Book Review and Giveaway: “Most Wanted Particle” by Jon Butterworth

Most Wanted Particle is an insider’s tale of the hunt for the Higgs boson, the field which imparts mass to, well, nearly everything. Written by Jon Butterworth —- a physicist working with the ATLAS team at the Large Hadron Collider —- the book documents the construction of the Large Hadron Collider, the catastrophe after it was first turned on, and the global excitement as evidence for the Higgs boson grew incontrovertible.

Most Wanted Particle has already received glowing praise from the likes of Brian Cox and even Peter Higgs —- for whom the boson is named -— and I’m sure that several physicists reading this site already have the book on their ‘to read’ list. But what about the rest of us? As a biology PhD whose last physics class was about 15 years ago, I decided to see if the book was accessible enough for your average science geek.

Find out how you can win a copy of this book, below.

First and only warning: the book discusses some very fundamental physics, and if you’re afraid to learn about topics like quarks, gluons, and hadronic jets, then this book will be tough going for you (all three of these are introduced on page 22, for instance). This complexity should be largely expected given the subject matter of the book; the alternative would be like a WW2 book that didn’t mention Normandy. So if learning some jargon scares you, you’d best stick to reading the news headlines from CERN.

With that caveat out of the way, Butterworth is a stellar writer and teacher, and he employs a number of tricks to make Most Wanted Particle extremely readable. First of all, equations are largely absent—they are described rather than displayed. (More kudos are due for making it over halfway through the book before the first Feynman diagram appears). Second is Butterworth’s impressive facility with analogy: often, even if you are struggling with the specifics of a concept, you will be able to grasp the broad brush strokes, and that’s enough to follow along with the tale.

Finally, there is the journalistic style. The book is written as a passionate first-person account, and the main narrative is pleasingly interrupted by diversions. It’s not uncommon to have a dense description of, say, super symmetry, broken up by a blog-like chapter discussing an international trip to a conference. (Other topics include meeting etiquette and ‘taking things offline’; what makes a good acronym; and a particularly memorable drunken night for the author and friends in Hamburg.)

Do you have friends who are scientists? If so, you will feel at home reading this book, and it took me a while to understand why. It’s because the general impression that I get from this book is very similar to taking a scientist friend to the pub, and having them describe their work to you over a beer. Sometimes you’ll get a little lost in the more thorny parts of the science; often you’ll get carried off by a tangent; but overall you’ll just enjoy a rollicking good tale, told by an intelligent storyteller.

This book comes highly recommended!

Most Wanted Particle is published by The Experiment Publishing. Find out more about the book here.

Thanks to The Experiment, Universe Today has one copy of this book to give away to our readers. The publisher has specified that for this contest, winners need to be from the US or Canada.

In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, April 13, 2015. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing. If you’ve entered our giveaways before you should also receive an email with a link on how to enter.

Carnival of Space #400

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Allen Versfeld at his Urban Astronomer blog.

Click here to read Carnival of Space #400.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

How Can Black Holes Shine?

How Can Black Holes Shine?

We hear that black holes absorb all the light that falls into them. And yet, we hear of black holes shining so brightly we can see them halfway across the Universe. What’s going on? Which is it?

I remember back to a classic episode of the Guide to Space, where I provided an extremely fascinating and concise explanation for what a quasar is. Don’t recall that episode? Well, it was super. Just super. Alright slackers, let’s recap.

Quasars are the brightest objects in the Universe, visible across billions of light years. Likely blanching life from everything in the path of the radiation beam from its lighthouse of death. They occur when a supermassive black hole is actively feeding on material, pouring out a mountain of radiation. Black holes, of course, are regions of space with such intense gravity where nothing, not even light itself, can escape.

But wait, not so fast “recap” Fraser Cain. I call shenanigans. If black holes absorb all the radiation that falls into them, how can they be bright?

You, Fraser Cain of days of yore, cannot have it both ways. It’s either a vortex of total destruction gobbling all the matter and light that fall into them OR alternately light can escape, which still sounds good. I mean, it could be WHERE NO STUFF CAN ESCAPE, except light.

If you’ll admit that you of the past was wrong, we’ll put you in the temporal cone of shame and move on with the episode. Right? Right? Wrong.

Let’s review. Black holes are freaky complicated beasts, with many layers. And I don’t mean that in some abstract Choprian “many connections on many different levels”. They’re a gobstopper from a Sam Neill Event Horizon style hellscape. Let’s take a look at the anatomy of a black hole, and everything should fall into place, including the terror.

At the very heart of the black hole is the singularity. This is the region of compressed matter that used to be a star, or in the case of a supermassive black hole, millions or billions of times the mass of a star. Astronomers have no idea what the singularity looks like or behaves, because our understanding of physics completely breaks down, along with the rest of our brains.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)
Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)

It’s possible that the singularity is a sphere of exotic matter, or maybe it’s constantly compressing down into an infinitely small size. It could also be a pork pie. We’ll never know, because nothing goes fast enough to escape from a black hole, not even light.

Maybe you’d need to be going 10 times the speed of light to escape. Or maybe a trillion times the speed of light. Which makes it easy; as far as we can tell, nothing can go faster than the speed of light, and so nothing is escaping.

As you get further from the singularity, the force of gravity decreases. Initially, it’ll still requires that you go faster than light. You’ll finally reach a very specific point where the escape velocity is exactly the speed of light. This is the event horizon, and it’s a different distance from the singularity with every black hole. That’s the line. Within the event horizon, the light is doomed, outside the event horizon, it can escape. This is the hard candy shell surrounding the chocolately unimaginable nightmare of physics.

So when see bright black holes, like a quasar, we’re not actually seeing light coming from inside the black hole itself or reflected of its surface. What we’re seeing is the material that’s piling up just outside the event horizon. For all its voracious hunger, a black hole’s gravitational eyes are much bigger than its stomach, and it can only feed so quickly. Excess stuff piles up around the black hole’s face and forms a vast disk of material, just like me at a Pizza Hut’s $5 all you can eat buffet. This pizza heats up until it’s like the core of a star, and starts blasting out radiation into space.

A WFPC2 image of a spiral-shaped disk of hot gas in the core of active galaxy M87. HST measurements show the disk is rotating so rapidly it contains a massive black hole at its hub.
A WFPC2 image of a spiral-shaped disk of hot gas in the core of active galaxy M87. HST measurements show the disk is rotating so rapidly it contains a massive black hole at its hub.

Everything I’ve said is for non-spinning black holes, by the way. Physicists will always make this point with great emphasis. Stay your angry comments astrophysicists, for I have said the magic stone-cutter appeasement code-word, “Non-rotating”.

Of course, black holes do rotate, and can rotate at nearly the speed of light. And this rotation changes the nature of the black hole’s event horizon in ways that make difficult math even harder. All this spinning generates powerful magnetic fields around the black hole, which focuses jets of material that blast out for hundreds of thousands of light-years. When we see these bright quasars, we’re staring right at these jets with our delicate little eyeballs.

So how can we see light coming from black holes when black holes absorb all light? It’s not coming from black holes. It’s coming from the super-heated region of junk all around the black hole. And still, anything that falls through the event horizon, whether it be light, junk, you, me or Grumpy Cat it will never been seen again.

What’s your favorite sci-fi black hole? Tell us in the comments below.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Marcel-jan Krijgsman and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

SpaceX Resets CRS-6 Space Station Launch to April 13 with Booster Landing Attempt

Falcon 9 and Dragon undergoing preparation in Florida in advance of April 13 launch to the International Space Station on the CRS-6 mission. Credit: SpaceX

The clock is ticking towards the next launch of a SpaceX cargo vessel to the International Space Station (ISS) hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ station crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.

The mission, dubbed SpaceX CRS-6 (Commercial Resupply Services-6) will also feature the next daring attempt by SpaceX to recover the Falcon 9 booster rocket through a precision guided soft landing onto an ocean-going barge.

SpaceX and NASA are now targeting blastoff of the Falcon 9 rocket and Dragon spacecraft for Monday, April 13, just over a week from now, at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

NASA Television plans live launch coverage starting at 3:30 p.m.

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.

The backup launch day in case of a 24 hour scrub is Tuesday, April 14, at approximately 4:10 p.m.

Falcon 9 launches have been delayed due to issues with the rockets helium pressurization bottles that required investigation.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida. File photo. Credit: Ken Kremer – kenkremer.com

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the mission.

An on time launch on April 13 will result in the Dragon spacecraft rendezvousing with the Earth orbiting outpost Wednesday, April 15 after a two day orbital chase.

After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7:14 a.m. EDT on April 15.

Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.

SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA
SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

The ship will remain berthed at the ISS for about five weeks.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The prior resupply mission, CRS-5, concluded in February with a successful Pacific Ocean splashdown and capsule recovery.

Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida.  Credit: SpaceX
Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida. Credit: SpaceX

The CRS-5 mission also featured SpaceX’s history making attempt at recovering the Falcon 9 first stage as a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

As I wrote earlier at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Listen to my live radio interview with BBC 5LIVE conducted in January 2015, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Watch for Ken’s onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hangout with New Horizons on April 3, 2015

New Horizons
New Horizons spacecraft by Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Are you excited about the upcoming NASA New Horizons flyby to Pluto? Even though the flyby will happen on July 14, 2015, Pluto is getting closer and closer in the spacecraft’s cameras. And there’s lots of science to be done between now and then.

Join me today, Friday April 3 at 10 am PDT / 1 pm EDT for a special Hangout with NASA and members from the New Horizons science team to discuss the state of the mission and what we can expect over the next few months as we finally meet Pluto up close. Ask the team your questions live.

We’ll be joined by:

Click here to learn more about the event, or watch it live at 10am PDT.

Planetary Society: We Can Afford to Orbit Humans at Mars by 2033

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Start your clocks. If the Planetary Society gets its wish, humans will be lifting off for the Red Planet eighteen years from now. That’s the conclusion of 70 experts in various fields relating to human spaceflight convened by the well-known planetary science advocacy organization, as announced today.  A full report describing their conclusions will be released later this year, but in the mean time, let’s take a look at some of the plan’s basic tenants:

  • Constrain costs by limiting new technology development
  • Need to “get on the road” by 2033
  • An orbital mission first will provide valuable experience and opportunities for science
  • NASA can afford the mission using funds currently devoted to the ISS
  • Land a crew by the end of the 2030s
  • Broad support expected for an orbit-first plan
  • Need to establish means for industry and international partners to participate

Constraining costs: At the height of the Cold War, NASA spent more than $110 billion in a decade to land twelve men on the surface of the Moon. That kind of outlay simply isn’t going to happen today. In order to enable a crewed Mars mission without seeking a dramatic expansion of the agency’s budget, NASA will need to reuse a lot of technology originally developed for things like the International Space Station (ISS). This will come with a side benefit: technology development can be extremely time-intensive and is frequently the source of program delays. The more repurposed technology used, the less likely the mission is to run over schedule.

A 2033 launch: This seems plausible, but only if NASA maintains focus. Too frequently in the past, human spaceflight programs have faced constant redirection. Think of the transition from Constellation to the extended Shuttle program to the Space Launch System and continuing questions regarding the Asteroid Retrieval Mission. If NASA is going to undertake this mission, it will need to survive the transition between at least three (and as many as six!) presidential administrations. That’s no easy feat.

Science from orbit: There is little doubt that orbiting Mars before attempting a landing would provide valuable experience. This is the exact path tread by the Apollo program to great success. But, what of the Society’s claim that such an orbiting mission would provide valuable science opportunities? That’s a little tougher to gauge. Until the full plan is released later this year, it’s tough to know what they have in mind. Certainly, it would be an invaluable opportunity to study the effects of long-duration spaceflight on humans outside of the protection of the Earth’s magnetic field. But, I’m skeptical of any claim about performing orbital Mars science. Just like with the Asteroid Retrieval Mission, it seems likely that any science could be accomplished at a far lower cost through robotic explorers.

Planetary Society CEO Bill Nye addresses the workshop. Photo Credit: Tushar Dayal for The Planetary Society
Planetary Society CEO Bill Nye addresses the workshop. Photo Credit: Tushar Dayal for The Planetary Society

Raiding the ISS piggy bank: This is perhaps the most interesting piece of the plan. In the wake of Russia’s announcement that they intend to pull out of the ISS collaboration after 2024, the future of America’s presence in Low Earth Orbit has been in question. The Planetary Society provides one possible answer: by using the funds currently earmarked for maintaining the orbiting laboratory, NASA could execute a crewed trip to Mars without needing a budgetary increase above that which accounts for inflation. This is a big deal because NASA funding is projected to remain flat for the foreseeable future.

Touching down before 2040: Regardless of the scientific case for orbital flights, the real scientific promise of human trip to Mars lies on the surface. Astronauts can cover far more ground and do so far more efficiently than their robotic counterparts, so getting people on the surface has to be the ultimate goal. Is 2040 too ambitious given a 2033 orbital launch? I’m not sure, but it’s certainly more realistic than claims made by SpaceX and Mars One.

Support from the public: We can only hope. I think if it was clear that substantial, legitimate progress was being made towards the clear goal of getting humans to Mars by 2033, the public would tune in. But keeping attention on an 20+ year project is no mean feat. Smaller, intermediate goals, a la the Mercury and Gemini programs, will be vital.

A broad coalition: NASA’s willingness to turn over ISS cargo and crew deliveries to private space companies bodes well for continuing these collaborations in the future. But allowing others to service their already-established outpost and joining with them on what will be the next great exploration project are two different things. Also remaining to be seen: will NASA (at the behest of the US Congress) continue to shun burgeoning space power China? Going to Mars will be tough. Why make it tougher than necessary?

Final thoughts: This is an exciting proposal by an organization with a credible history. Moreover, the list of participants in the recent workshop is impressive. The information released today is just the tip of the iceberg, but it has already got me thinking about what the future might hold. One thought that I can’t get out of my mind, though: is an orbital mission an unnecessary risk? Trips to Mars are measured in months, not days, and would put astronauts at unprecedented risk. Would we be drawing out those risks with an orbital mission without really accomplishing a lot of scientific discovery? We’ll have to wait for more details to truly find out.

The Orion’s Heat Shield Gets a Scorching on Re-entry

Larry Gagliano, Orion project manager at NASA's Marshall Space Flight Center, photographed in front of the spaceship's heat shield. Credit: Lee Roop

Yes, she’s a little worse for wear, isn’t she? But then again, that’s what atmospheric re-entry and 2200 °Celsius (4000 °Fahrenheit) worth of heat will do to you! Such was the state of the heat shield that protected NASA’s Orion Spaceship after it re-entered the atmosphere on Dec. 5th, 2014. Having successfully protected the craft during it’s test flight, the shield was removed and transported to the Marshall Space Flight Center in Huntsville, Alabama, where it arrived on March. 9th.

Since that time, a steady stream of NASA employees have been coming by the facility to get a look at it while engineers collect data and work to repair it. In addition to being part of a mission that took human-rated equipment farther out into space than anything since the Apollo missions, the heat shield is also living proof that NASA is restoring indigenous space capability to the US.

First unveiled by NASA in May of 2011, the Orion Multi-Purpose Crew Vehicle (MPCV) was intrinsic to the Obama administration’s plan to send astronauts to a nearby asteroid by 2025 and going to Mars by the mid-2030’s. In addition to facilitating these long-range missions, the Orion spacecraft would also handle some of the routine tasks of spaceflight, such as providing a means of delivering and retrieving crew and supplies from the ISS.

NASA Orion spacecraft blasts off atop 1st  Space Launch System rocket in 2017 - attached to European provided service module – on an enhanced m mission to Deep Space where an asteroid could be relocated as early as 2021.   Credit: NASA
Artist’s concept of the Orion spacecraft being sent into orbit atop the first Space Launch System (SLS) rocket in 2017. Credit: NASA

The uncrewed test flight that took place on December 5, 2014, known as Exploration Flight Test 1 (EFT-1), was intended to test various Orion systems, including separation events, avionics, heat shielding, parachutes, and recovery operations prior to its debut launch aboard the Space Launch System,

This design of this mission corresponded to the Apollo 4 mission of 1967, which demonstrated the effectiveness of the Apollo flight control systems and the heat shields ability to withstand re-entry conditions, as part of the spacecraft’s return from lunar missions.

After being retrieved, the heat shield was transported by land to the Marshall Space Flight Center, where it was offloaded and transferred to a large support structure so engineers could perform studies on it for the next three months.

This will consist of collecting samples from the shield to measure their char layers and degree of erosion and ablation, as well as extracting the various instruments embedded in the heat shield to assess their performance during re-entry.

The heat shield arrived March 9 at Marshall, where experts from the Center and NASA’s Ames Research Center will extract samples of the ablative material, or Avcoat. Image Credit:  NASA/MSFC/Emmett Given
The heat shield arriving at Marshall on March 9th, where experts from the Center and NASA’s Ames Research Center. Credit: NASA/MSFC/Emmett Given

After the analysis is complete, technicians will load the shield into the 7-axis milling machine and machining center, where it will be grind down to remove the remaining material covering. Known as Avcoat, this heat-retardant substance is similar to what the Apollo missions used, with the exception of toxic materials like asbestos.

This material is used to fill the 320,000 honeycomb-like cells that make up the outer layer of the shield. When heated, the material burns away (aka. ablates) in order to prevent heat being transferred into the crew module. This shield is placed over the craft’s titanium skeleton and carbon-fiber skin, providing both protection and insulation for the interior.

Once all the Avcoat is removed and only the skeletal frame remains, it will be shipped to the Langley Research Center in Hampton, Virginia, for more tests. Since the Orion was returning from a greater distance in space than anything since Apollo, it experienced far greater heat levels than anything in recent decades, reaching as high as 2200 °C (4000 °F).

During Orion's test flight the heat shield reached temperatures of about 4,000 degrees Fahrenheit. Instrumentation in the heat shield measured the rise of the surface and internal temperatures during re-entry as well as heating levels and pressures. Image Credit:  NASA/MSFC/Emmett Given
Instrumentation in the Orion heat shield (visible here) measured the rise of the surface and internal temperatures during re-entry. Credit: NASA/MSFC/Emmett Given

Instrumentation in the shield measured the rise of the surface and internal temperatures during re-entry as well as the ablation rate of the shield’s coating. Over the next few months, NASA experts will be pouring over this data to see just how well the Orion shield held up under extreme heat. But so far, the results look positive – with only 20% of the Avcoat burning away on the test-flight re-entry.

In the future, the Orion spacecraft will be launched on Space Launch System on missions that will take it to nearby asteroids and eventually Mars. The first mission to carry astronauts is not expected to take place until 2021 at the earliest.

Further Reading: NASA

Adventures in Satspotting: Why Are Different Orbits Needed for Satellites?

Credit

Congratulations: perhaps you’re a new space-faring nation, looking to place a shiny new payload around the planet Earth. You’ve assembled the technical know-how, and seek to break the surly bonds and join an exclusive club that thus far, only contains 14 nations capable of indigenous spaceflight. Now for the big question: which orbit should you choose?

Welcome to the wonderful world of orbital mechanics. Sure, satellites in orbit have to follow Newton’s laws of motion, as they perpetually ‘fall’ around the Earth without hitting it. But it’ll cost you in fuel expended and technical complexity to achieve different types of orbits. Different types of orbits can, however, be used to accomplish different goals.

The first artificial moon to be placed in low-Earth orbit was Sputnik 1 launched on October 4th, 1957. But even before the dawn of the Space Age, visionaries such as futurist and science fiction author Arthur C. Clarke realized the value of placing a satellite in a geosynchronous orbit about 35,786 kilometres above the Earth’s surface. Placing a satellite in such an orbit keeps it in ‘lockstep’ with the Earth rotating below it once every twenty four hours.

Here are some of the more common orbits targeted by modern satellites and their uses:

Credit
Different orbits versus altitude. Image credit: Wikimedia Commons/Cmglee, Geo Swan

Low-Earth Orbit (LEO): Placing a satellite 700 km above the surface of the Earth moving 27,500 km per hour will cause it to orbit the Earth once every 90 minutes. The International Space Station is in just such an orbit. Satellites in LEO are also subject to atmospheric drag, and must be boosted periodically.  Launching from the equator of the Earth gives you an initial free maximum 1,670 km/per hour boost into orbit eastward. Incidentally, the high 52 degree inclination orbit of the ISS is a compromise that assures that it is reachable from various launch sites worldwide.

Credit
Satellite constellations, including NASA’s ‘A-Train’ of sun-synchronous Earth-observing satellites. Image credit: NASA

Low Earth orbit is also becoming crowded with space junk, and incidents such as the successful 2007 anti-satellite missile test by China, and the 2009 collision of Iridium 33 and the defunct Kosmos-2251 satellite both showered low Earth orbit with thousands of extra pieces of debris and didn’t help the situation much. There have been calls to make reentry technology standard on future satellites, and this will become paramount with the advent of flocks of nano and CubeSats in LEO.

Credit
Still up there: The orbital trace of China’s space station Tiangong-1: Image credit: Orbitron

Sun-Synchronous Orbit: This is a highly inclined retrograde orbit that assures that the illumination angle of the Earth below is consistent on multiple passes. Though it takes a fair amount of energy to reach a Sun-synchronous orbit—plus a complex deployment maneuver known as a ‘dog leg’—this type of orbit is desirable for Earth observing missions. It’s also a favorite for spy satellites, and you’ll notice that many nations aiming to put up their first satellites will use the stated goal of ‘Earth observation’ to field spy satellites of their own.

Molyina orbit: A highly inclined elliptical orbit designed by the Russians, a Molyina orbit takes 12 hours to complete, placing the satellite over one hemisphere for 2/3rds of its orbit and returning it back over the same geographical point once every 24 hours.

A semi-synchronous orbit: A 12-hour elliptical orbit similar to a Molyina orbit, a semi-synchronous orbit is favored by Global Positioning Satellites.

Credit
The launch of SpaceX’s CRS2 resupply mission headed to the ISS. Image credit: David Dickinson

Geosynchronous orbit: The aforementioned point 35,786 km above the Earth’s surface where a satellite stays fixed over a particular longitude.

Geostationary orbit:  Place a GEO satellite in orbit with a zero degree orbit, and it is considered Geostationary. Also sometimes referred to as a Clarke orbit, this location is extremely stable, and satellites placed there may remain in orbit for millions of years.

In  2012, the EchoStar XVI satellite was launched headed to GEO with the time capsule disk The Last Pictures for just that reason. It is quite possible that millions of years from now, GEO sats might be the primary artifacts remaining from the early 20th/21st century civilization.

Lagrange point orbits: 18th century mathematician Joseph-Louis Lagrange made the observation that several stable points exist in any three body system. Dubbed Lagrange points, these locales serve as great stable positions to place observatories. The Solar Heliospheric Observatory (SOHO) sits at the L1 point to afford it a continuous view of the Sun; the James Webb Space Telescope is bound in 2018 for the L2 point beyond the Moon. To stay on station near a LaGrange point, a satellite must enter a Lissajous or Halo orbit around the imaginary Lagrange point in space.

Credit
The L2 Lagrange point. Image credit: ESA

All of these orbits have pros and cons.  For example, atmospheric drag isn’t an issue in geosynchronous orbit, though it takes several boosts and transfer orbit maneuvers to attain. And as with any plan, complexity also adds more chances for things to fail, stranding a satellite in the wrong orbit. Russia’s Phobos-Grunt mission suffered just such a fate after launch in 2011 when its Fregat upper stage failed to operate properly, stranding the interplanetary spacecraft in Earth orbit. Phobos-Grunt crashed back to Earth over the Southern Pacific on January 15th, 2012.

Space is a tough business, and it’s imperative to place things in the right orbit!

-Looking to hunt for satellites from your backyard? A great online resource to start with in Heavens-Above.