Astronomy Cast Ep. 360: Modern Women: Jocelyn Bell Burnell

Jocelyn Bell Burnell Credit: spscongress.org

Jocelyn Bell Burnell is an Irish astronomer, best known for being part of the team that discovered pulsars, and the following controversy when she was excluded from the Nobel Prize winning team.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

The Science of Heat Transfer: What Is Conduction?

Diagram showing the transfer of thermal energy via conduction. Credit: Boundless

Heat is an interesting form of energy. Not only does it sustain life, make us comfortable and help us prepare our food, but understanding its properties is key to many fields of scientific research. For example, knowing how heat is transferred and the degree to which different materials can exchange thermal energy governs everything from building heaters and understanding seasonal change to sending ships into space.

Heat can only be transferred through three means: conduction, convection and radiation. Of these, conduction is perhaps the most common, and occurs regularly in nature. In short, it is the transfer of heat through physical contact. It occurs when you press your hand onto a window pane, when you place a pot of water on an active element, and when you place an iron in the fire.

This transfer occurs at the molecular level — from one body to another — when heat energy is absorbed by a surface and causes the molecules of that surface to move more quickly. In the process, they bump into their neighbors and transfer the energy to them, a process which continues as long as heat is still being added.

Heat conduction occurs through any material, represented here by a rectangular bar. The temperature of the material is T2 on the left and T1 on the right, where T2 is greater than T1. The rate of heat transfer by conduction is directly proportional to the surface area A, the temperature difference T2?T1, and the substance's conductivity k. The rate of heat transfer is inversely proportional to the thickness d. Credit: Boundless
Heat conduction occurs through any material, represented here by a rectangular bar. The rate at which it is transfers depends in part on the thickness of the material (rep. by A). Credit: Boundless

The process of heat conduction depends on four basic factors: the temperature gradient, the cross section of the materials involved, their path length, and the properties of those materials.

A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes in a specific location. Temperature always flows from the hottest to coldest source, due to the fact that cold is nothing but the absence of heat energy. This transfer between bodies continues until the temperature difference decays, and a state known as thermal equilibrium occurs.

Cross-section and path length are also important factors. The greater the size of the material involved in the transfer, the more heat is needed to warm it. Also, the more surface area that is exposed to open air, the greater likelihood for heat loss. So shorter objects with a smaller cross-section are the best means of minimizing the loss of heat energy.

Last, but certainly not least, is the physical properties of the materials involved. Basically, when it comes to conducting heat, not all substances are created equal. Metals and stone are considered good conductors since they can speedily transfer heat, whereas materials like wood, paper, air, and cloth are poor conductors of heat.

Conduction, as demonstrated by heating a metal rod with a flame. Credit: Thomson Higher Education
Conduction, as demonstrated by heating a metal rod with a flame. Credit: Thomson Higher Education

These conductive properties are rated based on a “coefficient” which is measured relative to silver. In this respect, silver has a coefficient of heat conduction of 100, whereas other materials are ranked lower. These include copper (92), iron (11), water (0.12), and wood (0.03). At the opposite end of the spectrum is a perfect vacuum, which is incapable of conducting heat, and is therefore ranked at zero.

Materials that are poor conductors of heat are called insulators. Air, which has a conduction coefficient of .006, is an exceptional insulator because it is capable of being contained within an enclosed space. This is why artificial insulators make use of air compartments, such as double-pane glass windows which are used for cutting heating bills. Basically, they act as buffers against heat loss.

Feather, fur, and natural fibers are all examples of natural insulators. These are materials that allows birds, mammals and human beings to stay warm. Sea otters, for example, live in ocean waters that are often very cold and their luxuriously thick fur keeps them warm. Other sea mammals like sea lions, whales and penguins rely on thick layers of fat (aka. blubber) – a very poor conductor – to prevent heat loss through their skin.

This view of the nose, the forward underside and crew cabin of the space shuttle Discovery was provided by an Expedition 26 crew member during a survey of the approaching STS-133 vehicle prior to docking with the International Space Station. Credit: NASA
This view of the nose section of space shuttle Discovery, build of heat-resistance carbon-composites. Credit: NASA

This same logic is applied to insulating homes, buildings, and even spacecraft. In these cases, methods involve either trapped air pockets between walls, fiber-glass (which traps air within it) or high-density foam. Spacecraft are a special case, and use insulation in the form of foam, reinforced carbon composite material, and silica fiber tiles. All of these are poor conductors of heat, and therefore prevent heat from being lost in space and also prevent the extreme temperatures caused by atmospheric reentry from entering the crew cabin.

See this video demonstration of the heat tiles on the Space Shuttle:

The laws governing conduction of heat are very similar to Ohm’s Law, which governs electrical conduction. In this case, a good conductor is a material that allows electrical current (i.e. electrons) to pass through it without much trouble. An electric insulator, by contrast, is any material whose internal electric charges do not flow freely, and therefore make it very hard to conduct an electric current under the influence of an electric field.

In most cases, materials that are poor conductors of heat are also poor conductors of electricity. For instance, copper is good at conducting both heat and electricity, hence why copper wires are used so widely in the manufacture of electronics. Gold and silver are even better, and where price is not an issue, these materials are used in the construction of electrical circuits as well.

And when one is looking to “ground” a charge (i.e. neutralize it), they send it through a physical connection to the Earth, where the charge is lost. This is common with electrical circuits where exposed metal is a factor, ensuring that people who accidentally come into contact are not electrocuted.

Insulating materials, such as rubber on the soles of shoes, is worn to ensure that people working with sensitive materials or around electrical sources are protected from electrical charges. Other insulating materials like glass, polymers, or porcelain are commonly used on power lines and high-voltage power transmitters to keep power flowing to the circuits (and nothing else!)

In short, conduction comes down to the transfer of heat or the transfer of an electrical charge. Both happen as a result of a substance’s ability to allow molecules to transfer energy across them.

We have written many articles about conduction for Universe Today. Check out this article on the first law of thermodynamics, or this one on static electricity.

If you’d like more info on the conduction, check out BBC’s article about Heat Transfer, and here’s a link to The Physics Hypertextbook.

We’ve also recorded an entire episode of Astronomy Cast about Magnetism – Episode 42: Magnetism Everywhere.

Meet the New Horizons Team in a Live Google+ Hangout

New Horizons Google Hangout
New Horizons Google Hangout

NASA’s New Horizons spacecraft just woke up from its long nap, and now it’s on final approach towards its next destination: Pluto. Over the next few months, Pluto will be getting bigger and bigger in the front window; we’ll finally get our first close-up look at this mysterious icy world on July 14, 2015.

In order to celebrate this momentous occasion, the New Horizons science team will be doing a live Google+ Hangout with Universe Today on Wednesday, December 10th at 1 pm PST / 4 pm EST.

Universe Today publisher Fraser Cain will moderate a discussion with New Horizons Principal Investigator Alan Stern, and other members of the science team: Jason Cook, Alex Parker, Simon Porter, Kelsi Singer, and Amanda Zangari.

We’ll be talking about the status of New Horizons, the science objectives of the mission, and answering questions from viewers.

Want to watch?

Click here to go to the Hangout page on Google+. Click “Yes” on the Event page and you’ll get a reminder in your calendar when we’re about to begin.

Recent Universe Today articles on New Horizon:
Pluto Spacecraft Wakes Up For An Exciting Close Encounter Next Year
Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft
New Horizons Sights Tiny Pluto Moon As Spacecraft Races Toward Dwarf Planet

Spectroscopy: The Key to Humanity’s Future in Space

Credit: NASA/JPL/CalTECH/IPAC

Imagine, if you would, a potential future for humanity… Imagine massive space-elevators lifting groups of men, women, and children skyward off Earth’s surface. These passengers are then loaded onto shuttles and ferried to the Moon where interstellar starships are docked, waiting to rocket to the stars. These humans are about to begin the greatest journey humanity has ever embarked upon, as they will be the first interstellar colonists to leave our home Solar System in order to begin populating other worlds around alien stars.

There are many things we must tackle first before we can make this type of science-fiction scene a reality. Obviously much faster methods of travel are needed, as well as some sort of incredible material that can serve to anchor the aforementioned space elevators. These are all scientific and engineering questions that humanity will need to overcome in the face of such a journey into the cosmos.

But there is one particular important feature that we can begin to tackle today: where do we point these starships? Towards which system of exoplanets are we to send our brave colonists?

Of all of the amazing things we need to discover or invent to make this scene a reality, discovering which worlds to aim our ships at is something that is actually being worked on today.

Artistic view of a possible space elevator. Image Credit: NASA
Artistic view of a possible space elevator. Image Credit: NASA

It’s an exciting era in astronomy, as astronomers are currently discovering that many of the stars that we view in the night sky have their own planets in orbit around them. Many of them are massive worlds, all orbiting at varying distances from their parent star. It is no surprise that we are discovering a vast majority of these Jupiter-sized worlds first; larger worlds are much easier to detect than the smaller worlds would be. Imagine a bright spotlight pointing at you some 500 yards away (5 football fields). Your job is to detect something the size of a period on this page that is orbiting around it that emits no light of its own. As you can see, the task would be daunting. But nevertheless, our planet hunters have been utilizing methods that enable us to accurately find these tiny specks of gas and rock despite their rather large and luminous companion suns.

However, it is not the method of finding these planets that this article is about; but rather what we do to figure out which of these worlds are worthy of our limited resources and attention. We very well cannot point those starships in random directions and just hope that they happen across an earth-sized planet that has a nitrogen-oxygen rich atmosphere with drinkable water. We need to identify which planets appear to have these mentioned characteristics before we go launching ourselves into the vast universe.

How can we do this? How is it possible that we are able to say with any level of certainty what a planet’s atmosphere is composed of when this planet is so small and so very far away? Spectroscopy is the answer, and it just might be the key to our future in the cosmos.

Artistic impression of what Kepler-186f may look like. Image Credit:  NASA Ames/SETI Institute/JPL-CalTech
Artistic impression of what Kepler-186f may look like. Image Credit: NASA Ames/SETI Institute/JPL-CalTech

Just so I may illustrate how remarkable our scientific methods are for this very field of research, I will first need to show you the distances we are talking about. Let’s take Kepler 186f. This is the first planet we have discovered that is very similar to Earth. It is around 1.1 times larger than Earth and orbits within the habitable zone of its star which is very similar to our own star.

Let’s do the math, to show you just how distant this planet is. Kepler 186f is around 490 lightyears from Earth.

Kepler 186f = 490 lightyears away

Light moves at 186,282 miles/ 1 second.

186,282 mi/s x 60s/1min x 60min/1hr x 24hrs/1day x 356days/1year = 5.87 x 1012 mi/yr

Kepler 186f: 490 Lyrs x 5.87 x 1012miles/ 1 Lyr = 2.88 x 1015 miles or 2.9 QUADRILLION MILES from Earth.

Just to put this distance into perspective, let’s suppose we utilize the fastest spacecraft we have to get there. The Voyager 1 spacecraft is moving at around 38,500 mi/hr. If we left on that craft today and headed towards this possible future Earth, it would take us roughly 8.5 MILLION YEARS to get there. That’s around 34 times longer than the time between when the first proto-humans began to appear on earth 250,000 years ago until today. So the entire history of human evolution from then till now replayed 34 times BEFORE you would arrive at this planet. Knowing these numbers, how is it even possible that we can know what this planet’s atmosphere, and others like it, are made of?

First, here’s a bit of chemistry in order for you to understand the field that is spectroscopy, and then how we apply it to the astronomical sciences. Different elements are composed of a differing number of protons, neutrons, and electrons. These varying numbers are what set the elements apart from one another on the periodic table. It is the electrons, however, that are of particular interest in the majority of what chemistry studies. These different electron configurations allow for what we call spectral signatures to exist among the elements. This means that since every single element has a specific electron configuration, the light that it both absorbs and emits acts as a sort of photon fingerprint; a unique identifier to that element.

A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net
A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net

 

The standard equation for determining the characteristics of light is:

c= v λ

c is the speed of light in a vacuum (3.00 x 108 m/s)

v  is the frequency of the light wave (in Hertz)

λ (lambda) represents the wavelength (in meters, but will usually be converted to nanometers) which will determine what color of light will be emitted from the element(s), or simply where the wavelength of light falls on the electromagnetic spectrum (infrared, visible, ultraviolet, etc.)

If you have either the frequency or the wavelength, you can determine the rest. You can even start with the energy of the light being detected by your instruments and then work backwards with the following equations:

The energy of a photon can be described mathematically as this:

Ephoton = h v
OR
Ephoton = h c / λ

What these mean is that the energy of a photon is the product of the frequency (v) of the light wave emitted multiplied by Planck’s Constant (h), which is 6.63 x 10-34 Joules x seconds. Or in the case of the second equation, the energy of the photon is equal to Planck’s Constant x the speed of light divided by the wavelength. This will give you the amount of energy that a specific wavelength of light contains. This equation is also known as the Planck-Einstein Relation. So, if you take a measurement and you are given a specific energy reading of the light coming from a distant star, you can then deduce what information you need about said light and determine which element(s) are either emitting or absorbing these wavelengths. It’s all mathematical detective work.

So, the electrons that orbit around the nucleus of atoms exist in what we call orbitals. Depending on the atom (and the electrons associated with it), there are many different orbitals. You have the “ground” orbital for the electron, which means that the electron(s) there are closest to the nucleus. They are “non-excited”. However, there are “higher” quantum orbitals that exist that the electron(s) can “jump” to when the atom is excited. Each orbital can have different quantum number values associated with it. The main value we will use is the Principle Quantum Number. This is denoted by the letter “n”, and has an assigned integer value of 1, 2, 3, etc. The higher the number, the further from the nucleus the electron resides, and the more energy is associated with it. This is best described with an example:

A hydrogen atom has 1 electron. That electron is whipping around its 1 proton nucleus in its ground state orbital. Suddenly, a burst of high energy light hits the hydrogen. This energy is transferred throughout the hydrogen atom, and the electron reacts. The electron will instantaneously “vanish” from the n1 orbital and then reappear on a higher quantum orbital (say n4). This means that as that light wave passed over this hydrogen atom, a specific wavelength was absorbed by the hydrogen (this is an important feature to remember for later).

Diagram of an electron dropping from a higher orbital to a lower one and emitting a photon. Image Credit: Wikicommons
Diagram of an electron dropping from a higher orbital to a lower one and emitting a photon. Image Credit: Wikimedia Commons

Eventually, the “excited” electron will drop from its higher quantum orbital (n4) back down to the n1 orbital. When this happens, a specific wavelength of light is emitted by the hydrogen atom. When the electron “drops”, it emits a photon of specific energy or wavelength (dependent upon many factors, including the state the electron was in prior to its “excitement”, the amount of levels the electron dropped, etc.) We can then measure this energy (or wavelength, or frequency,) to determine what element the photon is coming from (in this case, hydrogen). It is in this feature that each element has its own light signature. Each atom can absorb and emit specific wavelengths of light, and they are all tied together by the equations listed above.

So how does this all work? Well, in reality, there are many factors that go into this sort of astronomical study. I am simply describing the basic principle behind the work. I say this so that the many scientists that are doing this sort of work do not feel as though I have discredited their research and hard work; I promise you, it is painstakingly difficult and tedious and involves many more details that I am not mentioning here. That being said, the basic concept works like this:

We find a star that gives off the telltale signs that it has a planet orbiting around it. We do this with a few methods, but how it all first started was by detecting a “wobble” in the star’s apparent position. This “wobble” is caused by a planet orbiting around its parent star. You see, when a planet orbits a star (and when anything orbits anything else), the planet isn’t really orbiting the star, the planet AND the star are orbiting a common focal point. Usually with this type of orbital system, that common focal point is fairly close to the center of the star, and thus it’s safe to say that the planet orbits the star. However, this causes the star to move ever so slightly. We can measure this.

Once we determine that there are planets orbiting the star in question, we can study it more closely. When we do, we turn our instruments towards it and begin taking highly detailed measurements, and then we wait. What we are waiting for is a dimming of the star at a regular interval. What we are hoping for is this newly-found exoplanet to transit our selected star. When a planet transits a star, it moves in front of the star relative to us (this also means we are incredibly lucky, as not all planets will orbit “in front” of the star relative to our view). This will cause the star’s brightness to dip ever so slightly at a regular interval. Now we have identified a prime exoplanet candidate for study.

Diagram of how we can use aborbstion specral reading to determine the atmosphere of an exoplanet. Image Credit: A. Feild, STScl, NASA
Diagram of how we can use absorption spectral reading to determine the atmosphere of an exoplanet. Image Credit: A. Feild, STScl, NASA

We can now introduce the spectroscopic principles to this hunt. We can take all sorts of measurements of the light that is coming from this star. Its brightness, the energy it’s kicking out per second, and even what that star is made of (the emission spectrum I discussed earlier). Then what we do is wait for the planet to transit the start, and begin taking readings. What we are doing is reading the light passing THROUGH the exoplanet’s atmosphere, and then studying what we can call an Absorption Spectrum reading. As I mentioned earlier, specific elements will absorb specific wavelengths of light. What we get back is a spectral reading of the star’s light signature (the emission spectra of the star), but with missing wavelengths that show up as very tiny black lines where there used to be color. These are called Fraunhofer lines, named after the “father” of astrophysics Joseph Fraunhofer, who discovered these lines in the 19th century.

The dark lines represent the light frequencies that were absorbed by specific chemicals that this particular light passed through. Image Credit: Wikimedia Commons
The dark lines represent the light frequencies that were absorbed by specific chemicals that this particular light passed through. Image Credit: Wikimedia Commons

What we now have in our possession is a chemical fingerprint of what this exoplanet’s atmosphere is composed of. The star’s spectrum is splayed out before us, but the barcode of the planet’s atmospheric composition lay within the light. We can then take those wavelengths that are missing and compare them to the already established absorption/emission spectra of all of the known elements. In this way, we can begin to piece together what this planet has to offer us. If we get high readings of sulfur and hydrogen, we have probably just discovered a gas giant. However if we discover a good amount of nitrogen and oxygen, we may have found a world that has liquid water on its surface (provided that this planet resides within its host star’s “habitable” zone: a distance that is just far enough from the star to allow for liquid water). If we find a planet that has carbon dioxide in its atmosphere, we may just have discovered alien life (CO2 being a waste product of both cellular respiration and a lot of industrial processes, but it can also be a product of volcanism and other non-organic phenomena).

What this all means is that by being able to read the light from any given object, we can narrow our search for the next Earth. Regardless of distance, if we can obtain an accurate measurement of the light moving through an exoplanet’s atmosphere, we can tell what it is made of.

We have discovered some 2000 exoplanets thus far, and that number will only increase in the coming decades. With so many candidates, it will be a wonder if we do not find a planet that we humans can live on without the help of technology. Obviously our techniques will further be refined, and as new technologies, methods, and instruments become available, our ability to pinpoint planets that we can someday colonize will become increasingly more accurate.

With such telescopes like the James Webb Space Telescope launching soon, we will be able to image these exoplanets and get even better spectroscopic readings from them. This type of science is on the leading edge of humanity’s journey into the cosmos. Astrophysicists and astrochemists that work in this field are the necessary precursors to the brave men and women who will one day board those interstellar spacecraft and launch our civilization into the Universe to truly become an interstellar species.

Possible glimpse into our future... Image Credit: Battlestar Wiki Media
Possible glimpse into our future… Image Credit: Battlestar Wiki Media

Carnival of Space #383

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Allen Versfeld at his Urban Astronomer blog.

Click here to read Carnival of Space #383.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

How Do We Measure Distance in the Universe?

How Do We Measure Distance in the Universe?

This star is X light-years away, that galaxy is X million light-years away. That beginning the Universe is X billion light-years away. But how do astronomers know?

I’m perpetually in a state where I’m talking about objects which are unimaginably far away. It’s pretty much impossible to imagine how huge some our Universe is. Our brains can comprehend the distances around us, sort of, especially when we’ve got a pile of tools to help. We can measure our height with a tape measure, or the distance along the ground using an odometer. We can get a feel for how far away 100 kilometers is because we can drive it in a pretty short period of time.

But space is really big, and for most of us, our brains can’t comprehend the full awesomeness of the cosmos, let alone measure it. So how do astronomers figure out how far away everything is? How do they know how far away planets, stars, galaxies, and even the edge of the observable Universe is? Assuming it’s all trickery? You’re bang on.

Astronomers have a bag of remarkably clever tricks and techniques to measure distance in the Universe. For them, different distances require a different methodologies. Up close, they use trigonometry, using differences in angles to puzzle out distances. They also use a variety of standard candles, those are bright objects that generate a consistent amount of light, so you can tell how far away they are. At the furthest distances, astronomers use expansion of space itself to detect distances.

Fortunately, each of these methods overlap. So you can use trigonometry to test out the closest standard candles. And you can use the most distant standard candles to verify the biggest tools. Around our Solar System, and in our neighborhood of the galaxy, astronomers use trigonometry to discover the distance to objects.

They measure the location of a star in the sky at one point of the year, and then measure again 6 months later when the Earth is on the opposite side of the Solar System. The star will have moved a tiny amount in the sky, known as parallax. Because we know the distance from one side of the Earth’s orbit to the other, we can calculate the angles, and compute the distance to the star.

I’m sure you can spot the flaw, this method falls apart when the distance is so great that the star doesn’t appear to move at all. Fortunately, astronomers shift to a different method, observing a standard candle known as a Cepheid variable. These Cepheids are special stars that dim and brighten in a known pattern. If you can measure how quickly a Cepheid pulses, you can calculate its true luminosity, and therefore its distance.

Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe.. Credit: NASA.
Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe. Credit: NASA.

Cepheids let you measure distances to nearby galaxies. Out beyond a few dozen megaparsecs, you need another tool: supernovae. In a very special type of binary star system, one star dies and becomes a white dwarf, while the other star lives on. The white dwarf begins to feed material off the partner star until it hits exactly 1.4 times the mass of the Sun. At this point, it detonates as a Type 1A supernova, generating an explosion that can be seen halfway across the Universe. Because these stars always explode with exactly the same amount of material, we can detect how far away they are, and therefore their absolute brightness.

At the greatest scales, astronomers use the Hubble Constant. This is the discovery by Edwin Hubble that the Universe is expanding in all directions. The further you look, the faster galaxies are speeding away from us. By measuring the redshift of light from a galaxy, you can tell how fast it’s moving away from us, and thus its approximate distance. At the very end of this scale is the Cosmic Microwave Background Radiation, the edge of the observable Universe, and the limit of how far we can see.

Astronomers are always looking for new types of standard candles, and have discovered all kinds of clever ways to measure distance. They measure the clustering of galaxies, beams of microwave radiation from stars, and the surface of red giant stars – all in the hopes of verifying the cosmic distance ladder. Measuring distance has been one of the toughest problems for astronomers to crack and their solutions have been absolutely ingenious. Thanks to them, we can have a sense of scale for the cosmos around us.

What concept in astronomy do you have the hardest time holding in your brain? Tell us, in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Our Space Future Is Terrific And Terrifying, New Sci-Fi Short Says

A still from the short film "Cinema Space Tribute", which combines several science-fiction films to portray different visions of space. Credit: Max Shishkin/Vimeo (screenshot)

This new space film called “Cinema Space Tribute” combines visions from several sci-fi franchises to show us what space exploration could look like. Will we gracefully explore the moons of Jupiter and far space? Or is it more a reality where we fear the death that lurks behind every action?

Max Shiskin pulls together an impressive list of franchises to show us some fictional versions of space exploration. Backdropped by the soundtrack for Interstellar, you see quick glimpses of ships from Star Trek and Battlestar: Galactica and Star Wars and many more. He even throws in some you might not think of right away, like Man of Steel and Transformers: Dark of the Moon.

There are some neat synergies between the franchises, including a seeming obsession with circles, that Shiskin also shows off in the video. It’s definitely worth four minutes of your time to watch.

 

New Research Suggests Better Ways To Seek Out Pale Blue Dots

Artist’s impression of how an an Earth-like exoplanet might look. Credit: ESO.

The search for worlds beyond our own is one of humankind’s greatest quests. Scientists have found thousands of exoplanets orbiting other stars in the Milky Way, but are still ironing out the details of what factors truly make a planet habitable. But thanks to researchers at Cornell University, their search may become a little easier. A team at the Institute for Pale Blue Dots has zeroed in on the range of habitable orbits for very young Earth-like planets, giving astronomers a better target to aim at when searching for rocky worlds that contain liquid water and could support the evolution of life.

The Habitable Zone (HZ) of a star is its so-called “Goldilocks region,” the not-too-hot, not-too-cold belt within which liquid water could exist on orbiting rocky planets. Isolating planets in the HZ is the primary objective for scientists hoping to find evidence of life. Until now, astronomers have mainly been searching for worlds that lie in the HZ of stars that are in the prime of their lives: those that are on the Main Sequence, the cosmic growth chart for stellar evolution. According to the group at Cornell, however, scientists should also be looking at cooler, younger stars that have not yet reached such maturity.

The increased distance of the Habitable Zone from pre-main sequence stars makes it easier to spot infant Earths. Credit: Astrophysical Journal Letters.
The increased distance of the Habitable Zone from pre-main sequence stars makes it easier to spot infant Earths. Credit: Astrophysical Journal Letters.

As shown in the figure above, cool stars in classes F, G, K, and M are more luminous in their pre-Main Sequence stage than they are once they mature. Planets that circle around such bright stars tend to have more distant orbits than those that accompany dimmer stars, making transits more visible and providing a larger HZ for astronomers to probe. In addition, the researchers found that fledgling planets can spend up to 2.5 billion years in the HZ of a young M-class star, a period of time that would allow ample time for life to flourish.

But just because liquid water could exist on a planet doesn’t mean that it does. A rocky planet must first acquire water, and then retain it long enough for life to develop. The Cornell group found that a watery world could lose its aqueous environment to a runaway greenhouse effect if if forms too close to a cool parent star, even if the planet was on course to eventually stray into the star’s HZ. These seemingly habitable planets would have to receive a second supply of water later on in order to truly support life. “Our own planet gained additional water after this early runaway phase from a late, heavy bombardment of water-rich asteroids,” offered Ramses Ramirez, one author of the study. “Planets at a distance corresponding to modern Earth or Venus orbiting these cool stars could be similarly replenished later on.”

Estimations for the HZs of cool, young stars and probable amounts of water loss for exoplanets orbiting at various distances are provided in a preprint of the paper, available here. The research will be published in the January 1, 2015, issue of The Astrophysical Journal.

C/2014 Q2 Lovejoy – A Binocular Comet in Time for Christmas

Like a Christmas ornament dangling from string, Comet Lovejoy Q2 is headed north and coming into good view for northern hemisphere observers in the next two weeks. This photo was taken on November 26th. Credit: Rolando Ligustri

Hmmm. Something with a long white beard is making an appearance in northern skies this week. Could it be Santa Claus? No, a bit early for the jolly guy yet, but comet watchers will soon find a special present under the tree this season.  Get ready to unwrap Comet Lovejoy Q2, now bright enough to spot in a pair of 10×50 binoculars.

Comet Lovejoy Q2 starts out low in the southern sky below Canis Major this week but quickly zooms northward. Visibility improves with each passing night. Source: Chris Marriott's SkyMap software
Comet Lovejoy Q2 starts out low in the southern sky in Puppis this week (6° max. altitude on Dec. 9) but quickly zooms north and west with each passing night. On the night of December 28-29, the comet will pass 1/3° from the bright globular cluster M79 in Lepus. This map shows the sky and comet’s position facing south from 42° north latitude around 1:30 a.m. CST. Source: Chris Marriott’s SkyMap software

Following a rocket-like trajectory into the northern sky, this visitor from deep space is no longer reserved for southern skywatchers alone. If you live in the central U.S., Lovejoy Q2 pokes its head from Puppis in the early morning hours this week. Glowing at magnitude +7.0-7.5, it’s a faint, fuzzy cotton ball in binoculars from a dark sky and visible in telescopes as small as 3-inches (7.5 cm). With the Moon past full and phasing out of the picture, comet viewing will continue to improve in the coming nights. What fun to watch Lovejoy gradually accelerate from its present turtle-like amble to agile cheetah as it leaps from Lepus to Taurus at the rate of 3° a day later this month. Why the hurry? The comet is approaching Earth and will pass nearest our planet on January 7th at a distance of 43.6 million miles (70.2 million km). Perihelion follows some three weeks later on January 30th.

Image triplet taken by Terry Lovejoy on which he discovered the comet. The comet moves slightly counterclockwise around the larger fuzzy spot. Credit: Terry Lovejoy
Terry Lovejoy discovered the comet in this triplet of images taken on August 17th. The comet moves slightly counterclockwise around the larger fuzzy spot during the sequence. Credit: Terry Lovejoy

The new object is Australian amateur Terry Lovejoy’s 5th comet discovery. He captured images of the faint, 15th magnitude wisp on August 17th with a Celestron C-8 fitted with a CCD camera at his roll-off roof observatory in Brisbane, Australia. Comet Lovejoy Q2 has a period of about 11,500 years with an orbit steeply inclined to the plane of the Solar System (80.3°), the reason for its sharp northern climb. As December gives way to January the comet crosses from below to above the plane of the planets.

Another awesome shot of Comet Lovejoy Q2 taken on November 26, 2014. Gases in the coma fluoresce green in the Sun's ultraviolet light. Credit: Damian Peach
Another awesome shot of Comet Lovejoy Q2 taken on November 26, 2014. Gases in the coma including carbon and cyanogen fluoresce green in the Sun’s ultraviolet light. The comet’s moderately condensed coma currently measures about 8 arc minutes across or 1/4 the size of the full Moon. Credit: Damian Peach

Comet Lovejoy is expected to brighten to perhaps 5th magnitude as it approaches Earth, making it faintly visible with the naked eye from a dark sky site. Now that’s what I call a great way to start the new year!

To help you find it, use the top map to get oriented; the detailed charts (below) show stars to magnitude +8.0. Click each to enlarge and then print out a copy for use at night. Bonus! Comet Lovejoy will pass only 10 arc minutes (1/3°) south of the 8th magnitude globular cluster M79 on December 28-29 – a great opportunity for astrophotographers and observers alike. Both comet and cluster will pose side by side in the same binocular and telescopic field of view. In early January I’ll post fresh maps to help you track the comet all through next month, too.

Detailed map showing the comet tomorrow morning through December 27th in the early morning hours (CST). Stars shown to magnitude +8.0. Source: Chris Marriott's SkyMap software
Detailed map showing the comet tomorrow December 9th through December 27th in the early morning hours (CST). Stars shown to magnitude +8.0. Source: Chris Marriott’s SkyMap software
Because Comet Lovejoy rapidly moves into the evening sky by mid-late December, its position on this detailed map is shown at 10 p.m. (CST) nightly. Credit:
Because Comet Lovejoy moves rapidly into the evening sky by mid-late December, its position on this detailed map is shown for 10 p.m. (CST) nightly. Credit: Chris Marriott’s SkyMap software

Workaholic Hubble Telescope Will Eventually Burn To Death: Report

The Hubble Space Telescope viewed by the STS-125 shuttle repair crew in 2009. Credit: NASA

The Hubble Space Telescope has delivered an amazing near quarter-century of science from all over the universe. Even this year, it’s delivered results to think about: the shrinking Great Red Spot on Jupiter (see picture below), helping New Horizons hunt for flyby targets after Pluto, and enhancing our view of deep space.

But that didn’t come cheap. Four astronaut servicing missions (including one to fix a mirror that was launched with myopia) were required to keep the telescope going since 1990. Hubble has never been more scientifically productive, according to a recent NASA review, but a new article asks if Hubble is destined to die a fiery death when its orbit decays in the next eight to 10 years.

“NASA doesn’t have any official plans for upgrading the telescope, meaning its hardware will grow old and out-of-date in the coming years,” reads the article in Popular Science. “Without assistance, Hubble can’t maintain its orbit forever, and eventually Earth’s gravity will pull the telescope to a fiery death.”

That’s not to say NASA is going to abandon the cosmos — far from it. Besides NASA’s other space telescopes, the successor James Webb Space Telescope is planned to launch in 2018 to chart the universe in other wavelengths. But a review from April warns that ceasing operations of Hubble would not be prudent until James Webb is up, running, and doing its own work productively. That’s a narrow window of time considering Hubble is expected to work well until about 2020.

The Hubble Space Telescope shows the shrinking size of Jupiter's Great Red Spot in this series of images taken between 1995 and 2014. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center)
The Hubble Space Telescope shows the shrinking size of Jupiter’s Great Red Spot in this series of images taken between 1995 and 2014. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center)

The Hubble Space Telescope senior review panel submitted a report on March that overall praised the observatory’s work, and which also talked about its potential longevity. As is, Hubble is expected to work until at least 2020, the review stated. The four science instruments are expected to be more than 85% reliable until 2021, and most “critical subsystems” should exceed 80% until that same year.

The report urges that experienced hands are kept around as the telescope degrades in the coming years, but points out that Hubble has backups that should keep the observatory as a whole going for a while.

There are no single-point failure modes on Hubble that could take down the entire observatory. It has ample redundancy. Planned mitigations for numerous possible sub-system failures or degraded performance have been developed in advance via the project’s Life-Extension Initiatives campaign. Hubble will likely degrade gracefully, with loss or degradation of individual science instrument modes and individual sub-system components.

In NASA’s response to the Senior Review for several missions (including Hubble), the agency said that the telescope has been approved (budgetarily speaking) until 2016, when an incremental review will take place. Further in the future, things get murky.

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)
The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

The just-tested Orion spacecraft won’t be ready to take crews until the mid-2020s, and so far (according to the Popular Science article) the commercial crew program isn’t expected to include a servicing mission.

According to STS-125 astronaut Michael Good, who currently serves in the Commercial Crew Program, the space agency isn’t looking into the possibility of using private companies to fix Hubble, but he says there’s always a chance that could happen. “One of the reasons we’re doing Commercial Crew is to enable this capability to get into lower Earth orbit,” says Good. “But it’s certainly in the realm of possibility.”

Much can happen in a decade — maybe a surge in robotic intelligence would make an automated mission more possible — but then there is the question of priorities. If NASA chooses to rescue Hubble, are there other science goals the agency would need to push aside to accomplish it? What is best? Feel free to leave your feedback in the comments.