plato and Mons Pico that you will find the scattered peaks of the Teneriffe Mountains. It is possible that these are the remnants of much taller summits of a once stronger range, but only around 1890 meters still survives above the surface.

Time to power up! To the west of the Teneriffes, and very near the terminator, you will see a narrow series of hills cutting through the region west-southwest of Plato. This is known as the Straight Range – Montes Recti – and some of its peaks reach up to 2072 meters. Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosges Mountains in central Europe and on the average very comparable to the Appalachian Mountains in the eastern United States. Not bad!

Wednesday, July 25 – Today in 1971, Apollo 15 was launched on its way towards the Moon, and we’ll continue our lunar mountain climbing expedition and look at the “big picture” on the lunar surface. Tonight all of Mare Imbrium is bathed in sunlight and we can truly see its shape. Appearing as a featureless ellipse bordered by mountain ranges, let’s identify them again. Starting at Plato and moving east to south to west you will find the Alps, the Caucasus, and the Apennines, where Apollo 15 landed at the western end of Palus Putredinus. Next come the Carpathians Mountains just north of Copernicus. Look at the form closely… Doesn’t this appear that perhaps once upon a time an enormous impact created the entire area? The Imbrium impact… Compare it to the younger Sinus Iridium. Ringed by the Juras Mountains, it may have also been formed by a much later and very similar impact.

And you thought they were just mountains…

Tonight let’s have a look with our eyes first at Delta Ophiuchi. Known as Yed Prior (“The Hand”), look for its optical double Epsilon to the southeast: Yed Posterior. Now have a look in binoculars or a telescope at absolute minimum power for another undiscovered gem…

Delta Ophiuchi is 170 light-years from us, while Epsilon is 108 – but look at the magnificent field they share. Stars of every spectral type are in an area of sky which could easily be covered by a small coin held at arm’s length. Enjoy this fantastic field – from the hot, blue youngsters to the old red giants!

Thursday, July 26 – Tonight let’s head north of Sinus Iridum, across Mare Frigoris and northeast of the punctuation of Harpalus for a grand old crater – J. Herschel. Although it looks small because it is seen on the curve, this wonderful old walled plain named for John Herschel contains some very tiny details. Its southeastern rim forms the edge of Mare Frigoris and the small crater (24 km) Horrebow dots its southwest edge. The crater walls are so eroded with time that not much remains of the original structure. Look for many very small impact craters which dot J. Herschel’s uneven basin and exterior edges. Power up! If you can spot the small central crater C, you are resolving a feature only 12 kilometers wide, from some 385,000 kilometers away!

While we’re out, let’s have a look at another astounding system called 36 Ophiuchi, located about a thumb’s width southeast of Theta. Situated in space less than 20 light-years from Earth, even small telescopes can split this pair of 5th magnitude K type giants very similar to our own Sun, and larger telescopes can also pick up the C component as well. 36 Ophiuchi B is also known as system 544…because it has what could very likely be a planet in a habitable zone!

Be sure to mark your lists with both of your observations tonight, because J. Herschel is a lunar club challenge and 36 Ophiuchi is on many doubles challenge lists.

Friday, July 27 – Tonight let’s start our lunar observations with a feature that’s a bit less obvious – crater contrasts. The Oceanus Procellarum is the vast, grey “sea” that encompasses most of the northwestern portion of the Moon. On the terminator to its southwest edge, (and almost due west geographically) you will see two craters of near identical size and depth, but not identical lighting.

The southernmost is 46 kilometer wide Billy – one of the darkest-floored areas on the Moon. Named for French mathematician and astronomer Jacques de Billy, it will appear to have a bright ring (the crater rim) around it, but the interior is as featureless as a mare! To the north is 45 kilometer wide Hansteen – note how much brighter and more detailed it is. This far more featured area was named for Dutch geophysicist Christopher Hansteen, and if you power up you’ll see the 30 kilometer wide base of Mons Hansteen between them, as well as a 25 kilometer-long rima to the west. It’s easy to see that Billy was once filled with smooth lava flow, while counterpart Hansteen evolved much differently! Be sure to mark your notes on this lunar challenge.

Now that we’ve looked at contrasting craters, let’s have a look at a beautifully contrasting pair of stars – Zeta 1 and 2 Scorpii. You’ll find them a little less than a handspan south-southeast of Antares and at the western corner of the J of the constellation’s shape.

Although the two Zetas aren’t a true physical pair, they are nonetheless interesting. The easternmost, orange sub-giant Zeta 2 appears far brighter for a reason… It’s much closer at only 155 light-years away. But, focus your attention on western Zeta 1. It’s a blue supergiant that’s around 5700 light-years away and shines with the light of 100,000 suns and exceeds even Rigel in sheer power! The colorful pair is easily visible as two separate stars to the unaided eye, but a real delight in binoculars or a low power telescope field. Check them out tonight!

Saturday, July 28 – Tonight as the skies darken, look for Jupiter to appear first about 5 degrees north of the Moon – with Antares around a half degree north. Antares could be a visible occultation, so be sure to check IOTA information!

While we’re looking Selene’s way, see if you can spot crater Grimaldi on the western edge without any aid… Then grab binoculars or telescope and let’s have a look!

Named for Italian physicist and astronomer Francesco Grimaldi, this great old crater is one of the few which actually resembles a mare. It spans 222 kilometers from east to west and 430 kilometers from north to south. Along its southeastern flank, look for a 230 kilometer-long rima which extends its way to the double ring of Sirsalis. Grimaldi is a Class V mountain-walled plain whose floor is one of the darkest areas of the Moon, reflecting only 6% of the light. Look carefully at its walls… You’ll find the northern area very eroded, while both foothills and mountains edge it to the east and west. Be sure to mark your lunar challenge list as having spotted the great Grimaldi!

Now grab a comfortable seat because the Delta Aquarid meteor shower reaches its peak tonight. It is not considered a prolific shower, and the average fall rate is about 25 per hour – but who wouldn’t want to take a chance on observing a meteor about every 4 to 5 minutes? These travelers are considered to be quite slow, with speeds around 24 kilometers per second and are known to leave yellow trails. One of the most endearing qualities of this annual shower is its broad stream of around 20 days before and 20 days after peak. This will allow it to continue for at least another week and overlap the beginning stages of the famous Perseids.

The Delta Aquarid stream is a complicated one, and a mystery not quite yet solved. It is possible that gravity split the stream from a single comet into two parts, and each may very well be a separate stream. One thing we know for certain is they will seem to emanate from the area around Capricornus and Aquarius, so you will have best luck facing southeast and getting away from city lights. Although the Moon will interfere, just relax and enjoy a warm summer night. It’s time to catch a “falling star!”

Sunday, July 29 – Tonight our Moon stands poised on the edge of becoming Full in a matter of hours. If we could see it from space, we would know that it is readying itself to pass either just north or just south of the cone of shadow projected by Earth. Take the time to study the limbs of the Moon for the effects of libration. Follow Tycho’s bright ray towards the southwest and see if you can spot the Doerfel Mountains as tiny bumps on the limb edge. While they might not appear to be much, they are three times higher than Mount Everest!

Now head about a palm’s width east of Friday night’s study star Zeta Scorpii for lovely Theta. Named Sargas, this 1.8 magnitude star resides around 650 light-years distant in a very impressive field of stars for binoculars or a small telescope. While all of these are only optical companions, the field itself is worth a look – and worth remembering for the future.

About three fingerwidths north is true double Lambda Scorpii, also known as Shaula (The Sting). As the brightest known star in its class, 1.6 magnitude Lambda is a spectroscopic binary which is also a variable of the Beta Canis Majoris type, changing ever so slightly in little more than 5 hours. Although we can’t see the companion star, nearby is yet another that will make learning this starhop “marker” worth your time.