All the physical properties of our Universe – indeed, the fact that we even exist within a Universe that we can contemplate and explore – owe to events that occurred very early in its history. Cosmologists believe that our Universe looks the way it does thanks to a rapid period of inflation immediately before the Big Bang that smoothed fluctuations in the vacuum energy of space and flattened out the fabric of the cosmos itself.
According to current theories, however, interactions between the famed Higgs boson and the inflationary field should have caused the nascent Universe to collapse. Clearly, this didn’t happen. So what is going on? Scientists have worked out a new theory: It was gravity that (literally) held it all together.
The interaction between the curvature of spacetime (more commonly known as gravity) and the Higgs field has never been well understood. Resolving the apparent problem of our Universe’s stubborn existence, however, provides a good excuse to do some investigating. In a paper published this week in Physical Review Letters, researchers from the University of Copenhagen, the University of Helsinki, and Imperial College London show that even a small interaction between gravity and the Higgs would have been sufficient to stave off a collapse of the early cosmos.
The researchers modified the Higgs equations to include the effect of gravity generated by UV-scale energies. These corrections were found to stabilize the inflationary vacuum at all but a narrow range of energies, allowing expansion to continue and the Universe as we know it to exist… without the need for new physics beyond the Standard Model.
This new theory is based on the controversial evidence of inflation announced by BICEP2 earlier this summer, so its true applicability will depend on whether or not those results turn out to be real. Until then, the researchers are hoping to support their work with additional observational studies that seek out gravitational waves and more deeply examine the cosmic microwave background.
At this juncture, the Higgs-gravity interaction is not a testable hypothesis because the graviton (the particle that handles all of gravity’s interactions) itself has yet to be detected. Based purely on the mathematics, however, the new theory presents an elegant and efficient solution to the potential conundrum of why we exist at all.
Asteroids and comets have a few things in common. They are both celestial bodies orbiting our Sun, and they both can have unusual orbits, sometimes straying close to Earth or the other planets. They are both “leftovers” — made from materials from the formation of our Solar System 4.5 billion years ago. But there are a few notable differences between these two objects, as well. The biggest difference between comets and asteroids, however, is what they are made of.
While asteroids consist of metals and rocky material, comets are made up of ice, dust, rocky materials and organic compounds. When comets get closer to the Sun, they lose material with each orbit because some of their ice melts and vaporizes. Asteroids typically remain solid, even when near the Sun.
Right now, the majority of asteroids reside in the asteroid belt, a region between the orbits of Mars and Jupiter which may hold millions of space rocks of varying sizes. On the other hand, the majority of comets are in the farthest reaches of our Solar System: either 1. in the Kuiper Belt — a region just outside the orbit of the dwarf planet Pluto that may have millions of icy comets (as well as many icy dwarf planets like Pluto and Eris); or 2. the Oort Cloud, a region where trillions of comets may circle the Sun at huge distances of up to 20 trillion kilometers (13 trillion miles).
Some scientists think asteroids formed much closer to the Sun, where it was too warm for any ices to remain solid, while comets formed farther from the Sun and were therefore able to retain ice. However, other scientists think that the comets that are now in the Kuiper Belt and Oort cloud actually formed in the inner Solar System, but were then flung out from the gravitation effects of the giant planets Jupiter and Saturn.
We do know that gravitational perturbations periodically jar both asteroids and comets from their usual “homes” — setting them on orbital courses that bring them closer to the Sun, as well as Earth.
When comets approach the Sun, some of their ices melt. This causes another notable difference between asteroids and comets: comets have “tails” while asteroids generally don’t. When the ices in comets begin to melt and other materials vaporize from the heat from the Sun, this forms a glowing halo that extends outward from the comet as it sails through space. The ice and compounds like methane and ammonia develop a fuzzy, cloud-like shell called a coma. Forces exerted on the coma by the Sun’s radiation pressure and solar wind cause an enormous, elongated tail to form. Tails always points away from the Sun.
Asteroids typically don’t have tails, even those near the Sun. But recently, astronomers have seen some asteroids that have sprouted tails, such as asteroid P/2010 A2. This seems to happen when the asteroid has been hit or pummeled by other asteroids and dust or gas is ejected from their surfaces, creating a sporadic tail effect. These so-called “active asteroids” are a newly recognized phenomenon, and as of this writing, only 13 known active asteroids have been found in the main asteroid belt, and so they are very rare.
Another difference between asteroids and comets is in their orbital patterns. Asteroids tend to have shorter, more circular orbits. Comets tend to have very extended and elongated orbits, which often exceed 50,000 AU from the Sun. (*Note: 1 AU, or Astronomical Unit, equals the distance from the Earth to the Sun.) Some, called long-period comets come from the Oort Cloud and are in big elliptical orbits of the Sun that take them far out beyond the planets and back. Others, called short-period comets come from the Kuiper Belt and travel in shorter orbits around the Sun.
There is a big difference when it comes to numbers… although there is a caveat in that we don’t know precisely how many asteroids OR comets there are in our Solar System, since many have never been seen. Astronomers have discovered millions of asteroids – some as small as dust particles and others measuring hundreds of kilometers across. But as of this writing, astronomers have found only about 4,000 comets. However, some estimates say there could be one hundred billion comets in the Oort cloud.
The fact that asteroids and comets were both formed during the earliest days of our Solar System has scientists studying both with keen interest. By examining them up close with satellites and landers — such as the current Rosetta mission with the Philae lander to Comet 67P — scientists hope to learn more about what our Solar System looked like in its earliest days. The next mission to a comet will be the JAXA Hayabusa-2 mission, which should launch at the end of November or early December 2014, arriving in 2018 to asteroid (162173) 1999 JU. Here’s a list of past missions to asteroids and comets.
Scientists also study comets and asteroids to determine the likelihood of them hitting Earth and other planets, and what effect their flybys could have on planetary atmospheres. In November of 2014, a comet named Siding Spring flew very close to Mars, and scientists are still studying the encounter. But this may happen more often that we think: one recent study says that Mars gets bombarded by 200 small asteroids or comets every year.
How likely is it that our planet could be hit by a large asteroid or comet? We do know that Earth has been hit many times in the past by asteroids and comets whose orbits bring them into the inner Solar System. There is strong scientific evidence that cosmic collisions played a major role in the mass extinctions documented in Earth’s fossil records. These objects that come close to Earth, known as Near Earth Objects or NEOs, still pose a danger to Earth today. But NASA, ESA and other space agencies have search programs that have discovered hundreds of thousands of main-belt asteroids, comets. None at this time pose any threat to Earth. You can find out more on this topic at NASA’s Near Earth Object Program website.
Additionally, the possibility of mining both asteroids and comets someday is also becoming a source of interest for industrialists and commercial space ventures, such as Planetary Resources.
When it comes to the many mysteries of the Universe, a special category is reserved for black holes. Since they are invisible to the naked eye, they remain visibly undetected, and scientists are forced to rely on “seeing” the effects their intense gravity has on nearby stars and gas clouds in order to study them.
That may be about to change, thanks to a team from Cardiff University. Here, researchers have achieved a breakthrough that could help scientists discover hundreds of black holes throughout the Universe.
Led by Dr. Mark Hannam from the School of Physics and Astronomy, the researchers have built a theoretical model which aims to predict all potential gravitational-wave signals that might be found by scientists working with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors.
These detectors, which act like microphones, are designed to search out remnants of black hole collisions. When they are switched on, the Cardiff team hope their research will act as a sort of “spotters guide” and help scientists pick up the faint ripples of collisions – known as gravitational waves – that took place millions of years ago.
Made up of postdoctoral researchers, PhD students, and collaborators from universities in Europe and the United States, the Cardiff team will work with scientists across the world as they attempt to unravel the origins of the Universe.
“The rapid spinning of black holes will cause the orbits to wobble, just like the last wobbles of a spinning top before it falls over,” Hannam said. “These wobbles can make the black holes trace out wild paths around each other, leading to extremely complicated gravitational-wave signals. Our model aims to predict this behavior and help scientists find the signals in the detector data.”
Already, the new model has been programmed into the computer codes that LIGO scientists all over the world are preparing to use to search for black-hole mergers when the detectors switch on.
Dr Hannam added: “Sometimes the orbits of these spinning black holes look completely tangled up, like a ball of string. But if you imagine whirling around with the black holes, then it all looks much clearer, and we can write down equations to describe what is happening. It’s like watching a kid on a high-speed spinning amusement park ride, apparently waving their hands around. From the side lines, it’s impossible to tell what they’re doing. But if you sit next to them, they might be sitting perfectly still, just giving you the thumbs up.”
But of course, there’s still work to do: “So far we’ve only included these precession effects while the black holes spiral towards each other,” said Dr. Hannam. “We still need to work our exactly what the spins do when the black holes collide.”
For that they need to perform large computer simulations to solve Einstein’s equations for the moments before and after the collision. They’ll also need to produce many simulations to capture enough combinations of black-hole masses and spin directions to understand the overall behavior of these complicated systems.
In addition, time is somewhat limited for the Cardiff team. Once the detectors are switched on, it will only be a matter of time before the first gravitational wave-detections are made. The calculations that Dr. Hannam and his colleagues are producing will have to ready in time if they hope to make the most of them.
But Dr. Hannam is optimistic. “For years we were stumped on how to untangle the black-hole motion,” he said. “Now that we’ve solved that, we know what to do next.”
One of the better asteroid occultations of 2014 is coming right up tonight, and Canadian and U.S. observers in the northeast have a front row seat.
The event occurs in the early morning hours of Thursday, November 20th, when the asteroid 3 Juno occults the 7.4 magnitude star SAO 117176. The occultation kicks off in the wee hours as the 310 kilometre wide “shadow” of 3 Juno touches down and crosses North America from 6:54 to 6:57 Universal Time (UT), which is 12:54 to 12:57 AM Central, or 1:54 to 1:57 AM Eastern Standard Time.
The maximum predicted length of the occultation for observers based along the centerline is just over 27 seconds. Note that 3 Juno also shines at magnitude +8.5, so both it and the star are binocular objects. The event will sweep across Winnipeg and Lake of the Woods straddling the U.S. Canadian border, just missing Duluth Minnesota before crossing Lake Superior and over Ottawa and Montreal and passing into northern Vermont and New Hampshire. Finally, the path crosses over Portland Maine, and heads out to sea over the Atlantic Ocean.
Don’t live along the path? Observers worldwide will still see a close pass of 3 Juno and the +7th magnitude star as both do their best to impersonate a close binary pair. If you’ve never crossed spotting 3 Juno off of your astro-“life list,” now is a good time to try.
The position of the target star HIP43357/SAO 117176 is:
Right Ascension: 8 Hours 49’ 54”
Declination: +2° 21’ 44”
Generally, the farther east you are along the track, the higher the pair will be above the horizon when the event occurs, and the better your observing prospects will be in terms of altitude or elevation. From Portland Maine — the last port of call for the shadow of 3 Juno on dry land — the pair will be 35 degrees above the horizon in the constellation of Hydra.
As always, the success in observing any astronomical event is at the whim of the weather, which can be fickle in North America in November. As of 48 hours out from the occultation, weather prospects look dicey, with 70%-90% cloud cover along the track. But remember, you don’t necessarily need a fully clear sky to make a successful observation… just a clear view near the head of Hydra asterism. Remember the much anticipated occultation of Regulus by the asteroid 163 Erigone earlier this year? Alas, it went unrecorded due to pesky but pervasive cloud cover. Perhaps this week’s occultation will fall prey to the same, but it’s always worth a try. In asteroid occultations as in free throws, you miss 100% of the shots that you don’t take!
Why study asteroid occultations? Sure, it’s cool to see a star wink out as an asteroid passes in front of it, but there’s real science to be done as well. Expect the star involved in Thursday’s occultation to dip down about two magnitudes (six times) in brightness. The International Occultation Timing Association (IOTA) is always seeking careful measurements of asteroid occultations of bright stars. If enough observations are made along the track, a shape profile of the target asteroid emerges. And the possible discovery of an “asteroid moon” is not unheard of using this method, as the background star winks out multiple times.
3 Juno was discovered crossing Cetus by astronomer Karl Harding on September 1st, 1804 from the Lilienthal Observatory in Germany. The 3rd asteroid discovered after 1 Ceres and 2 Pallas, 3 Juno ranks 5th in size at an estimated 290 kilometres in diameter. In the early 19th century, 3 Juno was also considered a planet along with these other early discoveries, until the ranks swelled to a point where the category of asteroid was introduced. A denizen of the asteroid belt, 3 Juno roams from 2 A.U.s from the Sun at perigee to 3.4 A.U.s at apogee, and can reach a maximum brightness of +7.4th magnitude as seen from the Earth. No space mission has ever been dispatched to study 3 Juno, although we will get a good look at its cousin 1 Ceres next April when NASA’s Dawn spacecraft enters orbit around the king of the asteroids.
3 Juno reaches opposition and its best observing position on January 29th, 2015.
3 Juno also has an interesting place in the history of asteroid occultations. The first ever predicted and successfully observed occultation of a star by an asteroid involved 3 Juno on February 19th, 1958. Another occultation involving the asteroid on December 11th, 1979 was even more widely observed. Only a handful of such events were caught prior to the 1990s, as it required ultra-precise computation and knowledge of positions and orbits. Today, dozens of asteroid occultations are predicted each month worldwide.
Observing an asteroid occultation can be challenging but rewarding. You can watch Thursday’s event with binoculars, but you’ll want to use a telescope to make a careful analysis. You can either run video during the event, or simply watch and call out when the star dims and brightens as you record audio. Precise timing and pinpointing your observing location via GPS is key, and human reaction time plays a factor as well. Be sure to locate the target star well beforehand. For precise time, you can run WWV radio in the background.
And finally, you also might see… nothing. Asteroid paths have a small amount of uncertainty to them, and although these negative observations aren’t as thrilling to watch, they’re important to the overall scientific effort.
Good luck, and let us know of your observational tales of anguish and achievement!
Just hours after announcing that it plans to put a robotic lander on the moon in the next decade, the British-led group Lunar Mission One is already a sixth of a way to its £600,000 (US$940,000) initial crowdfunding goal.
The money is intended to jumpstart the project and move it into more concrete stages after seven years of quiet, weekend work, the group said on its Kickstarter page.
“We’ve reached the limit of what we can do part-time. The next three years are going to be hard, full-time work to set the project up. We need to confirm and agree the lunar science and develop the instrument package,” the page read.
“We need to plan and research the online public archive. We need to get commercial partners on board to design and develop the lunar landing module and the drilling mechanism. We need to pilot the education programme. We need to prepare the sales and marketing campaign for our memory boxes. And we need to do all of this globally.”
Among the rewards is something called a “digital memory box”, where you can upload your favorite sounds to be placed on the spacecraft. The group also plans to offer a little bit of physical space to put a strand of your hair along with the small digital archive.
And what does the group want to do there? Drill. It would place the lander at the Moon’s south pole and push down at least 20 meters (65 feet), potentially as far as 100 meters (328 feet), to learn more about the Moon’s history.
“By doing this, we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment,” the group wrote. “Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”
Private ideas for bold missions is something we’ve heard about repeatedly in the last few years, with initiatives ranging from the Mars One mission to send people on a one-way mission to the Red Planet, to the potential asteroid-mining ventures Planetary Resources and Deep Space Initiatives. As with these other ventures, the nitty gritty in terms of costs, systems and mission plans is still being worked out. This coupled with the long timelines to get these ventures off the ground means that success is not necessarily a guarantee.
Lunar Mission One, however, does have an experienced space hand helping it out: RAL Space, who the Kickstarter campaign page says has helped out with 200 missions. That’s including the high-profile Philae lander that just landed on Comet 67P/Churyumov–Gerasimenko last week and did a brief surge of science before going into hibernation.
Vesta is one of the largest asteroids in the Solar System. Comprising 9% of the mass in the Asteroid Belt, it is second in size only to the dwarf-planet Ceres. And now, thanks to data obtained by NASA’s Dawn spacecraft, Vesta’s surface has been mapped out in unprecedented detail.
These high-resolution geological maps reveal the variety of Vesta’s surface features and provide a window into the asteroid’s history.
“The geologic mapping campaign at Vesta took about two-and-a-half years to complete, and the resulting maps enabled us to recognize a geologic timescale of Vesta for comparison to other planets,” said David Williams of Arizona State University.
Geological mapping is a technique used to derive the geologic history of a planetary object from detailed analysis of surface morphology, topography, color and brightness information. The team found that Vesta’s geological history is characterized by a sequence of large impact events, primarily by the Veneneia and Rheasilvia impacts in Vesta’s early history and the Marcia impact in its late history.
The geologic mapping of Vesta was made possible by the Dawn spacecraft’s framing camera, which was provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center. This camera takes panchromatic images and seven bands of color-filtered images, which are used to create topographic models of the surface that aid in the geologic interpretation.
A team of 14 scientists mapped the surface of Vesta using Dawn data. The study was led by three NASA-funded participating scientists: Williams; R. Aileen Yingst of the Planetary Science Institute; and W. Brent Garry of the NASA Goddard Spaceflight Center.
The brown colored sections of the map represent the oldest, most heavily cratered surface. Purple colors in the north and light blue represent terrains modified by the Veneneia and Rheasilvia impacts, respectively. Light purples and dark blue colors below the equator represent the interior of the Rheasilvia and Veneneia basins. Greens and yellows represent relatively young landslides or other downhill movement and crater impact materials, respectively.
The map indicates the prominence of impact events – such as the Veneneia, Rheasilvia and Marcia impacts, respectively – in shaping the asteroid’s surface. It also indicates that the oldest crust on Vesta pre-dates the earliest Veneneia impact. The relative timescale is supplemented by model-based absolute ages from two different approaches that apply crater statistics to date the surface.
“This mapping was crucial for getting a better understanding of Vesta’s geological history, as well as providing context for the compositional information that we received from other instruments on the spacecraft: the visible and infrared (VIR) mapping spectrometer and the gamma-ray and neutron detector (GRaND),” said Carol Raymond, Dawn’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California.
The objective of NASA’s Dawn mission is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter – Vesta and the dwarf planet Ceres.
Asteroids like Vesta are remnants of the formation of the solar system, giving scientists a peek at its early history. They can also harbor molecules that are the building blocks of life and reveal clues about the origins of life on Earth. Hence why scientists are eager to learn more about its secrets.
The Dawn spacecraft was launched in September of 2007 and orbited Vesta between July 2011 and September 2012. Using ion propulsion in spiraling trajectories to travel from Earth to Vesta, Dawn will orbit Vesta and then continue on to orbit the dwarf planet Ceres by April 2015.
The high resolution maps were included with a series of 11 scientific papers published this week in a special issue of the journal Icarus. The Dawn spacecraft is currently on its way to Ceres, the largest object in the asteroid belt, and will arrive at Ceres in March 2015.
Fancy having a shuttle launch play as your ringtone? NASA is trying to make that possible through offering several dozen space sounds on SoundCloud, a popular music- and sound-sharing service.
In the last month, the agency has uploaded 63 sound files ranging from objects in the solar system, to rocket launches, to famous quotes from NASA’s history. And you can download and use the files for free from here, as long as you follow the usage guidelines over here.
“Here’s a collection of NASA sounds from historic spaceflights and current missions. You can hear the roar of a space shuttle launch or Neil Armstrong’s ‘One small step for (a) man, one giant leap for mankind’ every time you get a phone call if you make our sounds your ringtone. Or, you can hear the memorable words ‘Houston, we’ve had a problem,’ every time you make an error on your computer,” the agency wrote on SoundCloud.
Space isn’t a foreign entity to SoundCloud, which also hosted dozens of sounds uploaded by prolific social-media sharing Chris Hadfield when the Canadian astronaut went into space between 2012 and 2013. He put up a few songs as well as what certain activities sound like on the International Space Station, such as dinnertime or a spaceship docking.
Though the surface of Mars is a dry, dessicated and bitterly cold place today, it is strongly believed that the planet once had rivers, streams, lakes, and flowing water on its surface. Thanks to a combination of spacecraft imagery, remote sensing techniques and surface investigations from landers and rovers, ample evidence has been assembled to support this theory.
However, it is hard to reconcile this view with the latest climate models of Mars which suggest that it should have been a perennially cold and icy place. But according to a new study, the presence of warm, flowing water may have been an episodic occurrence, something that happened for decades or centuries when the planet was warmed sufficiently by volcanic eruptions and greenhouse gases.
The study, which was conducted by scientists from Brown University and Israel’s Weizmann Institute of Science, suggests that warmth and water flow on ancient Mars were probably episodic, related to brief periods of volcanic activity that spewed tons of greenhouse-inducing sulfur dioxide gas into the atmosphere.
The work combines the effect of volcanism with the latest climate models of early Mars and suggests that periods of temperatures warm enough for water to flow likely lasted for only tens or hundreds of years at a time.
The notion that Mars had surface water predates the space age by centuries. Long before Percival Lowell observed what he thought were “canals” on the Martian surface in 1877, the polar ice caps and dark spots on the surface were being observed by astronomers who thought that they were indications of liquid water.
But with all that’s been learned about Mars in recent years, the mystery of the planet’s ancient water has only deepened. The latest generation of climate models for early Mars suggests that the atmosphere was too thin to heat the planet enough for water to flow. Billions of years ago, the sun was also much dimmer than it is today, which further complicates this picture of a warmer early Mars.
“These new climate models that predict a cold and ice-covered world have been difficult to reconcile with the abundant evidence that water flowed across the surface to form streams and lakes,” said James W. Head, professor of earth, environmental and planetary sciences at Brown University and co-author of the new paper with Weizmann’s Itay Halevy. “This new analysis provides a mechanism for episodic periods of heating and melting of snow and ice that could have each lasted decades to centuries.”
Halevy and Head explored the idea that heating may have been linked to periodic volcanism. Many of the geological features that suggest water was flowing on the Martian surface have been dated to 3.7 billion years ago, a time when massive volcanoes are thought to have been active.
And whereas on Earth, widespread volcanism has often led to global dimming rather than warming – on account of sulfuric acid particles reflecting the sun’s rays – Head and Halevy think the effects may have been different in Mars’ dusty atmosphere.
To test this theory, they created a model of how sulfuric acid might react with the widespread dust in the Martian atmosphere. The work suggests that those sulfuric acid particles would have glommed onto dust particles and reduced their ability to reflect the sun’s rays. Meanwhile, sulfur dioxide gas would have produced enough greenhouse effect to warm the Martian equatorial region so that water could flow.
Head has been doing fieldwork for years in Antarctica and thinks the climate on early Mars may have been very similar to what he has observed in the cold, desert-like.
“The average yearly temperature in the Antarctic Dry Valleys is way below freezing, but peak summer daytime temperatures can exceed the melting point of water, forming transient streams, which then refreeze,” Head said. “In a similar manner, we find that volcanism can bring the temperature on early Mars above the melting point for decades to centuries, causing episodic periods of stream and lake formation.”
As that early active volcanism on Mars ceased, so did the possibility of warmer temperatures and flowing water.
According to Head, this theory might also help in the ongoing search for signs that Mars once hosted life. If it ever did exist, this new research may offer clues as to where the fossilized remnants ended up.
“Life in Antarctica, in the form of algal mats, is very resistant to extremely cold and dry conditions and simply waits for the episodic infusion of water to ‘bloom’ and develop,” he said. “Thus, the ancient and currently dry and barren river and lake floors on Mars may harbor the remnants of similar primitive life, if it ever occurred on Mars.”
An uncontrolled, chaotic landing. Stuck in the shadow of a cliff without energy-giving sunlight. Philae and team persevered. With just 60 hours of battery power, the lander drilled, hammered and gathered science data on the surface of comet 67P/Churyumov-Gerasimenko before going into hibernation. Here’s what we know.
Despite appearances, the comet’s hard as ice. The team responsible for the MUPUS (Multi-Purpose Sensors for Surface and Sub-Surface Science) instrument hammered a probe as hard as they could into 67P’s skin but only dug in a few millimeters:
“Although the power of the hammer was gradually increased, we were not able to go deep into the surface,” said Tilman Spohn from the DLR Institute of Planetary Research, who leads the research team. “If we compare the data with laboratory measurements, we think that the probe encountered a hard surface with strength comparable to that of solid ice,” he added. This shouldn’t be surprising, since ice is the main constituent of comets, but much of 67P/C-G appears blanketed in dust, leading some to believe the surface was softer and fluffier than what Philae found.
This finding was confirmed by the SESAME experiment (Surface Electrical, Seismic and Acoustic Monitoring Experiment) where the strength of the dust-covered ice directly under the lander was “surprisingly high” according to Klaus Seidensticker from the DLR Institute. Two other SESAME instruments measured low vaporization activity and a great deal of water ice under the lander.
As far as taking the comet’s temperature, the MUPUS thermal mapper worked during the descent and on all three touchdowns. At the final site, MUPUS recorded a temperature of –243°F (–153°C) near the floor of the lander’s balcony before the instrument was deployed. The sensors cooled by a further 10°C over a period of about a half hour:
“We think this is either due to radiative transfer of heat to the cold nearby wall seen in the CIVA images or because the probe had been pushed into a cold dust pile,” says Jörg Knollenberg, instrument scientist for MUPUS at DLR. After looking at both the temperature and hammer probe data, the Philae team’s preliminary take is that the upper layers of the comet’s surface are covered in dust 4-8 inches (10-20 cm), overlaying firm ice or ice and dust mixtures.
The ROLIS camera (ROsetta Lander Imaging System) took detailed photos during the first descent to the Agilkia landing site. Later, when Philae made its final touchdown, ROLIS snapped images of the surface at close range. These photos, which have yet to be published, were taken from a different point of view than the set of panorama photos already received from the CIVA camera system.
During Philae’s active time, Rosetta used the CONSERT (COmet Nucleus Sounding Experiment by Radio wave Transmission) instrument to beam a radio signal to the lander while they were on opposite sides of the comet’s nucleus. Philae then transmitted a second signal through the comet back to Rosetta. This was to be repeated 7,500 times for each orbit of Rosetta to build up a 3D image of 67P/C-G’s interior, an otherworldly “CAT scan” as it were. These measurements were being made even as Philae lapsed into hibernation. Deeper down the ice becomes more porous as revealed by measurements made by the orbiter.
The last of the 10 instruments on board the Philae lander to be activated was the SD2 (Sampling, Drilling and Distribution subsystem), designed to provide soil samples for the COSAC and PTOLEMY instruments. Scientists are certain the drill was activated and that all the steps to move a sample to the appropriate oven for baking were performed, but the data right now show no actual delivery according to a tweet this morning from Eric Hand, reporter at Science Magazine. COSAC worked as planned however and was able to “sniff” the comet’s rarified atmosphere to detect the first organic molecules. Research is underway to determine if the compounds are simple ones like methanol and ammonia or more complex ones like the amino acids.
Stephan Ulamec, Philae Lander manager, is confident that we’ll resume contact with Philae next spring when the Sun’s angle in the comet’s sky will have shifted to better illuminate the lander’s solar panels. The team managed to rotate the lander during the night of November 14-15, so that the largest solar panel is now aligned towards the Sun. One advantage of the shady site is that Philae isn’t as likely to overheat as 67P approaches the Sun en route to perihelion next year. Still, temperatures on the surface have to warm up before the battery can be recharged, and that won’t happen until next summer.
Let’s hang in there. This phoenix may rise from the cold dust again.
NASA’s newest Mars spacecraft is “go” for at least a year — and potentially longer. After taking a time-out from commissioning to observe Comet Siding Spring whizz by the Red Planet in October, the Mars Atmosphere and Volatile Evolution (MAVEN) officially began its science mission Monday (Nov. 17). And so far things are going well.
“From the observations made both during the cruise to Mars and during the transition phase, we know that our instruments are working well,” stated principal investigator Bruce Jakosky, who is with NASA’s Goddard Space Flight Center in Maryland. “The spacecraft also is operating smoothly, with very few ‘hiccups’ so far. The science team is ready to go.”
MAVEN arrived in orbit Sept. 16 after facing down and overcoming a potential long delay for its mission. NASA and other federal government departments were in shutdown while MAVEN was in final launch preparations, but the mission received a special waiver because it is capable of communicating with the rovers on Mars. Given the current relay spacecraft are aging, MAVEN could serve as the next-generation spacecraft if those ones fail.
But that’s providing that MAVEN can last past the next year in terms of hardware and funding. Meanwhile, its primary science mission is better understanding how the atmosphere of Mars behaves today and how it has changed since the Red Planet was formed.
“The nine science instruments will observe the energy from the Sun that hits Mars, the response of the upper atmosphere and ionosphere, and the way that the interactions lead to loss of gas from the top of the atmosphere to space,” Jakosky added.
“Our goal is to understand the processes by which escape to space occurs, and to learn enough to be able to extrapolate backwards in time and determine the total amount of gas lost to space over time. This will help us understand why the Martian climate changed over time, from an early warmer and wetter environment to the cold, dry planet we see today.”