The First Image From NASA’s new X-ray Observatory

This image of the supernova remnant Cassiopeia A combines some of the first X-ray data collected by NASA’s Imaging X-ray Polarimetry Explorer, shown in magenta, with high-energy X-ray data from NASA’s Chandra X-Ray Observatory, in blue. Credits: NASA/CXC/SAO/IXPE

It’s first light for one of the newest space observatories! The Imaging X-Ray Polarimetry Explorer team has released their first image, taken after a month-long commissioning phase for the spacecraft. And it’s a beauty.

IXPE looked at a favorite target among space observatories, the supernova remnant Cassiopeia A. While x-rays are invisible to human eyes, the amount of magenta color in this image corresponds to the intensity of X-ray light observed. Needless to say, it’s intense with high energy x-rays.  

Continue reading “The First Image From NASA’s new X-ray Observatory”

NASA Launches a New X-ray Observatory

A SpaceX Falcon 9 rocket launches with NASA’s Imaging X-ray Polarimetry Explorer (IXPE) spacecraft onboard from Launch Complex 39A, Thursday, Dec. 9, 2021, at NASA’s Kennedy Space Center in Florida. The IXPE spacecraft is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars. Launch occurred at 1 a.m. EST. Credits: NASA/Joel Kowsky

A new mission has launched to study some the most intriguing secrets of the universe. No, not THAT spacecraft (JWST is scheduled for launch on December 22). Another new and exciting mission is called Imaging X-ray Polarimetry Explorer (IXPE) and it will allow scientists to explore the hidden details of some of the most extreme and high-energy objects in the cosmos, such as black holes, neutron stars, pulsars and dozens of other objects.

Continue reading “NASA Launches a New X-ray Observatory”

A Black Hole Emitted a Flare Away From us, but its Intense Gravity Redirected the Blast Back in our Direction

Artist's impression of a black hole, as indicated by its bright accretion disk. Credit: NASA

In 1916, Albert Einstein put the finishing touches on his Theory of General Relativity, a journey that began in 1905 with his attempts to reconcile Newton’s own theories of gravitation with the laws of electromagnetism. Once complete, Einstein’s theory provided a unified description of gravity as a geometric property of the cosmos, where massive objects alter the curvature of spacetime, affecting everything around them.

What’s more, Einstein’s field equations predicted the existence of black holes, objects so massive that even light cannot escape their surfaces. GR also predicts that black holes will bend light in their vicinity, an effect that can be used by astronomers to observe more distant objects. Relying on this technique, an international team of scientists made an unprecedented feat by observing light caused by an X-ray flare that took place behind a black hole.

Continue reading “A Black Hole Emitted a Flare Away From us, but its Intense Gravity Redirected the Blast Back in our Direction”

New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum

Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT)

The core of the Milky Way Galaxy (aka. Galactic Center), the region around which the rest of the galaxy revolves, is a strange and mysterious place. It is here that the Supermassive Black Hole (SMBH) that powers the compact radio source known as Sagittarius A* is located. It is also the most compact region in the galaxy, with an estimated 10 million stars within 3.26 light-years of the Galactic Center.

Using data from Chandra X-ray Observatory and the MeerKAT radio telescope, NASA and the National Research Foundation (NSF) of South Africa created a mosaic of the center of the Milky Way. Combining images taken in the x-ray and radio wavelengths, the resulting panoramic image manages to capture the filaments of super-heated gas and magnetic fields that (when visualized) shows the complex web of energy at the center of our galaxy.

Continue reading “New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum”

If You Could See in X-rays, This is What the Universe Would Look Like

The energetic Universe as seen with the eROSITA X-ray telescope. Credit: Jeremy Sanders, Hermann Brunner and the eSASS team (MPE); Eugene Churazov, Marat Gilfanov (on behalf of IKI).

X-ray astronomy helps scientists study neutron stars, binary star systems, and supernova remnants, and even helps detect black holes. But even if human eyes had the ability to see X-rays, we couldn’t just look up at the night sky and see these amazing objects since Earth’s atmosphere absorbs and blocks X-rays. So, thank goodness for space telescopes!  And the newest X-ray instrument in space has just produced a breathtaking view of the Universe, and is the deepest X-ray view of the sky we’ve ever seen.  

Continue reading “If You Could See in X-rays, This is What the Universe Would Look Like”

Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe

Hundreds of millions of light years away, a supermassive black hole sits in the center of a galaxy cluster named Ophiuchus. Though black holes are renowned for sucking in surrounding material, they sometimes expel material in jets. This black hole is the site of an almost unimaginably powerful explosion, created when an enormous amount of material was expelled.

Continue reading “Astronomers Have Recorded the Biggest Explosion Ever Seen in the Universe”

Astronomers Find a Supermassive Black Hole That’s Feasting on a Regular Schedule, Every 9 Hours

The supermassive black hole at the heart of galaxy GSN 069 has a unique, regular feeding schedule. Every 9 hours it flares with x-rays as it consumes matter. Image Credit: X-ray: NASA/CXO/CSIC-INTA/G.Miniutti et al.; Optical: DSS.

Astronomers have found a supermassive black hole (SMBH) with an unusually regular feeding schedule. The behemoth is an active galactic nucleus (AGN) at the heart of the Seyfert 2 galaxy GSN 069. The AGN is about 250 million light years from Earth, and contains about 400,000 times the mass of the Sun.

Continue reading “Astronomers Find a Supermassive Black Hole That’s Feasting on a Regular Schedule, Every 9 Hours”

Astronomers are Finding Binary Pairs of Stars Thrown out of Galaxies Together

Two of the largest galaxies in the Fornax galaxy cluster. Image Credit: NASA/Chandra

A rogue star is one that has escaped the gravitational pull of its home galaxy. These stars drift through intergalactic space, and so are sometimes called intergalactic stars. Sometimes, when a rogue star is ejected from its galaxy, it drags its binary pair along for the ride.

Continue reading “Astronomers are Finding Binary Pairs of Stars Thrown out of Galaxies Together”

X-rays Might be a Better Way to Communicate in Space

The locations of the Modulated X-ray Source (MXS) and the Neutron star Interior Composition Explorer (NICER) on the ISS, which are critical to the demonstration. Credits: NASA

In the coming years, thousands of satellites, several next-generation space telescopes and even a few space habitats are expected to be launched into orbit. Beyond Earth, multiple missions are planned to be sent to the lunar surface, to Mars, and beyond. As humanity’s presence in space increases, the volume of data that is regularly being back sent to Earth is reaching the limits of what radio communications can handle.

For this reason, NASA and other space agencies are looking for new methods for sending information back and forth across space. Already, optical communications (which rely on lasers to encode and transmit information) are being developed, but other more radical concepts are also being investigating. These include X-ray communications, which NASA is gearing up to test in space using their XCOM technology demonstrator.

Continue reading “X-rays Might be a Better Way to Communicate in Space”

New Research Reveals How Galaxies Stay Hot and Bothered

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole. Credit: ESO/Gravity Consortium/L. Calçada

It’s relatively easy for galaxies to make stars. Start out with a bunch of random blobs of gas and dust. Typically those blobs will be pretty warm. To turn them into stars, you have to cool them off. By dumping all their heat in the form of radiation, they can compress. Dump more heat, compress more. Repeat for a million years or so.

Eventually pieces of the gas cloud shrink and shrink, compressing themselves into a tight little knots. If the densities inside those knots get high enough, they trigger nuclear fusion and voila: stars are born.

Continue reading “New Research Reveals How Galaxies Stay Hot and Bothered”