And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
Get ready for one awesome total lunar eclipse early Saturday morning April 4th. For the third time in less than a year, the Moon dips into Earth’s shadow, its dazzling white globe turning sunset red right before your eyes. All eclipses are not-to-miss events, but Saturday’s totality will be the shortest in a century. Brief but beautiful – just like life. Read on to find out how to make the most of it.
Lunar eclipses don’t usually happen in any particular order. A partial eclipse is followed by a total is followed by a penumbral and so on. Instead, we’re in the middle of a tetrad, four total eclipses in a row with no partials in between. The final one happens on September 28. Even more remarkable, part or all of them are visible from the U.S. Tetrads will be fairly common in the 21st century with eight in all. We’re lucky — between 1600 and 1900 there were none! For an excellent primer on the topic check out fellow Universe Today writer David Dickinson’s “The Science Behind the Blood Moon Tetrad“.
Lots of people have taken to calling the tetrad eclipses Blood Moons, referring to the coppery color of lunar disk when steeped in Earth’s shadow and the timing of both April events on the Jewish Passover. Me? I prefer Bacon-and-Eggs Moon. For many of us, the eclipse runs right up till sunrise with the Moon setting in bright twilight around 6:30 a.m. What better time to enjoy a celebratory breakfast with friends after packing away your gear?
But seriously, Saturday morning’s eclipse will prove challenging for some. While observers in far western North America, Hawaii, Japan, New Zealand and Australia will witness the entire event, those in the mountain states will see the Moon set while still in totality. Meanwhile, skywatchers in the Midwest and points East will see only the partial phases in a brightening dawn sky. Here are the key times of eclipse events by time zone:
Eclipse Events EDT CDT MDT PDT
Penumbra eclipse begins
5:01 a.m.
4:01 a.m.
3:01 a.m.
2:01 a.m.
Partial eclipse begins
6:16 a.m.
5:16 a.m.
4:16 a.m.
3:16 a.m.
Total eclipse begins
——–
——–
5:58 a.m.
4:58 a.m.
Greatest eclipse
——–
——–
6:00 a.m.
5:00 a.m.
Total eclipse ends
——–
——–
6:03 a.m.
5:03 a.m.
Partial eclipse ends
———
——–
——–
6:45 a.m.
Penumbra eclipse ends
———
———
——–
——–
* During the penumbral phase, shading won’t be obvious until ~30 minutes before partial eclipse.
This eclipse will also be the shortest total eclipse of the 21st century; our satellite spends just 4 minutes and 43 seconds inside Earth’s umbra or shadow core. That’s only as long as a typical solar eclipse totality. Ah, the irony.
Better have your camera ready or you’ll miss it. The maps below show the maximum amount of the Moon visible shortly before setting from two eastern U.S. cities and the height of the totally eclipsed Moon from two western locations. Click each panel for more details about local circumstances.
Now that you know times and shadow coverage, let’s talk about the fun part — what to look for as the event unfolds. You’ll need to find a location in advance with a good view to the southwest as most of the action happens in that direction. Once that detail’s taken care of and assuming clear weather, you can kick back in a folding chair or with your back propped against a hillside and enjoy.
The entire eclipse can be enjoyed without any optical aid, though I recommend a look through binoculars now and then. The eclipsed Moon appears distinctly three-dimensional with only the slightest magnification, hanging there like an ornament among the stars. The Earth’s shadow appears to advance over the Moon, but the opposite is true; the Moon’s eastward orbital motion carries it deeper and deeper into the umbra.
Nibble by nibble the sunlit Moon falls into shadow. By the time it’s been reduced to half, the shaded portion looks distinctly red even to the naked eye. Notice that the shadow is curved. We live on a spherical planet and spheres cast circular shadows. Seeing the globe of Earth projected against the Moon makes the roundness of our home planet palpable.
When totality arrives, the entire lunar globe throbs with orange, copper or rusty red. These sumptuous hues originate from sunlight filtered and bent by Earth’s atmosphere into the umbral shadow. Atmospheric particles have removed all the cooler colors, leaving the reds and oranges from a billion sunrises and sunsets occurring around the planet’s circumference. Imagine for a moment standing on the Moon looking back. Above your head would hang the black disk of Earth, nearly four times the size of the Moon in our sky, ringed by a narrow corona of fiery light.
Color varies from one eclipse to the next depending on the amount of water, dust and volcanic ash suspended in Earth’s atmosphere. The December 30, 1982 eclipse was one of the darkest in decades due to a tremendous amount of volcanic dust from the eruption of the Mexican volcano El Chichon earlier that year.
The more particles and haze, the greater the light absorption and darker the Moon. That said, this eclipse should be fairly bright because the Moon does not tread deeply into Earth’s shadow. It’s in for a quick dip of totality and then resumes partial phases.
It’s northern edge, located close to the outer fringe of Earth’s umbra, should appear considerably brighter than the southern, which is closer to the center or darkest part of the umbra.
Besides the pleasure of seeing the Moon change color, watch for the sky to darken as totality approaches. Eclipses begin with overwhelming moonlight and washed out, star-poor skies. As the Moon goes into hiding, stars return in a breathtaking way over a strangely eerie landscape. Don’t forget to turn around and admire the glorious summer Milky Way rising in the eastern sky.
Lunar eclipses remind us we live in a Solar System made of these beautiful, moving parts that never fail to inspire awe when we look up to notice.
In case you can’t watch the eclipse from your home due to weather or circumstance, our friends at the Virtual Telescope Project and SLOOHwill stream it online.
It might be only March of 2015, but the race (slog?) is on to be the next president of the United States. Only 589 days to go! It’s a race that some believe will cost the nation upwards of five billion dollars; that’s about 7.5 Mars missions for those of you out there counting. The campaign, though, is more than just a vehicle for terrible campaign ads and embarrassing debate gaffes; it’s also one of the few opportunities for the country to have a discussion about its national priorities in the coming years. So, what are the chances that the exploration of space will be in that discussion?
On the surface, the odds don’t seem that favorable. Back in January, the Pew Research Center surveyed Americans to determine which issues citizens felt their leaders should be prioritizing. Space exploration wasn’t called out as its own topic, but of the 23 possibilities considered by Pew, “scientific research” was ranked third-to-last, representing a priority for just over half of Democrats and a third of Republicans. The margin of error for the smallest subgroup was 6.1 percentage points. The poll shows that the public is as concerned as ever with the perennial “big issues”: the War on Terror, the economy and jobs, and social services like education and Social Security. These will undoubtedly dominate the national conversation and leave little room for discussion of our scientific priorities. And, even if science does see the light of day during the campaign, politicians tend to look for places of disagreement. As NASA remains one of the government agencies most favored by citizens, it’s not likely to stir up much trouble here either.
Peer a little closer, though, and many potential candidates have strong ties to the space exploration industry. Headlining this group is the only high-profile contender to have officially declared himself: Senator Ted Cruz (R, TX). Sen. Cruz is the new chairman of the Space, Science, and Competitiveness subcommittee, the Senate body which oversees NASA and the National Science Foundation (NSF). Joining him on the subcommittee is another likely presidential candidate, Sen. Marco Rubio (R, FL). Florida, of course, is home to Kennedy Space Center, the launch complex for most US space activities. The economic impact of the so-called “Space Coast” puts space exploration at the forefront of Florida politicians’ minds and the state was also formerly lead by yet another likely Republican presidential candidate, Gov. Jeb Bush.
On the Democratic side, the picture remains much murkier. With no one so far willing to declare themselves running while former Secretary of State Hillary Clinton remains on the fence, the need for speculation is much higher. But, both Secretary Clinton and Vice President Joe Biden ran campaigns in 2008, offering us a glimpse at how space might play in their future endeavors. Then-Senator Biden had little to say on space during his campaign, although he did advocate for working with China as an equal partner, a view that might still draw some criticism today. Then-Senator Clinton spoke more broadly on her views for space, but it never truly entered the mainstream of the debate.
Even if space exploration doesn’t become a central issue of the coming campaign, it could well leak in from another direction: climate change. NASA is at the forefront of climate science research and considers it a core tenet of its research mandate. During the 2008 campaign, Clinton supported the expansion of NASA’s Earth observing program. Earlier this month, Sen. Cruz took the opposite position, suggesting to NASA Administrator Charles Bolden that the agency focus more on exploring outer space and less on studying the Earth. With climate change likely to become a flashpoint during the campaign (the Pew poll discussed above shows climate science research is a priority for 54% of Democrats, but just 15% of Republicans), NASA and the NSF might find themselves dragged into the larger fight.
Finally, what about all the candidates down the ballot? Will space exploration be important in House, Senate, and gubernatorial races? What about the myriad of local and state elections? The answer here is probably a more definitive “no.” Unlike most other issues, space exploration is one that resides virtually solely at the federal level. With the possible exception of a few space-heavy regions like Florida and Texas, issues like education, unemployment, and taxation are far more likely to dominate the conversation.
If there’s one truth about elections, however, it’s that you never really know if something will be important until it happens. With that in mind, we’ll continue to keep an eye on the coming races to see if outer space become a down-to-Earth issue!
We’ve seen way too many science fiction episodes that show asteroid belts as dense fields of tumbling boulders. How dense is the asteroid belt, and how to spacecraft survive getting through them?
For the purposes of revenue, lazy storytelling, and whatever it is Zak Snyder tells himself to get out of bed in the morning, when it comes to asteroids, Science fiction and video games creators have done something of disservice to your perception of reality.
Take a fond trip down sci-fi memory lane, and think about the time someone, possibly you, has had to dogfight or navigate through yet another frakkin’ asteroid belt. Huge space rocks tumbling dangerously in space! Action! Adventure! Only the skilled pilot, with her trusty astromecha-doplis ship can maneuver through the dense cluster of space boulders, dodging this way and that, avoiding certain collision.
And then she shoots her pew pew laser breaking up larger asteroids up into smaller ones, possibly obliterating them entirely depending on the cg budget. Inevitably, there’s bobbing and weaving. Pursuit craft will clip their wings on asteroids, spinning off into nearby tango. Some will fly straight into a space boulder.
Finally you’ll thread the needle on a pair of asteroids and the last ship of the whatever they’re called clicky clacky mantis Zorak bug people will try and catch you, but he/it won’t be quite so lucky. Poetically getting squashed like… a… bug. Sackhoff for the win, pilot victorious.
Okay, you probably knew the laser part is totally fake. I mean, everybody knows you can’t hear sounds in space. Outside of Starbuck being awesome, is that at all realistic? And if so, how does NASA maneuver unmanned spacecraft through that boulder-strewn grand canyon death trap to reach the outer planets?
The asteroid belt is a vast region between the orbits of Mars and Jupiter. Our collection of space rocks starts around 300 million kilometers from the Sun and ends around 500 million kilometers. The first asteroid, the dwarf planet Ceres which measures 950 km across, was discovered in 1801, with a “That’s funny.”. Soon after astronomers turned up many more small objects orbiting in this region at the “Oooh neat!” stage.
They realized it was a vast belt of material orbiting the Sun, with I suspect a “We’re all gonna die.”. To date, almost half a million asteroids have been discovered, most of which are in the main belt.
As mentioned in a another video, gathering up all the material in the asteroid belt and gluing it together makes a mass around 4% of the Moon. So, in case one of your friends gets excited and suggests it was a failed planet, you can bust out that stat and publicly shame them for being so 1996, Goodwill Hunting style. You like asteroids? How about them asteroids?
There’s a few hundred larger than 100 km across, and tens of millions of rocks a hundred meters across. Any one of these could ruin a good day, or bring a bad day to a welcome firey close for either a depressed wayfaring spacecraft or a little bluegreen speck of a planet. Which sounds dangerous all the way around.
Fortunately, our asteroid belt is a vast region of space. Let’s wind up the perspective-o-meter. If you divide the total number of objects in the field by the volume of space that asteroid belt takes up, each space rock is separated by hundreds of thousands of kilometers. Think of it as gravity’s remarkably spacious zen rock garden.
As a result, when NASA engineers plot a spacecraft’s route through the asteroid belt, they don’t expect to make a close encounter with any asteroids – in fact, they’ll change its flight path to intercept asteroids en route. Because hey look, asteroid!
Even though Ceres was discovered in 1801, it’s never been observed up close, until now. NASA’s Dawn spacecraft already visited Asteroid Vesta, and by the time you’re watching this video, it will have captured close-up images of the surface of Ceres.
Once again, science fiction creatives sold us out to drama over hard science. If you’re passing through an asteroid belt, you won’t need to dodge and weave to avoid the space rocks. In fact, you probably wouldn’t even know you were passing through a belt at all. You’d have to go way the heck over there to even get a nearby look at one of the bloody things. So we’re safe, our speck is safe, and all the little spacecraft are safe…. for now.
Which dramatic version of “asteroids” are you most fond of? Tell us in the comments below.
It seems like the good times will go on forever, so feel free to keep on wasting energy. But entropy is patient, and eventually, it’ll make sure there’s no usable energy left in the Universe.
Thanks to the donations of generations of dinosaurs and their plant buddies, we’ve got fossils to burn. If we ever get off our dependence on those kinds of fuels, we’ll take advantage of renewable resources, like solar, wind, tidal, smug and geothermal. And if the physicists really deliver the goods, we’ll harness the power of the Sun and generate a nigh unlimited amount of fusion energy using the abundant hydrogen in all the oceans of the world. Fire up that replicator, the raktajino is on the house. Also, everything is now made of diamonds.
We’ll never run out of H+. Heck that stuff is already cluttering up our daily experience. 75% of the baryonic mass of the Universe is our little one-protoned friend. Closely followed up by helium and lithium, which we’ll gladly burn in our futuristic fusion reactors. Make no mistake, it’s all goin’ in.
It looks like the good times will never end. If we’ve energy to burn, we’ll never be able to contain our urges. Escalating off into more bizarre uses. Kilimajaro-sized ocean cruise liners catering to our most indulgent fantasies, colossal megastructure orbital laser casinos where life is cheap in the arena of sport. We’ll build bigger boards and bigger nails.or something absolutely ridiculous and decadent like artificial ski-hills in Dubai. Sadly, it’s naive to think it’s forever. Someday, quietly, those good times will end. Not soon, but in the distant distant future, all energy in the Universe will have been spent, and there won’t a spare electron to power a single LED.
Astronomers have thought long and hard about the distant future of the Universe. Once the main sequence stars have used up their hydrogen and become cold white dwarfs and even the dimmest red dwarfs have burned off their hydrogen. When the galaxies themselves can no longer make stars. After all the matter in the Universe is absorbed by black holes, or has cooled to the background temperature of the Universe.
Black holes themselves will evaporate, disappearing slowly over the eons until they all become pure energy. Even the last proton of matter will decay into energy and dissipate. Well, maybe. Actually, physicists aren’t really sure about that yet. Free Nobel prize if you can prove it. Just saying.
And all this time, the Universe has been expanding, spreading matter and energy apart. The mysterious dark energy has been causing the expansion of the Universe to accelerate, pushing material apart until single photons will stretch across light years of distance. This is entropy, the tendency for energy to be evenly distributed. Once everything, and I do mean all things, are the same temperature you’ve hit maximum entropy, where no further work can be done.
This is known as the heat death of the Universe. The temperature of the entire Universe will be an infinitesimal fraction of a degree above Absolute Zero. Right above the place where no further energy can be extracted from an atom and no work can be done. Terrifyingly, our Universe will be out of usable energy.
Interestingly, there’ll still be the same amount it started with, but it’ll be evenly distributed across all places, everywhere. This won’t happen any time soon. It’ll take trillions of years before the last stars die, and an incomprehensible amount of time before black holes evaporate. We also don’t even know if protons will actually decay at all. But heat death is our inevitable future.
There’s a glimmer of good news. The entire Universe might drop down to a new energy state. If we wait long enough, the Universe might spontaneously generate a new version of itself through quantum fluctuations. So with an infinite amount of time, who knows what might happen?
Burn up those dirty dinosaurs while you can! Enjoy the light from the Sun, and the sweet whirring power from your counter-top Mr. Fusion reactor. Your distant descendants will be jealous of your wasteful use of energy, non-smothering climate and access to coffee and chocolate, as they huddle around the fading heat from the last black holes, hoping for a new universe to appear.
What’s the most extreme use of energy you can imagine? Tell us in the comments below.
The first ever ‘One-Year Mission’ to the International Space Station (ISS) started with a bang today, March 27, with the spectacular night time launch of the Russian/American crew from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m. EDT Friday (1:42 a.m., March 28 in Baikonur and culminated with a flawless docking this evening.
NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka launched aboard a Soyuz TMA-16M spacecraft to the International Space Station precisely on time today on the Expedition 43 mission.
The crew rocketed to orbit from the same pad as Russia’s Yuri Gagarin, the first human in space.
Kelly and Kornienko will spend about a year living and working aboard the space station on the marathon mission. Padalka will remain on board for six months.
The goal is to use the massive orbiting outpost to provide critical knowledge to NASA and researchers hoping to better understand how the human body reacts and adapts to long-duration spaceflight and the harsh environment of space.
The pathfinding mission is about double the normal time of most expeditions to the Earth orbiting space station, which normally last four to six months.
The one-year mission is among the first concrete steps to start fulfilling NASA’s “Journey to Mars” objective of sending “Humans to Mars” in the 2030s.
“Scott Kelly’s mission is critical to advancing the administration’s plan to send humans on a journey to Mars,” said NASA Administrator Charles Bolden, in a statement.
“We’ll gain new, detailed insights on the ways long-duration spaceflight affects the human body.”
This evening the three man international crew successfully rendezvous and docked at the ISS at the Poisk module at 9:33 p.m. EDT – just four orbits and six hours after liftoff.
‘Contact and capture confirmed, 1 year crew has arrived,’ said the NASA launch commentator Don Huot. “The one-year crew has arrived.”
“Soyuz is firmly attached to the ISS.”
Docking took place about 253 kilometers off the western coast of Colombia, South America approximately 5 hours and 51 minutes after today’s flawless launch from Baikonur.
The crews are scheduled to open the hatches between the Soyuz and ISS at about 11:15 p.m. EDT/315 GMT this evening after conducting pressure, leak and safety checks.
The arrival of Kelly, Kornienko and Padalka returns the massive orbiting outpost to its full six person crew complement.
The trio joins the current three person station crew comprising Expedition 43 commander Terry Virts of NASA, as well as flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November 2014.
“Welcome aboard #Soyuz TMA-16M with Genna, Scott, and Misha- we just had a succesful docking,” tweeted Virts this evening post docking.
The 1 Year mission will provide baseline knowledge to NASA and its station partners – Roscosmos, ESA, CSA, JAXA – on how to prepare to send humans on lengthy deep space missions to Mars and other destinations in our Solar System.
A round-trip journey to Mars is likely to last three years or more! So we must determine how humans and their interactions can withstand the rigors of very long trips in space, completely independent of Earth.
Astronaut Scott Kelly will become the first American to live and work aboard the orbiting laboratory for a year-long mission and set a new American duration record.
Scott Kelly and Russian Cosmonauts Kornienko and Padalka are all veteran space fliers.
They have been in training for over two years since being selected in Nov. 2012.
No American has ever spent anywhere near a year in space. Four Russian cosmonauts – Valery Polyakov, Sergei Avdeyev, Vladimir Titov and Musa Manarov – conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.
Kelly and Kornienko will stay aboard the ISS until March 3, 2016, when they return to Earth on the Soyuz TMA-18M after 342 days in space. Kelly’s combined total of 522 days in space, will enable him to surpass current U.S. record holder Mike Fincke’s mark of 382 days.
Padalka will return in September after a six month stint, making him the world’s most experienced spaceflyer with a combined five mission total of 878 days in space.
They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological and biomedical challenges faced by astronauts during long-duration space flight, as well as the long term effects of weightlessness and space radiation on the human body.
Another very unique science aspect of the mission involves comparative medical studies with Kelly’s identical twin brother, former NASA astronaut and shuttle commander Mark Kelly.
“They will participate in a number of comparative genetic studies, including the collection of blood samples as well as psychological and physical tests. This research will compare data from the genetically identical Kelly brothers to identify any subtle changes caused by spaceflight,” says NASA.
Scott Kelly is a veteran NASA Space Shuttle commander who has previously flown to space three times aboard both the Shuttle and Soyuz. He also served as a space station commander during a previous six-month stay onboard.
Good luck and Godspeed to Kelly, Kornienko and Padalka – starting humanity on the road to Mars !!
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Soyuz Spacecraft Rolled Out For Launch of One-Year Crew
The Soyuz TMA-16M spacecraft is seen after having rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Wednesday, March 25, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka of the Russian Federal Space Agency (Roscosmos) are scheduled to launch to the International Space Station in the Soyuz at 3:42 p.m. EDT, Friday, March 27 (March 28, Kazakh time). Credit: NASA/Bill Ingalls Watch live on NASA TV link below[/caption]
At long last, the first ever crew embarking on a 1 year mission to the International Space Station (ISS) – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko (both veterans) – is slated for blastoff just hours from now aboard a Soyuz capsule from the Baikonur Cosmodrome, Kazakhstan.
The history making launch is scheduled for 3:42 p.m. EDT/1942 GMT Friday, March 27 (March 28, Kazakh time) – with veteran Russian cosmonaut Gennady Padalka rounding out the three man crew of Expedition 43.
The Soyuz spacecraft and rocket have been rolled out to the launch pad for the one-year crew. The crew is boarding the Soyuz.
You can watch the launch live on NASA TV today. Click on this link: http://www.nasa.gov/multimedia/nasatv/index.html
NASA TV live launch coverage begins at 2:30 p.m. EDT.
The crew will rendezvous and dock at the ISS at the Poisk module around 9:36 p.m EDT – only about four orbits and six hours after liftoff.
Hatch opening is schedule for about 11:15 p.m. EDT this evening.
The one-year mission represents concrete first steps toward start fulfilling NASA’s “Journey to Mars” objective and sending “Humans to Mars” in the 2030s.
“The one-year mission in space, tests the limits of human research, space exploration and the human spirit,” says NASA.
The pathfinding mission is about double the normal time of most expeditions to the Earth orbiting space station, which last four to six months.
The goal is to provide critical knowledge to NASA and researchers hoping to better understand how the human body reacts and adapts to long-duration spaceflight.
The 1 Year mission will provide baseline knowledge to NASA and its station partners – Roscosmos, ESA, CSA, JAXA – on how to prepare to send humans on lengthy deep space mission to Mars and other destinations into our Solar System.
Astronaut Scott Kelly will become the first American to live and work aboard the orbiting laboratory for a year-long mission and set a new American record.
Scott Kelly and Russian Cosmonauts Kornienko and Padalka are all veteran spacefliers.
They have been in training for over two years since being selected in Nov. 2012.
No American has ever spent anywhere near a year in space. 4 Russian cosmonauts conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.
Kelly and Kornienko will stay aboard the ISS until March 3, 2016, when they return to Earth on the Soyuz TMA-18M after 342 days in space. Kelly’s combined total of 522 days in space, will enable him to surpass current U.S. record holder Mike Fincke’s mark of 382 days.
Padalka will return in September after a six month stint, making him the world’s most experienced spaceflyer with a combined five mission total of 878 days in space.
They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological and biomedical challenges faced by astronauts during long-duration space flight.
Kelly is a veteran NASA Space Shuttle commander who has previously flown to space aboard both the Shuttle and Soyuz. He also served as a space station commander during a previous six-month stay onboard.
Kelly was recently featured in a cover story at Time magazine.
President Obama gave a shout out to NASA Astronaut Scott Kelly and his upcoming 1 year mission to the International Space Station (ISS) at the 2015 State of the Union address to the US Congress on Tuesday evening, Jan. 20, 2015.
Kelly’s flight will pave the way for NASA’s goal to send astronaut crews to Mars by the 2030s. They will launch in the Orion crew vehicle atop the agencies mammoth new Space Launch System (SLS) rocket, simultaneously under development.
Read my coverage of Orion and SLSprogress to stay up to date – including first hand from onsite at the Kennedy Space Center press site for the launch of Orion EFT-1 on Dec. 5, 2015.
Good luck and Godspeed to Kelly, Kornienko and Padalka – starting on the road to Mars !!
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our Sun fuses hydrogen into helium in a battle against gravitational collapse. This balancing act produces energy via the proton-proton chain process, which in turn, fuels the drama of life on Earth.
Looking out into the universe, we see stars that are much more brash and impulsive, such as red dwarf upstarts unleashing huge planet-sterilizing flares, and massive stars destined to live fast and die young.
Our Sun gives us the unprecedented chance to study a star up close, and our modern day technological society depends on keeping a close watch on what the Sun might do next. But did you know that some of the key mechanisms powering the solar cycle are still not completely understood?
One such mystery confronting solar dynamics is exactly what drives the periodicity related to the solar cycle. Follow our star with a backyard telescope over a period of years, and you’ll see sunspots ebb and flow in an 11 year period of activity. The dazzling ‘surface’ of the Sun where these spots are embedded is actually the photosphere, and using a small telescope tuned to hydrogen-alpha wavelengths you can pick up prominences in the warmer chromosphere above.
This cycle is actually is 22 years in length (that’s 11 years times two), as the Sun flips polarity each time. A hallmark of the start of each solar cycle is the appearance of sunspots at high solar latitudes, which then move closer to the solar equator as the cycle progresses. You can actually chart this distribution in a butterfly diagram known as a Spörer chart, and this pattern was first recognized by Gustav Spörer in the late 19th century and is known as Spörer’s Law.
We’re currently in the midst of solar cycle #24, and the measurement of solar cycles dates all the way back to 1755. Galileo observed sunspots via projection (the tale that he went blind observing the Sun in apocryphal). We also have Chinese records going back to 364 BC, though historical records of sunspot activity are, well, spotty at best. The infamous Maunder Minimum occurred from 1645 to 1717 just as the age of telescopic astronomy was gaining steam. This dearth of sunspot activity actually led to the idea that sunspots were a mythical creation by astronomers of the time.
But sunspots are a true reality. Spots can grow larger than the Earth, such as sunspot active region 2192, which appeared just before a partial solar eclipse in 2014 and could be seen with the unaided (protected) eye. The Sun is actually a big ball of gas, and the equatorial regions rotate once every 25 days, 9 days faster than the rotational period near the poles. And speaking of which, it is not fully understood why we never see sunspots at the solar poles, which are tipped 7.25 degrees relative to the ecliptic.
Other solar mysteries persist. One amazing fact about our Sun is the true age of the sunlight shining in our living room window. Though it raced from the convective zone and through the photosphere of the Sun at 300,000 km per second and only took 8 minutes to get to your sunbeam-loving cat here on Earth, it took an estimated 10,000 to 170,000 years to escape the solar core where fusion is taking place. This is due to the terrific density at the Sun’s center, over seven times that of gold.
Another amazing fact is that we can actually model the happenings on the farside of the Sun utilizing a new fangled method known as helioseismology.
Another key mystery is why the current solar cycle is so weak… it has even been proposed that solar cycle 25 and 26 might be absent all together. Are there larger solar cycles waiting discovery? Again, we haven’t been watching the Sun close enough for long enough to truly ferret these ‘Grand Cycles’ out.
Are sunspot numbers telling us the whole picture? Sunspot numbers are calculated using formula that includes a visual count of sunspot groups and the individual sunspots in them that are currently facing Earthward, and has long served as the gold standard to gauge solar activity. Research conducted by the University of Michigan in Ann Arbor in 2013 has suggested that the orientation of the heliospheric current sheet might actually provide a better picture as to the goings on of the Sun.
Another major mystery is why the Sun has this 22/11 year cycle of activity in the first place. The differential rotation of the solar interior and convective zone known as the solar tachocline drives the powerful solar dynamo. But why the activity cycle is the exact length that it is is still anyone’s guess. Perhaps the fossil field of the Sun was simply ‘frozen’ in the current cycle as we see it today.
Color us skeptical on these ideas. Although Jupiter accounts for over 70% of the planetary mass in the solar system, it’s 1/1000th as massive as the Sun. The barycenter of Jupiter versus the Sun sits 36,000 kilometres above the solar surface, tugging the Sun at a rate of 12.4 metres per second.
I suspect this is a case of coincidence: the solar system provides lots of orbital periods of varying lengths, offering up lots of chances for possible mutual occurrences. A similar mathematical curiosity can be seen in Bode’s Law describing the mathematical spacing of the planets, which to date, has no known basis in reality. It appears to be just a neat play on numbers. Roll the cosmic dice long enough, and coincidences will occur. A good test for both ideas would be the discovery of similar relationships in other planetary systems. We can currently detect both starspots and large exoplanets: is there a similar link between stellar activity and exoplanet orbits? Demonstrate it dozens of times over, and a theory could become law.