XRISM, the X-ray Imaging and Spectroscopy Mission, is a joint NASA/JAXA mission led by JAXA. The X-ray space telescope began its mission in low-Earth orbit on September 6th, 2023. Science operations won’t begin until later this year, but the satellite’s science team has released some of the telescope’s first images.
Continue reading “Japan’s New X-Ray Observatory Sees First Light”Spider Pulsars are Tearing Apart Stars in the Omega Cluster
Pulsars are extreme objects. They’re what’s left over when a massive star collapses on itself and explodes as a supernova. This creates a neutron star. Neutron stars spin, and some of them emit radiation. When they emit radiation from their poles that we can see, we call them pulsars.
Continue reading “Spider Pulsars are Tearing Apart Stars in the Omega Cluster”Confirmed. Ultra-Luminous X-Ray Sources are Really That Bright
At the extreme end of astrophysics, there are all sorts of phenomena that seem to be counter-intuitive. For example, how can an object not possibly get any brighter? For a long time, this limit, known as the Eddington limit, was thought to be an upper bound on how bright an object could be, and it was directly correlated with the mass of that object. But observations showed that some objects were even brighter than this theoretical limit, and now data collected by NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) confirms that these objects are, in fact, breaking the Eddington limit. But why?
Continue reading “Confirmed. Ultra-Luminous X-Ray Sources are Really That Bright”The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields
Located about 6,500 light-years away in the constellation Taurus resides one of the best-studied cosmological objects known as the Crab Nebula (aka. Messier 1). Originally discovered in the 18th century by English astronomer John Bevis in 1731, the Crab Nebula became the first object included by astronomer Charles Messier in his catalog of Deep Sky Objects. Because of its extreme nature, scientists have been studying the Crab Nebula for decades to learn more about its magnetic field, its high-energy emissions (x-rays), and how these accelerate particles to close to the speed of light.
Astronomers have been particularly interested in studying the polarization of the x-rays produced by the pulsar and what that can tell us about the nebula’s magnetic field. When studies were first conducted in the 1970s, astronomers had to rely on a sounding rocket to get above Earth’s atmosphere and measure the polarization using special sensors. Recently, an international team of astronomers used data obtained by NASA’s Imaging X-ray Polarimetry Explorer (IXPE) to create a detailed map of the Crab Nebula’s magnetic field that has resolved many long-standing mysteries about the object.
Continue reading “The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields”Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang
Black holes swallow everything—including light—which explains why we can’t see them. But we can observe their immediate surroundings and learn about them. And when they’re on a feeding binge, their surroundings become even more luminous and observable.
This increased luminosity allowed astronomers to find a black hole that was feasting on material only 800 million years after the Universe began.
Continue reading “Hungry Black Hole was Already Feasting 800 Million Years After the Big Bang”A Star Came too Close to a Black Hole. It Didn’t End Well
Black holes are confounding objects that stretch physics to its limits. The most massive ones lurk in the centers of large galaxies like ours. They dominate the galactic center, and when a star gets too close, the black hole’s powerful gravitational force tears the star apart as they feed on it. Not even the most massive stars can resist.
But supermassive black holes (SMBHs) didn’t start out that massive. They attained their gargantuan mass by accreting material over vast spans of time and by merging with other black holes.
There are large voids in our understanding of how SMBHs grow and evolve, and one way astrophysicists fill those voids is by watching black holes as they consume stars.
Continue reading “A Star Came too Close to a Black Hole. It Didn’t End Well”How Dangerous are Nearby Supernovae to Life on Earth?
Life and supernovae don’t mix.
From a distance, supernovae explosions are fascinating. A star more massive than our Sun runs out of hydrogen and becomes unstable. Eventually, it explodes and releases so much energy it can outshine its host galaxy for months.
But space is vast and largely empty, and supernovae are relatively rare. And most planets don’t support life, so most supernovae probably explode without affecting living things.
But a new study shows how one type of supernova has a more extended reach than thought. And it could have consequences for planets like ours.
Continue reading “How Dangerous are Nearby Supernovae to Life on Earth?”Most Black Holes Spin Rapidly. This one… Doesn’t
Black holes. They used to be theoretical, up until the first one was found and confirmed back in the late 20th Century. Now, astronomers find them all over the place. We even have direct radio images of two black holes: one in M87 and Sagittarius A* in the center of our galaxy. So, what do we know about them? A lot. But, there’s more to find out. A team of astronomers using Chandra X-ray Observatory data has made a startling discovery about a central supermassive black hole in a quasar embedded in a distant galaxy cluster. What they found provides clues to the origin and evolution of supermassive black holes.
Continue reading “Most Black Holes Spin Rapidly. This one… Doesn’t”Astronomers Finally Catch a Nova Detonating on a White Dwarf as it's Happening
On July 7, 2020, the X-ray instrument eROSITA captured an astronomical event that – until then – had only been theorized and never seen. It saw the detonation of a nova on a white dwarf star, which produced a so-called fireball explosion of X-rays.
“It was to some extent a fortunate coincidence, really,” said Ole König from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), who led the team of scientists who have published a new paper on the discovery. “These X-ray flashes last only a few hours and are almost impossible to predict, but the observational instrument must be pointed directly at the explosion at exactly the right time.”
Continue reading “Astronomers Finally Catch a Nova Detonating on a White Dwarf as it's Happening”A Pulsar is Blasting out Jets of Matter and Antimatter
Why is there so much antimatter in the Universe? Ordinary matter is far more plentiful than antimatter, but scientists keep detecting more and more antimatter in the form of positrons. More positrons reach Earth than standard models predict. Where do they come from?
Scientists think pulsars are one source, and a new study strengthens that idea.
Continue reading “A Pulsar is Blasting out Jets of Matter and Antimatter”