The World is Not Enough: A New Theory of Parallel Universes is Proposed

Do we exist in a space and time shared by many worlds? And are all these infinite worlds interacting? (Credit: Do-Da)

Imagine if you were told that the world is simple and exactly as it seems, but that there is an infinite number of worlds just like ours. They share the same space and time, and interact with each other. These worlds behave as Newton first envisioned, except that the slightest interactions of the infinite number create nuances and deviations from the Newtonian mechanics. What could be deterministic is swayed by many worlds to become the unpredictable.

This is the new theory about parallel universes explained by Australian and American theorists in a paper published in the journal Physics Review X. Called  the “Many Interacting Worlds” theory (MIW), the paper explains that rather than standing apart, an infinite number of universes share the same space and time as ours. They show that their theory can explain quantum mechanical effects while leaving open the choice of theory to explain the universe at large scales. This is a fascinating new variant of Multiverse Theory that, in a sense, creates not just a doppelganger of everyone but an infinite number of them all overlaying each other in the same space and time.

Rather than island universes as proposed by other theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time. (Photo Credit: Public Domain)
Rather than island universes as proposed by other multiverse theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time.

Cosmology is a study in which practitioners must transcend their five senses. Einstein referred to thought experiments, and Dr. Stephen Hawking — surviving and persevering despite having ALS — has spent decades wondering about the Universe and developing new theories, all within his mind.

The “Many Interacting Worlds” theory, presented by Michael Hall and Howard Wiseman from Griffith University in Australia, and Dirk-André Deckert from the University of California, Davis, differs from previous multiverse theories in that the worlds — as they refer to universes — coincide with each other, and are not just parallel.

The theorists explain that while the interactions are subtle, the interaction of an infinite number of worlds can explain quantum phenomena such as barrier tunneling in solid state electronics, can be used to calculate quantum ground states, and, as they state, “at least qualitatively” reproduce the results of the double-slit experiment.

Schrödinger, in explaining his wave function and the interaction of two particles (EPR paradox) coined the term “entanglement”. In effect, the MIW theory is an entanglement of an infinite number of worlds but not in terms of a wave function. The theorists state that they were compelled to develop MIW theory to eliminate the need for a wave function to explain the Universe. It is quite likely that Einstein would have seen MIW as very appealing considering his unwillingness to accept the principles laid down by the Copenhagen interpretation of Quantum Theory.

While MIW theory can reproduce some of the most distinctive quantum phenomena, the theorists emphasize that MIW is in an early phase of development. They state that the theory is not yet as mature as long-standing unification theories. In their paper, they use Newtonian physics to keep their proofs simple. Presenting this new “many worlds” theory indicates they had achieved a level of confidence in its integrity such that other theorists can use it as a starter kit – peer review but also expand upon it to explain more worldly phenomena.

Hall compares MIW to the classical theory of ideal gases and partial pressures. He says:

Two worlds of many act as if they are two gases A & B within a volume of space. In the words of the theorists, “It would be as if the A gas and B gas were completely oblivious to each other unless every single A molecule were close to its B partner. Such an interaction is quite unlike anything in classical physics, and it is clear that our hypothetical A-composed observer would have no experience of the B world in its everyday observations, but by careful experiment might detect a subtle and nonlocal action on the A molecules of its world. Such action, though involving very many, rather than just two, worlds, is what we propose could lie behind the subtle and nonlocal character of quantum mechanics.”

Two of the perpetrators of the century long problem of unifying General Relativity Theory and Quantum Physics, A. Einstein, E. Schroedinger.
Two of the perpetrators of the century-long problem of unifying General Relativity Theory and Quantum Physics – Albert Einstein, Erwin Schroedinger.

The theorists continue by expounding that MIW could lead to new predictions. If correct, then new predictions would challenge experimentalists and observers to recreate or search for the effects. Such was the case for Einstein’s Theory of General Relativity. For example, the bending of the path of light by gravity and astronomer Eddington’s observing starlight bending around Sun during a total Solar Eclipse. Such new predictions and confirmation would begin to stand MIW theory apart from the many other theories of everything.

Hall, Deckert, and Wiseman continue – “Regarded as a fundamental physical theory in its own right, the MIW approach may also lead to new predictions arising from the restriction to a finite number of worlds. Finally, it provides a natural discretization of the Holland-Poirier approach, which may be useful for numerical purposes.

Multiverse theories have gained notoriety in recent years through the books and media presentations of Dr. Michio Kaku of the City College of New York and Dr. Brian Greene of Columbia University, New York City. Dr. Green presented a series of episodes delving into the nature of the Universe on PBS called “The Fabric of the Universe” and “The Elegant Universe”. The presentations were based on his books such as “The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos.”

Hugh Everett’s reinterpretation of Dr. Richard Feynman’s cosmological theory, that the world is a weighted sum of alternative histories, states that when particles interact, reality bifurcates into a set of parallel streams, each being a different possible outcome. In contrast to Feynmann’s theory and Everett’s interpretation, the parallel worlds of MIW do not bifurcate but simply exist in the same space and time.  MIW’s parallel worlds are not a consequence of “quantum behavior” but are rather the drivers of it.

Professor Howard Wiseman, Director of Griffith University's Centre for Quantum Dynamics and coauthor of the paper on the "Many Interacting World" theory. (Photo Credit: Griffith University)
Professor Howard Wiseman, Director of Griffith University’s Centre for Quantum Dynamics and coauthor of the paper on the “Many Interacting World” theory. (Photo Credit: Griffith University)

Hall states in the paper that simple Newtonian Physics can explain how all these worlds evolve. This, they explain, can be used effectively as a first approximation in testing and expanding on their theory, MIW. Certainly, Einstein’s Special and General Theories of Relativity completes the Newtonian equations and are not dismissed by MIW. However, the paper begins with the simpler model using Newtonian physics and even explains that some fundamental behavior of quantum mechanics unfolds from a universe comprised of just two interacting worlds.

So what is next for the Many Interacting Worlds theory? Time will tell. Theorists and experimentalists shall begin to evaluate its assertions and its solutions to explain known behavior in our Universe. With new predictions, the new challenger to Unified Field Theory (the theory of everything) will be harder to ignore or file away with the wide array of theories of the last 100 years. Einstein’s theories began to reveal that our world exudes behavior that defies our sensibility but he could not accept the assertions of Quantum Theory. Einstein’s retort to Bohr was “God does not throw dice.” The MIW theory of Hall, Deckert, and Wiseman might be what Einstein was seeking until the end of his life. For MIW theory, one world is not enough and for these many worlds their interactions might be compared to a martini shaken but not stirred.

References:

Quantum Phenomena Modeled by Interactions between Many Classical Worlds

Mysterious Object “G2” at Galactic Center is Actually Binary Star

An image from W. M. Keck Observatory near infrared data shows that G2 survived its closest approach to the black hole and continues happily on its orbit. The green circle just to its right depicts the location of the invisible supermassive black hole. Credit: Andrea Ghez, Gunther Witzel/UCLA Galactic Center Group/W. M. Keck Observatory

A mysterious object swinging around the supermassive black hole in the center our galaxy has surprised astronomers by actually surviving what many thought would be a devastating encounter. And with its survival, researchers have finally been able to solve the conundrum of what the object – known as G2 — actually is. Since G2 was discovered in 2011, there was a debate whether it was a huge cloud of hydrogen gas or a star surrounded by gas. Turns out, it was neither … or actually, all of the above, and more.

Astronomers now say that G2 is most likely a pair of binary stars that had been orbiting the black hole in tandem and merged together into an extremely large star, cloaked in gas and dust.

“G2 survived and continued happily on its orbit; a simple gas cloud would not have done that,” said Andrea Ghez from UCLA, who has led the observations of G2. “G2 was basically unaffected by the black hole. There were no fireworks.”

This was one of the “most watched” recent events in astronomy, since it was the first time astronomers have been able to view an encounter with a black hole like this in “real time.” The thought was that watching G2’s demise would not only reveal what this object was, but also provide more information on how matter behaves near black holes and how supermassive black holes “eat” and evolve.

The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)
The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)

Using the Keck Observatory, Ghez and her team have been able to keep an eye on G2’s movements and how the black hole’s powerful gravitational field affected it.

While some researchers initially thought G2 was a gas cloud, others argued that they weren’t seeing the amount of stretching or “spaghettification” that would be expected if this was just a cloud of gas.

As Ghez told Universe Today earlier this year, she thought it was a star. “Its orbit looks so much like the orbits of other stars,” she said. “There’s clearly some phenomenon that is happening, and there is some layer of gas that’s interacting because you see the tidal stretching, but that doesn’t prevent a star being in the center.”

Now, after watching the object the past few months, Ghez said G2 appears to be just one of an emerging class of stars near the black hole that are created because the black hole’s powerful gravity drives binary stars to merge into one. She also noted that, in our galaxy, massive stars primarily come in pairs. She says the star suffered an abrasion to its outer layer but otherwise will be fine.

Ghez explained in a UCLA press release that when two stars near the black hole merge into one, the star expands for more than 1 million years before it settles back down.

“This may be happening more than we thought. The stars at the center of the galaxy are massive and mostly binaries,” she said. “It’s possible that many of the stars we’ve been watching and not understanding may be the end product of mergers that are calm now.”

Ghez and her colleagues also determined that G2 appears to be in that inflated stage now and is still undergoing some spaghettification, where it is being elongated. At the same time, the gas at G2’s surface is being heated by stars around it, creating an enormous cloud of gas and dust that has shrouded most of the massive star.

Usually in astrophysics, timescales of events taking place are very long — not over the course of several months. But it’s important to note that G2 actually made this journey around the galactic center around 25,000 years ago. Because of the amount of time it takes light to travel, we can only now observe this event which happened long ago.

“We are seeing phenomena about black holes that you can’t watch anywhere else in the universe,” Ghez added. “We are starting to understand the physics of black holes in a way that has never been possible before.”

The research has been published in the journal Astrophysical Journal Letters.

Further reading: UCLA, Keck

Observing Challenge: Catch a Series of Mutual Eclipses by Jupiter’s Moons

Credit: Michael Phillips

Missing the planets this month? With Mars receding slowly to the west behind the Sun at dusk, the early evening sky is nearly devoid of planetary action in the month of November 2014. Stay up until about midnight local, however, and brilliant Jupiter can be seen rising to the east.  Well placed for northern hemisphere viewers in the constellation Leo, Jupiter is about to become a common fixture in the late evening sky as it heads towards opposition next year in early February.

November 25th
The line-up during the November 25th eclipse event (see chart below).  Note that Jupiter’s moons are in 1-2-3-4 order! Credit: Stellarium.

An interesting phenomenon also reaches its climax, as we make the first of a series of passes through the ring plane of Jupiter’s moons this week on November 8th, 2014. This means that we’re currently in a season where Jupiter’s major moons not only pass in front of each other, but actually eclipse and occult one another on occasion as they cast their shadows out across space.

These types of events are challenging but tough to see, owing to the relatively tiny size of Jupiter’s moons. Followers of the giant planet are familiar with the ballet performed by the four large Jovian moons of Io, Europa, Ganymede, and Callisto. This was one of the first things that Galileo documented when he turned his crude telescope towards Jupiter in late 1609. The shadows the moons cast back on the Jovian cloud tops are a familiar sight, easily visible in a small telescope. Errors in the predictions for such passages provided 17th century Danish astronomer Ole Rømer with a way to measure the speed of light, and handy predictions of the phenomena for Jupiter’s moons can be found here.

Credit
A look at selected upcoming occultation events. Credit: Starry Night.
Credit and copyright Christoper Go, used with permission.
Credit and copyright Christoper Go, used with permission.

Mutual occultations and eclipses of the Jovian moons are much tougher to see. The moons range in size from 3,121 km (Europa) to 5,262 km (Ganymede), which translates to 0.8”-1.7” in apparent diameter as seen from the Earth. This means that the moons only look like tiny +6th magnitude stars even at high magnification, though sophisticated webcam imagers such as Michael Phillips and Christopher Go have managed to actually capture disks and tease out detail on the tiny moons.

Author
A double shadow transit from 2013. Photo by author.

What is most apparent during these mutual events is a slow but steady drop in combined magnitude, akin to that of an eclipsing variable star such as Algol. Running video, Australian astronomer David Herald has managed to document this drop during the 2009 season (see the video above) and produce an effective light curve using LiMovie.

Such events occur as we cross through the orbital planes of Jupiter’s moons. The paths of the moons do not stray more than one-half of a degree in inclination from Jupiter’s equatorial plane, which itself is tilted 3.1 degrees relative to the giant planet’s orbit. Finally, Jupiter’s orbit is tilted 1.3 degrees relative to the ecliptic. Plane crossings as seen from the Earth occur once every 5-6 years, with the last series transpiring in 2009, and the next set due to begin around 2020. Incidentally, the slight tilt described above also means that the outermost moon Callisto is the only moon that can ‘miss’ Jupiter’s shadow on in-between years. Callisto begins to so once again in July 2016.

Mutual events for the four Galilean moons come in six different flavors:

Credit:
A look at the six types of phenomena possible with Jupiter’s four large moons. Created by the author.

This month, Jupiter reaches western quadrature on November 14th, meaning that Jupiter and its moons sit 90 degrees from the Sun and cast their shadows far off to the side as seen from the Earth. This margin slims as the world heads towards opposition on February 6th, 2015, and Jupiter once again joins the evening lineup of planets.

Early November sees Jupiter rising around 1:00 AM local, about six hours prior to sunrise. Jupiter is also currently well placed for northern hemisphere viewers crossing the constellation Leo.

The Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCEE) based in France maintains an extensive page following the science and the circumstances for the previous 2009 campaign and the ongoing 2015 season.

We also distilled down a table of key events for North America coming up through November and December:

Credit
A look at selected events through the end of 2014. 1=Io, 2=Europa, 3=Ganymede, 4=Callisto. O=Occultation, E=Eclipse. Created by the author, adapted from the IMCCEE chart for the 2014-15 season.

Fun fact: we also discovered during our research for this piece that these events can also produce a total solar eclipse very similar to the near perfect circumstances enjoyed on the Earth via our Moon:

Note that this season also produces another triple shadow transit on January 24th, 2015.

Observing and recording these fascinating events is as simple as running video at key times. If you’ve imaged Jupiter and its moons via our handy homemade webcam method, you also possess the means to capture and analyze the eclipses and occultations of Jupiter’s moons.

Credit NASA/JPL
A view never seen from the Earth… Io (upper left) paired with a crescent Europa during New Horizons’ 2007 flyby. Credit: NASA/JPL.

Good luck, and let us know of your tales of astronomical tribulation and triumph!

Building A Space Base, Part 2: How Much Money Would It Take?

Artist's concept for a Lunar base. Credit: NASA

How much would it cost to establish a space base close to Earth, say on the Moon or an asteroid? To find out, Universe Today spoke with Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center, who has explored this subject extensively on his website and in published papers.

Yesterday, Metzger outlined the rationale for establishing a base in the first place, while today he focuses on the cost.

UT: Your 2012 paper specifically talks about how much development is needed on the Moon to make the industry “self-sustaining and expanding”, but left out the cost of getting the technology ready and of their ongoing operation. Why did you leave this assessment until later? How can we get a complete picture of the costs?

PM: As we stated at the start of the paper, our analysis was very crude and was intended only to garner interest in the topic so that others might join us in doing a more complete, more realistic analysis. The interest has grown faster than I expected, so maybe we will start to see these analyses happening now including cost estimates. Previous analyses talked about building entire factories and sending them into space. The main contribution of our initial paper was to point out that there is this bootstrapping strategy that has not been discussed previously, and we argued that it makes more sense. It will result in a much smaller mass of hardware launched into space, and it will allow us to get started right away so that we can figure out how to make the equipment work as we go along.

Moonbase rover concept - could be used for long-term missions (NASA)
Moonbase rover concept – could be used for long-term missions (NASA)

Trying to design up front everything in a supply chain for space is impossible. Even if we got the budget for it and gave it a try, we would discover that it wouldn’t work when we sent it into the extraterrestrial environments.  There are too many things that could go wrong.  Evolving it in stages will allow us to work out the bugs as we develop it in stages. So the paper was arguing for the community to take a look into this new strategy for space industry.

Now, having said that, I can still give you a very crude cost estimate if you want one. Our model shows a total of about 41 tons of hardware being launched to the Moon, but that results in 100,000 tons of hardware when we include what was made there along the way. If 41 tons turns out to be correct, then let’s take 41% of the cost of the International Space Station as a crude estimate, because that has a mass of 100 tons and we can roughly estimate that a ton of space hardware costs about the same in every program. Then let’s multiply by four because it takes four tons of mass launched to low Earth orbit to land one ton on the Moon.

That may be an over-estimate, because the biggest cost of the International Space Station was the labor to design, build, assemble, and test before launch, including the cost of operating the space shuttle fleet. But the hardware for space industry includes many copies of the same parts so design costs should be lower, and since human lives will not be at stake they don’t need to be as reliable. As discussed in the paper, the launch costs will also be much reduced with the new launch systems coming on line.

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

Furthermore, the cost can be divided by 3.5 according to the crude modeling, because 41 tons is needed only if the industry is making copies of itself as fast as it can. If we slow it down to making just one copy of the industry along the way as it is evolving, then only 12 tons of hardware needs to be sent to the Moon. Now that gives us an estimate of the total cost over the entire bootstrapping period, so if we take 20 or 30 or 40 years to accomplish it, then divide by that amount to get the annual cost. You end up with a number that is a minority fraction of NASA’s annual budget, and a miniscule fraction of the total U.S. federal budget, and even tinier fraction of the US gross domestic product, and an utterly insignificant cost per human being in the developed nations of the Earth.

Even if we are off by a factor of 10 or more, it is something we can afford to start doing today. And this doesn’t account for the economic payback we will be getting while starting space industry. There will be intermediate ways to get a payback, such as refueling communications satellites and enabling new scientific activities. The entire cost needn’t be carried by taxpayers, either. It can be funded in part by commercial interests, and in part by students and others taking part in robotics contests.  Perhaps we can arrange shares of ownership in space industry for people who volunteer time developing technologies and doing other tasks like teleoperating robots on the Moon. Call that “telepioneering.”

Perhaps most importantly, the technologies we will be developing – advanced robotics and manufacturing – are the same things we want to be developing here on Earth for the sake of our economy, anyway. So it is a no-brainer to do this! There are also intangible benefits: giving students enthusiasm to excel in their education, focusing the efforts of the maker community to contribute tangibly to our technological and economic growth, and renewing the zeitgeist of our culture.  Civilizations fall when they become old and tired, when their enthusiasm is spent and they stop believing in the inherent value of what they do. Do we want a positive, enthusiastic world working together for the greater good? Here it is.

The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA
The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA

UT: We now have smaller computers and the ability to launch CubeSats or smaller accompanying satellites on rocket launches, something that wasn’t available a few decades ago. Does this reduce the costs of sending materials to the Moon for the purposes of what we want to do there?

Most of the papers about starting the space industry are from the 1980’s and 1990’s because that is when most of the investigations were performed, and there hasn’t been funding to continue their work in recent decades.  Indeed, changes in technology since then have been game-changing! Back then some studies were saying that a colony would need to support 10,000 humans in space to do manufacturing tasks before it could make a profit and become economically self-sustaining. Now because of the growth of robotics we think we can do it with zero humans, which drastically cuts the cost.

The most complete study of space industry was the 1980 Summer Study at the Ames Research Center. They were the first to discuss the vision of having space industry fully robotic.  They estimated mining robots would need to be made with several tons of mass. More recently, we have actually built lunar mining robots at the Swamp Works at the Kennedy Space Center and they are about one tenth of a ton, each. So we have demonstrated a mass reduction of more than 10 times.

But this added sophistication will be harder to manufacture on the Moon. Early generations will not be able to make the lightweight metal alloys or the electronics packages.  That will require a more complex supply chain. The early generations of space industry should not aim to make things better; they should aim to make things easier to make. “Appropriate Technology” will be the goal. As the supply chain evolves, eventually it will reach toward the sophistication of Earth. Still, as long as the supply chain is incomplete and we are sending things from Earth, we will be sending the lightest and most sophisticated things we can to be combined with the crude things made in space, and so the advances we’ve made since the 1980’s will indeed reduce the bootstrapping cost.

This is the second in a three-part series about building a space base. Yesterday: Why mine on the moon or an asteroid? Tomorrow: Making remote robots smart.

Comet Landing Countdown: Why ‘Agilkia’ Is The New Name For Philae Touchdown Site

Philae's landing site, dubbed Agilkia, as seen by the Rosetta spacecraft on Oct. 30, 2014. The spacecraft was 26.8 km (16.7 miles) from the comet's center when the picture was taken. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

After sifting through 8,000 entries in multiple languages — even in Esperanto! — the contest to name Philae’s landing site on Comet 67P/Churyumov–Gerasimenko has resulted in an Egyptian-themed name.

The European Space Agency lander will touch down on the comet on a site dubbed “Agilkia”, which is named after an Egyptian island that hosts the Temple of Isis and other buildings that previously were on the island Philae. The buildings were moved due to the Aswan dams flooding Philae in the past century.

Agilkia, which was voted for by more than 150 people, fits in perfectly with ESA’s decision to informally name features on the comet after Egyptian names. Mission planners for the Rosetta orbiter and its lander, Philae, previously dubbed the site “J” before the landing contest was announced.

NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)
NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)

“The decision was very tough,” stated steering committee chair Felix Huber, who is with the DLR German Aerospace Center. “We received so many good suggestions on how to name Site J, and we were delighted with such an enthusiastic response from all over the world. We wish to thank all participants for sharing their great ideas with us.”

Alexandre Brouste from France was voted the overall winner and will be invited to follow the Nov. 12 landing live at ESA’s Space Operations Control Centre in Darmstadt, Germany. The landing is expected to take place around 12 p.m. Eastern (4 p.m. UTC), and you can follow the livestream here.

For more details on how Philae will sail to the surface, check out this past Universe Today story.

Source: European Space Agency

How an Ancient Angled Impact Created Vesta’s Groovy Belt

Vivid Vesta Vista in Vibrant 3 D from NASA’s Dawn Asteroid Orbiter. Vesta is the second most massive asteroid and is 330 miles (530 km) in diameter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When NASA’s Dawn spacecraft arrived at Vesta in July 2011, two features immediately jumped out at planetary scientists who had been so eagerly anticipating a good look at the giant asteroid. One was a series of long troughs encircling Vesta’s equator, and the other was the enormous crater at its southern pole. Named Rheasilvia, the centrally-peaked basin spans 500 kilometers in width and it was hypothesized that the impact event that created it was also responsible for the deep Grand Canyon-sized grooves gouging Vesta’s middle.

Now, research led by a Brown University professor and a former graduate student reveal how it all probably happened.

“Vesta got hammered,” said Peter Schultz, professor of earth, environmental, and planetary sciences at Brown and the study’s senior author. “The whole interior was reverberating, and what we see on the surface is the manifestation of what happened in the interior.”

Using a 4-meter-long air-powered cannon at NASA’s Ames Vertical Gun Range, Peter Schultz and Brown graduate Angela Stickle – now a researcher at the Johns Hopkins University Applied Physics Laboratory – recreated cosmic impact events with small pellets fired at softball-sized acrylic spheres at the type of velocities you’d find in space.

The impacts were captured on super-high-speed camera. What Stickle and Schultz saw were stress fractures occurring not only at the points of impact on the acrylic spheres but also at the point directly opposite them, and then rapidly propagating toward the midlines of the spheres… their “equators,” if you will.

Scaled up to Vesta size and composition, these levels of forces would have created precisely the types of deep troughs seen today running askew around Vesta’s midsection.

Watch a million-fps video of a test impact below:

So why is Vesta’s trough belt slanted? According to the researchers’ abstract, “experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target.” That is, the impactor that struck Vesta’s south pole likely came in at an angle, which made for uneven propagation of stress fracturing outward across the protoplanet (and smashed its south pole so much that scientists had initially said it was “missing!”)

Close-ups of Vesta's equatorial troughs obtained by Dawn's framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)
Close-ups of Vesta’s equatorial troughs obtained by Dawn’s framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)

That angle of incidence — estimated to be less than 40 degrees — not only left Vesta with a slanted belt of grooves, but also probably kept it from getting blasted apart altogether.

“Vesta was lucky,” said Schultz. “If this collision had been straight on, there would have been one less large asteroid and only a family of fragments left behind.”

Watch a video tour of Vesta made from data acquired by Dawn in 2011 and 2012 below:

The team’s findings will be published in the February 2015 issue of the journal Icarus and are currently available online here (paywall, sorry). Also you can see many more images of Vesta from the Dawn mission here and find out the latest news from the ongoing mission to Ceres on the Dawn Journal.

Source: Brown University news

Antares Explosion Investigation Focuses on First Stage Propulsion Failure

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing the Antares launch disaster are focusing on clues pointing to a failure in the first stage propulsion system that resulted in a loss of thrust and explosive mid-air destruction of the commercial rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

The highly anticipated first night launch of the Orbital Sciences Corp. privately developed Antares rocket blasted off nominally and ascended for about 15 seconds until a rapid fire series of sudden and totally unexpected loud explosions sent shock waves reverberating all around the launch site and surroundings for miles and the rocket was quickly consumed in a raging fireball.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The 14 story Antares rocket is a two stage vehicle. The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and designated as the NK-33.

Earlier this year an AJ26 engine failed and exploded during acceptance testing on May 22, 2014, at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Sciences was conducted to clear this pair for flight.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

Numerous photos and videos from myself (see herein) and many others clearly show a violent explosion emanating from the base of the two stage rocket. The remainder of the first stage and the entire upper stage was clearly intact at that point.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallops. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia, bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA announced that Orbital Sciences is leading the investigation into the rocket failure and quickly appointed an Accident Investigation Board (AIB) chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

The AIB is working under the oversight of the Federal Aviation Administration (FAA).

“Evidence suggests the failure initiated in the first stage after which the vehicle lost its propulsive capability and fell back to the ground impacting near, but not on, the launch pad,” Orbital said in a statement.

At the post launch disaster briefing at NASA Wallops, I asked Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, to provide any specifics of the sequence of events and failure, a timeline of events, and whether the engines failed.

“The ascent stopped, there was disassembly of the first stage, and then it fell to Earth. The way the accident investigation proceeds is we lock down all the data [after the accident]. Then we go through a very methodical process to recreate the data and evaluate it. We need time to look at what failed from both a video and telemetry standpoint,” Culbertson told Universe Today.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The rocket telemetry has now been released to the accident investigation board.

“Our engineers presented a very quick look assessment to the Accident Investigation Board at the end of the day. It appears the Antares vehicle had a nominal pre-launch and launch sequence with no issues noted,” Orbital said in a statement.

“All systems appeared to be performing nominally until approximately T+15 seconds at which point the failure occurred.”

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

After the failure occurred the rocket fell back to the ground near, but not on top of, the launch pad.

“Prior to impacting the ground, the rocket’s Flight Termination System was engaged by the designated official in the Wallops Range Control Center,” said Orbital.

Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

Since the rocket impacted just north of the pad, that damage was not as bad as initially feared.

From a public viewing area about two miles away, I captured some side views of the pad complex and damage it sustained.

Check out the details of my assessment in my prior article and exclusive photos showing some clearly discernible damage to the Antares rocket launch pad – here.

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences’ Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, and spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship bound for the International Space Station (ISS).

Among the top tasks of the AIB are “developing a ‘fault tree’ and a timeline of the important events during the launch sequence,” using the large volume of data available.

“We will analyze the telemetry. We have reams of data and telemetry that come down during launch and we will be analyzing that carefully to see if we can determine exactly the sequence of events, what went wrong, and then what we can do to fix it,” said Culbertson.

The accident team is also gathering and evaluating launch site debris.

“Over the weekend, Orbital’s Wallops-based Antares personnel continued to identify, catalogue, secure, and geolocate debris found at the launch site in order to preserve physical evidence and provide a record of the launch site following the mishap that will be useful for the AIB’s analysis and determination of what caused the Antares launch failure,” said Orbital.

Culberston expressed Orbital’s regret for the launch failure.

“We are disappointed we could not fulfill our obligation to the International Space Station program and deliver this load of cargo. And especially to the researchers who had science on board as well as to the people who had hardware and components on board for going to the station.”

“It’s a tough time to lose a launch vehicle and payload like this. Our team worked very hard to prepare it, with a lot of testing and analysis to get ready for this mission.”

Culbertson emphasized that Orbital will fix the problem and move forward.

“Something went wrong and we will find out what that is. We will determine the root cause and we will correct that. And we will come back and fly here at Wallops again. We will do all the things that are necessary to make sure it is as safe as we can make it, and that we solve the immediate problem of this particular mission.”

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

Culbertson noted that the public should not touch any rocket debris found.

“The investigation will include evaluating the debris around the launch pad. The rocket had a lot of hazardous equipment and materials on board that people should not be looking for or wanting to collect souvenirs. If you find anything that washes ashore or landed you should call the local authorities and definitely not touch it.”

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

At this point the future is unclear.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Incredible Fast-Moving Aurora Captured in Real Time by Thierry Legault

One image of the fast-moving aurora captured over Norway in October, 2014. Credit and copyright: Thierry Legualt.

Usually, videos that feature aurora are timelapse videos, in order to show the normally slow movements of the Northern and Southern Lights. But here are some incredibly fast-moving aurorae shown in real time, as seen by astrophotographer extraordinaire Thierry Legault. He was in Norway last week and said the fast-dancing, shimmering aurora were incredible.

“At moments they were so fast that 25 fps (frames per second) was not too much!” Legault said. “The second evening they were so bright that they appeared while the sky was still blue and I rushed to setup the tripod.”

See two videos below, one short version (8 minutes) and another longer 20-minute version. They are worth watching every minute!

He used Sony A7 video cameras, and said these movies show the true rhythm of the aurora, in addition with twinkling stars and trees moving in the wind.

“In the long version there are even several satellites slowly moving amongst the stars and 2 or 3 elusive shooting stars,” Legault told Universe Today. “Many constellations are visible, especially Cassiopeia with the double cluster, the Big Dipper, Cygnus, Lyra, Gemini.”

He added that the aurorae had an incredible variety of shapes and behaviors.

See more imagery on Legault’s website.

Welcome to Mars! – Hi-SEAS and Mars Society Kick Off New Season of Missions

Credit: Hi-SEAS

The Hawaii Space Exploration Analog and Simulation (aka. Hi-SEAS) – a human spaceflight analog for Mars located on the slopes of the Mauna Loa volcano in Hawaii – just kicked off its third research mission designed to simulate manned missions on Mars.

Located at an elevation of 2500 meters (8,200 feet) above sea level, the analog site is located in a dry, rocky environment that is very cold and subject to very little precipitation. While there, the crew of Mission Three will conduct detailed research studies to determine what is required to sustain a space flight crew during an extended mission to Mars and while living on Mars.

The six-member team includes Martha Lenio (Commander), Allen Mirkadyrov, Sophie Milam, Neil Sheibelhut, Jocelyn Dunn, and Zak Wilson, with Ed Fix and Micheal Castro in Reserve. This crew will spend the next 254 days living in conditions that closely resemble those present on the Martian surface.

Research into food, crew dynamics, behaviors, roles and performance, and other aspects of space flight and a mission on Mars itself is the primary focus. This will be the third of four research missions conducted by Hi-SEAS and funded by the NASA Human Research Program. The information gleaned from these research studies, it is hoped, will one day help NASA conduct its own manned missions to the Red Planet.

Artist conception of a Hi-SEAS habitation dome. Credit: Blue Planet Research/Bryan Christie Design
Artist conception of a Hi-SEAS habitation dome. Credit: Blue Planet Research/Bryan Christie Design

For the course of their research studies, the crew will be living in a dome that is 11 meters (36 feet) in diameter and has a living area of about 93 square meters (1000 square feet). The dome also has a second level that is loftlike – providing a high-ceiling is crucial to combating long-term feelings of claustrophobia.

The six crew members will sleep in pie-slice-shaped staterooms, each of which contains a mattress, desk and stool. Their clothing is stored under the bed, which sits at the wide side of the slice. They do their business in a series of composting toilets that turn their repurposed feces (the pathogens are removed) into a potential source of fertilizer for the next mission.

A workout area provides the astronauts with an opportunity to stay in shape with such exercises as video aerobics, juggling, and balloon volleyball.  And communications are conducted through NASA-issued email addresses – with an artificial delay to simulate the time lag from Mars – and access to a web made of cached, nondynamic pages.

To complete the illusion of being on Mars, when the crew are not in their pressurized habitation dome, they will be walking around in space suits. The mission will conclude on July 14th, 2015, with a fourth and final mission to take place at a so-far undetermined date.

Image Credit: Mars Society MRDS
The Mars Society’s Mars Desert Research Station in southern Utah.
Credit: Mars Society MRDS

In related news, the Mars Society announced yesterday that Crew 142 arrived at the Mars Desert Research Station (MDRS) in southern Utah to begin the 2014-15 MDRS field season. Crew 142, consisting of seven people, is the first of three crews composed of finalists for the planned Mars Arctic 365 (MA365) mission that will serve at MDRS for two weeks of training and testing.

Once their training is complete, crew 142 will be shipping off to the Flashline Mars Arctic Research Station (FMARS) located on Devon Island in northern Canada, followed shortly behind by the other MA365 finalists, for a year-long research stint.

Much like the Hi-SEAS project, the Mars Society is a non-profit space advocacy organization that is dedicated to promoting the human exploration and settlement of Mars. Established by Dr. Robert Zubrin and colleagues in 1998, the organization works to educate the public, the media, and government on the benefits of Mars exploration and the importance of planning a manned mission in the coming decade.

For the next two weeks, the seven finalists will be engaged in activities designed to simulate conditions on another planet. For the duration, they will be living and working in the Mars Analog Research Stations (MARS) – a prototype of the habitat that the Mars Society plans to eventually land on Mars and serves as the crew’s main base as they explore the harsh Martian environment.

FMARS hab with Mars flag in foreground. Credit: Mars Society
FMARS hab with Mars flag in foreground. Credit: Mars Society

Ultimately, these analog experiments offer NASA and other space research groups the opportunity to carry out field research in a variety of key scientific and engineering disciplines that will help prepare humans to explore Mars in the coming years.

For one, it lets research crews know what kinds of work they can physically do when fully suited up, and just how well their suits can hold up to months’ worth of activity. At the same time, it allows for psychological studies and human factor issues – like testing the effects of isolation on human beings, and whether or not the habitats will suffice for long periods of occupation.

Above all, it lets us see how human beings with different skills sets and tasks can function together as a whole in a Martian environment. On any given day, astronauts in these analog environments are tasked with working within the pressurized habitats, out in the field, or far away using pressurized rovers or un-pressurized vehicles.

At the same time, it offers the opportunity for research crews to test out being in an isolated environment, connected to mission control and the terrestrial scientific community only through official communications.

And of course, there’s also the matter of the astronauts’ being connected to each other and robots in the field. Making these different assets work together to achieve the maximum possible exploration effect requires developing a combined operations approach, which is another aim of Hi-SEAS, the Mars Society, and other research groups.

Further Reading: Hi-SEAS, Mars Society