Double Disc Found Feeding Each Other In Binary Star System

This wide-field view shows the sky around the young multiple star system GG Tauri, which appears very close to the centre of this picture. This view also shows a dust cloud and evidence of star formation near the top of the picture. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Deep within the Taurus Dark Cloud complex, one of the closest star-forming regions to Earth has just revealed one of its secrets – an umbilical cord of gas flowing from the expansive outer disc toward the interior of a binary star system known as GG Tau-A. According to the ESO press release, this never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago.

A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used the Atacama Large
Millimeter/submillimeter Array (ALMA) to observe the distribution of
dust and gas in the unusual GG Tau-A system. Since at least half of
Sun-like stars are the product of binary star systems, these type of
findings may produce even more fertile grounds for discovering
exoplanets. However, the 450 light year distant GG Tau system is even more complex than previously thought. Through observations taken with the VLTI, astronomers have discovered its primary star – home to the inner disc – is part of a more involved multiple-star system. The secondary star is also a close binary!

“We may be witnessing these types of exoplanetary systems in the midst of formation,” said Jeffrey Bary, an astronomer at Colgate University in Hamilton, N.Y., and co-author of the paper. “In a sense, we are learning why these seemingly strange systems exist.”

Let’s take a look…

This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.
This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.

“Like a wheel in a wheel, GG Tau-A contains a large, outer disc
encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter.” says the research team. “Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.”

Thanks to studies done with ALMA, the researchers made an exciting discovery in these disc structures… gas clumps located between the two. This observation could mean that material is being fed from the outer disc to feed the inner. Previously observations done with ALMA show that a single star pulls its materials inward from the outer disc. Is it possible these gas pockets in the double disc GG Tau-A system are creating a sustaining lifeline between the two?

“Material flowing through the cavity was predicted by computer
simulations but has not been imaged before. Detecting these clumps
indicates that material is moving between the discs, allowing one to
feed off the other,” explains Dutrey. “These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation.”

As we know, planets are created from the materials leftover from
stellar ignition. However, the creation of a solar system occurs at a snail’s pace, meaning that a debris disc with longevity is required for planet formation. Thanks to these new “disc feeding” observations from ALMA, researchers can surmise that other multiple-star systems behave in a similar manner… creating even more possibilities for exoplanet formation.

“This means that multiple star systems have a way to form planets, despite their complicated dynamics. Given that we continue to find interesting planetary systems, our observations provide a glimpse of the mechanisms that enable such systems to form,” concludes Bary.

During the initial phase of planetary searches, the emphasis was placed on Sun-like, single-host stars. Later on, binary systems gave rise to giant Jupiter-sized planets – nearly large enough to be stars on their own. Now the focus has turned to pointing our planetary discovery efforts towards individual members of multiple-systems.

Emmanuel Di Folco, co-author of the paper, concludes: “Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation.”

Original Story Source: Planet-forming Lifeline Discovered in a Binary Star System ALMA Examines Ezekiel-like “Wheel in a Wheel” of Dust and Gas – ESO Science News Release.

Here’s What it Looks Like When a Refrigerator Hits the Moon

The impact site of the LADEE spacecraft is clear to see. Actually not really. One must compare to LROC images of the same site photographed before and after the impact to locate it. Click on the image to view the animated gif holding the pair of images. (Photo Credits: NASA/GSFC/LROC)

Ever wonder what your refrigerator’s impacting at the speed of a tank artillery shell would do to the Moon? The Lunar Reconnaissance Orbiter’s (LRO) primary camera has provided an image of just such an event when it located the impact site of another NASA spacecraft, the Lunar Atmosphere and Dust Environment Explorer (LADEE). The fridge-sized LADEE spacecraft completed its final Lunar orbit on April 18, 2014, and then crashed into the far side of the Moon. LADEE ground controllers were pretty certain where it crashed but no orbiter had found it until now. With billions of craters across the lunar surface, finding a fresh crater is a daunting task, but a new method of searching for fresh craters is what found LADEE.

The primary purpose of the LADEE mission was to search for lunar dust in the exceedingly thin atmosphere of the Moon. NASA Apollo astronauts had taken notes and drawings of incredible spires and rays of apparent dust above the horizon of the Moon as they were in orbit. To this day it remains a mystery although LADEE researchers are still working their data to find out more.

The LRO spacecraft has been in lunar orbit since 2007. With the LROC Narrow Angle Camera, LRO has the ability to resolve objects less than 2 feet across, and it was likely just a matter of finding time to snap and to search photos for a tiny impact crater.

However, the LROC team recently developed a new algorithm in software to search for fresh craters. Having a good idea where to begin the search, they decided to search for LADEE and quickly found it. The LROC team said the impact site is “about half a mile (780 meters) from the Sundman V crater rim with an altitude of about 8,497 feet (2,590 meters) and was only about two tenths of a mile (300 meters) north of the location mission controllers predicted based on tracking data.” Sundman Crater is about 200 km (125 miles) from a larger crater named Einstein.

A Google Earth map display of the Moon shows the area of the western limb and the offset of the LADEE impact site relative to the crater Einstein. (Photo Credit: Google, Ilus. T. Reyes)
A Google Earth map display of the Moon shows the area of the western limb and the offset of the LADEE impact site relative to the crater Einstein. The Moon’s limbs are zones rather than a distinct line because of its libration. (Photo Credit: Google, Illus. T. Reyes)

The LADEE impact site is within 300 meters of the location estimated by the LADEE team. The ground control team at Ames Research Center knew the location very well within just hours after the time of the planned impact. They had to know LADEE’s location in orbit with split-second accuracy and also know very accurately the altitude of the terrain LADEE was skimming over. LADEE was traveling at 1699 meters per second (3,800 mph, 5,574 feet/sec) upon impact.

But still, finding something as small as this crater can be difficult.

Looking at these images, the scale of lunar morphology is very deceiving. Craters that are 10 meters in diameter can be mistaken for 100 meter or even 1000 meters. The first image and third images (below) in this article are showing only a small portion of the external slope of the eastern rim of Sundman V, the satellite crater to the southeast of crater Sundman. Sundman V is 19,000 meters in diameter (19 km, 11.8 miles) whereas the first image is only 223 meters across.

The following image, which is the ratioing of “before” and “after” impact images by LROC, clearly reveals the impact scar from LADEE. LADEE’s crater is only approximately 10 feet in diameter (3 m) with the ejecta fanning out 200 meters to the west by northwest. LADEE was traveling westward across the face of the Moon that we see from Earth, reached the western limb and finally encountered Sundman.

A high resolution LROC image of the LADEE impact site on the eastern rim of Sundman V crater. The image was created by ratioing two images, one taken before the impact and another afterwards. The bright area highlights what has changed between the time of the two images, specifically the impact point and the ejecta. Image (Credit: NASA/Goddard/Arizona State University)
A high resolution LROC image of the LADEE impact site on the eastern rim of Sundman V crater. The image was created by ratioing two images, one taken before the impact and another afterwards. The bright area highlights what has changed between the time of the two images, specifically the impact point and the ejecta. Full resolution of the image (click) is 1 pixel per meter [1000 m on a side]. (Credit: NASA/Goddard/Arizona State University)
In the third image of this article (above), only a 1000 meter square view of the outer slope of Sundman V’s eastern rim is seen. Rather than take the difference between the two images, which is essentially what your eye-brain does with an image pair, LROC engineers take the ratio which effectively raises the contrast dramatically. Sundman V crater is on the far side of the Moon but very near the limb. At times, due to lunar libration, this site can be seen from the Earth. In the Lunar Orbiter image, below, Sundman and satellites J & V are marked. The red circle in the image below is the area in which LROC’s high resolution images reside. Furthermore, the famous Arizona meteor crater east of Flagstaff would also easily fit inside the circle.

This Lunar Orbiter image shows the Sundman craters. The high resolution LROC images of the LADE impact site easily fit within the red circle on Sundman V eastern rim. (Photo Credit: NASA)
This Lunar Orbiter image shows the Sundman craters. The high resolution LROC images of the LADEE impact site easily fit within the red circle (2 km dia.) on “Sundman V” eastern rim. (Photo Credit: NASA, Illus. T.Reyes)

The discovery so close to the predicted impact site confirmed how accurately the LADEE team could model the chaotic orbits around the Moon – at least during short intervals of time. Gravitationally, the Moon is truly like Swiss cheese. The effects of upwelling magma during its creation, the effects of the Earth’s tidal forces, and all the billions of asteroid impacts created a very chaotic gravitational field. Where the lunar surface is higher or more dense, gravity is stronger and vice-versa. LADEE struggled to maintain an orbit that would not run into the Moon. Without a constant vigil by Ames engineers, LADEE’s orbit would be shifted and rotated relative to the Moon’s surface until it eventually would intersect the Lunar surface – run into the Moon. Eventually, this had to happen as LADEE ran out of propulsion fuel.

The blink comparator used by Clyde Tombaugh at Lowell Observatory to discover Pluto in 1930. The basic approach has since been translated into computer software capable of searching many times faster than a human. (Photo Credit: MWT Associates)
The blink comparator used by Clyde Tombaugh at Lowell Observatory to discover Pluto in 1930. The basic approach has since been translated into computer software capable of searching many times faster than a human. (Photo Credit: MWT Associates/Melitatrips)

The method used by the LROC team in its basic approach is by no means new. Clyde Tombaugh used a blink comparator to search for Planet X for several months and many frame pairs of the night sky. The comparator would essentially show one image and then a second of the same view taken a few nights apart to Clyde’s eye. Tombaugh’s eye and brain could process the two images and identify slight shifts of an object from one frame to the other. Stars are essentially fixed, don’t move but objects in our solar system do move in the night sky over hours or days. In the same way, the new software employed by LROC engineers takes two images and compares them mathematically. A human is replaced by a computer and software to weed out the slightest changes between a pair of images; images of the same area but spaced in time. Finding changes on the surface of a body such as the Moon or Mars is made especially difficult because of the slightest changes in lighting and location of the observer (the spacecraft). The new LROC software marks a new step forward in sophistication and thus has returned LADEE back to us.

The following Lunar Orbiter image from the 1960s is high contrast and reveals surface relief in much more detail. Einstein crater is clearly seen, as is Sundman with J and V satellite craters on its rim.

A NASA Lunar Orbiter image of the LADEE impact site. Einstein is actually a old low profile crater 198 km in diameter with 51 km "Einstein A" at its center. Sundman is also a low profile crater, 40 km, with satellite craters J (southwest), V (southeast). (Photo Credit: NASA)
A NASA Lunar Orbiter image of the LADEE impact site. Einstein is actually an old low profile crater 198 km in diameter with 51 km “Einstein A” at its center. Sundman is also a low profile crater, 40 km diameter, with satellite craters J (10 km dia., southwest), V (19 km dia., southeast). (Photo Credit: NASA)

References:

NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater

Karl Frithiof Sundman (28 October 1873, Kaskinen – 28 September 1949, Helsinki)

The Blink Comparator and Clyde Tombaugh

Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere

This cloud in the stratosphere over Titan’s north pole (left) is similar to Earth’s polar stratospheric clouds (right). NASA scientists found that Titan’s cloud contains methane ice, which was not previously thought to form in that part of the atmosphere. Cassini first spotted the cloud in 2006. Credit: L. NASA/JPL/U. of Ariz./LPGNantes; R. NASA/GSFC/M. Schoeberl

During its 2006 flyby of Titan, the Cassini Space Probe captured some of the most detailed images of Saturn’s largest moon. Amongst them was one showing the lofty cloud formations over Titan’s north pole (shown above). Interestingly enough, these cloud formations bear a strong resemblance to those that are seen in Earth’s own polar stratosphere.

However, unlike Earth’s, these clouds are composed entirely of liquid methane and ethane. Given Titan’s incredibly low temperatures – minus 185 °C (-300 °F) – it’s not surprising that such a dense atmosphere of liquid hydrocarbons exists, or that seas of methane cover the planet.

Continue reading “Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere”

Catastrophic Failure Dooms Antares Launch to Space Station – Gallery

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff, an Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure and exploded into a spectacular aerial fireball over the launch pad at NASA’s Wallops Flight Facility on the eastern shore of Virginia that doomed the mission bound for the International Space Station on Tuesday, October 28.

The 14 story tall Antares rocket blasted off at 6:22 p.m. EDT from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops on only its 5th launch overall.

I witnessed and photographed the launch from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away.

This story is being updated. See a gallery of photos herein.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

Everything appeared normal at first. But within about five seconds or so there was obviously a serious mishap as the rocket was no longer ascending. It was just frozen in time. And I was looking directly at the launch, not through the viewfinder of my cameras.

Something was noticeably amiss almost instantly as the rocket climbed only very slowly, barely clearing the tower it seemed to me. The rocket failed to emerge from the normal huge plume of smoke and ash that’s purposely deflected away by the flame trench at the base of the pad.

I was stunned trying to comprehend what was happening because it was all so wrong.

It was absolutely nothing like the other Antares launches I’ve witnessed from the media site.

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

I knew as a scientist and journalist that I was watching a mounting disaster unfolding before my eyes.

Instead of ascending on an accelerating arc, a mammoth ball of fire, smoke and ash blew up the entire sky in front of us like a scene out of hell or war. Literally the sky was set on fire unlike anything I’ve ever witnessed.

A series of mid air explosions rocked the area. I could feel a slight pressure wave followed by a mild but noticeable heat wave passing by.

Then the rocket began to fall back to Earth. Then the ground blew up too as the rocket pieces hit the ground and exploded into a hail of smithereens in every direction.

By this time our NASA escorts starting yelling to abandon everything in place and head immediately for the buses and evacuate the area. The ground fire spread mostly to the northern portion of the pad and the expanding air borne plume also blew northwards. The ground fire was still burning over a half hour later.

Thankfully, everyone got out safe and there were no injuries due to the excellent effort by our NASA escorts trained for exactly these types of unexpected circumstances.

It’s heartbreaking for everyone’s painstaking efforts to get to the point of liftoff after years of effort to fulfill the critical need to resupply that station with the science equipment and experiments for which it was built.

More later

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

BREAKING: Antares Rocket Explodes at Liftoff

Seconds after liftoff, Orbital Science’s Antares rocket exploded as it rose from the Mid-Atlantic Regional Spaceport at Wallops Island, Virginia. In video, the explosion appeared to come at the base of the rocket. The entire stack then fell back to the ground, with a second larger explosion.

According to NASA TV, there were no injuries reported at the launch site but there appears to be damage to the launch pad.

We’ll provide more information and updates as they become available. NASA and Orbital said they would be scheduling a news conference. Our Ken Kremer is on location at Wallops.

This is the first launch failure for NASA’s commercial space companies. Antares has had five successful launches. The launch was originally scheduled for Oct. 27 but was scrubbed when a boat entered restricted waters off the coast from the launch site.

The mission, was the third of eight Commercial Resupply Services missions that Orbital Sciences is under contract to NASA. The Cygnus capsule, named by Orbital the “SS Deke Slayton” after the late astronaut, was carrying 2,290 kilograms of cargo for the International Space Station.

This video was shot by journalist Matthew Travis at the press site at Wallops:

Just In Time for Halloween: Jupiter Gets a Giant Cyclops Eye!

Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)

Halloween is just around the corner. And in what appears to be an act of cosmic convergence, Hubble captured a spooky image of Jupiter staring back at us with a cyclops eye!

While this is merely a convenient illusion caused by the passage of Ganymede in front of Jupiter – something it does on a regular basis – the timing and appearance are perfect.

Continue reading “Just In Time for Halloween: Jupiter Gets a Giant Cyclops Eye!”

100,000 Ice Blocks Mapped Out at the South Pole … of Enceladus

Cassini's view down into a jetting "tiger stripe" in August 2010. Credit: NASA

Ever since the Cassini space probe conducted its first flyby of Enceladus in 2005, the strange Saturnian moon has provided us with a treasure trove of images and scientific wonders. These include the jets of icy water vapor periodically bursting from its south pole, the possibility of an interior ocean – which may even harbor life – and the strange green-blue stripes located around the south pole.

Continue reading “100,000 Ice Blocks Mapped Out at the South Pole … of Enceladus”

China’s Lunar Test Spacecraft Takes Incredible Picture of Earth and Moon Together

A unique view of the Moon and distant Earth from China's Chang’e-5 T1 lunar test flight. Image via CCTV News and UnmannedSpaceflight.com.

The Chinese lunar test mission Chang’e 5T1 has sent back some amazing and unique views of the Moon’s far side, with the Earth joining in for a cameo in the image above. According to the crew at UnmannedSpaceflight.com the images were taken with the spacecraft’s solar array monitoring camera.

Add this marvelous shot to previous views of the Earth and Moon together.

A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.
A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.

The mission launched on October 23 and is taking an eight-day roundtrip flight around the Moon and is now journeying back to Earth. The mission is a test run for Chang’e-5, China’s fourth lunar probe that aims to gather samples from the Moon’s surface, currently set for 2017. Chang’e 5T1 will return to Earth on October 31.

The test flight orbit had a perigee of 209 kilometers and reached an apogee of about 380,000 kilometers, swinging halfway around the Moon, but did not enter lunar orbit.

A view of Earth on October 24, 2014 from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.
A view of Earth on October 24, 2014, from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.

See original images at Xinhua News.

H/T: Cosmic_Penguin and Unmanned Spaceflight.

Comet K1 PanSTARRS: See It Now Before it Heads South

Credit:

Comet C/2012 K1 PanSTARRS, one of the most dependable comets of 2014, may put on its encore performance over the coming weeks for southern hemisphere observers.

First, the story thus far. Discovered as a +19th magnitude smudge along the borders of the constellations Ophiuchus and Hercules in mid-May 2012 courtesy of the Panoramic Survey Telescope And Rapid Response System (PanSTARRS) based atop Haleakala on the Hawaiian island of Maui, astronomers soon realized that comet C/2012 K1 PanSTARRS would be something special.

The comet broke +10th magnitude to become a visible binocular object in early 2014, and wowed northern hemisphere observers as it vaulted across the constellations of Boötes and Ursa Major this past spring.

NEOWISE
NASA’s NEOWISE mission spies K1 PanSTARRS on May 20th as it slides by the galaxy NGC 3726 (blue). Credit: NASA/JPL.

The comet is approaching the inner solar system on a retrograde, highly-inclined orbit tilted 142 degrees relative the ecliptic. This bizarre orbit also assures that the comet will actually reach opposition twice in 2014 as seen from our earthly vantage point: once on April 15th, and another opposition coming right up on November 7th.

As was the case with comet Hale-Bopp way back in 1997, had C/2012 K1 PanSTARRS arrived six months earlier or later, we would’ve been in for a truly spectacular show, as the comet reached perihelion on August 27th, 2014, only 0.05 A.U.s (4.6 million miles or 7.7 million kilometres) outside the orbit of the Earth! But such a spectacle was not to be… back in ’97, Hale-Bopp’s enormous size — featuring a nucleus estimated 40 to 60 kilometres across — made for a grand show regardless… fast forward to 2014, and the tinier nucleus of K1 PanSTARRS has been relegated to binocular status only.

Credit
The position of comet K1 PanSTARRS as it passes its second opposition of the year. Credit: NASA/JPL.

From here on out, K1 PanSTARRS is headed south “with a bullet” and into memory for most northern hemisphere observers. We spied the comet this morning low to the south near +3rd magnitude Nu Puppis in the pre-dawn sky with our trusty 15×45 binocs from Yuma, Arizona, for what will probably be our last time. This also means that the time to catch a last glimpse of K1 PanSTARRS for northern hemisphere viewers is now. This week sees the comet transiting just 20 degrees above the southern horizon at 3:00 to 4:00 AM local for observers based from latitude 30 degrees north as it crosses the constellation Puppis. The bright star Sirius nearly shares the same position as the comet in right ascension this week, and K1 PanSTARRS sits about 24 degrees south of the Dog Star.

K1 PanSTARRS jaicoa
Comet K1 PanSTARRS imaged on June 14th. Credit: Efrain Morales.

Halloween sees the comet even lower, crossing the southern meridian at only 13 degrees elevation as seen from latitude 30 degrees north. Draw a straight line from Sirius to the south celestial pole around this date to find the comet just 5 degrees to the north of Canopus.

But the show is just beginning for southern hemisphere residents. Observing from the town of Bright Australia, Robert Kaufmann recently noted in a posting on the Yahoo Groups Comet Observer’s message board that the comet currently exhibits a 4’ wide coma shining at about magnitude +7.3 with an elevation of 28 degrees above the horizon on October 25th.

And if the comet holds steady in brightness, it may break the visual threshold and become a naked eye object as seen from a dark sky site in early November.

Light curve
The projected light curve of K1 PanSTARRS with brightness observations (black dots). The vertical pink line marks the comet’s perihelion passage in late August. Credit: Seiichi Yoshida’s Weekly Information on Bright Comets.

The comet will be literally “hauling tail” across the constellation Dorado as it nears its second opposition of the year on November 7th, moving about 1.5 degrees a day – 3 times the apparent diameter of the Full Moon – on closest approach.

Currently, the comet has been observed to have an estimated magnitude holding steady at+7 and is predicted to peak at perhaps magnitude +6 early next month. And while it would’ve been great had it arrived 6 months earlier or later, the aforementioned high retrograde inclination of its orbit assured that K1 PanSTARRS was a top performer for both hemispheres in 2014.

Perihelion passage occurred two months ago, but to paraphrase a famous Monty Python skit, Comet K1 PanSTARRS is “not dead yet.”  Here are some key observing dates coming right up as the comet gains prominence in the southern hemisphere sky:

(Note that close passages of less than one degree near stars +4th magnitude or brighter only are mentioned).

Oct 31st: Passes closest to Earth, at 0.953 A.U.s distant.

Nov 1st: Crosses into the constellation Pictor.

Nov 2nd: Passes near the +3.8 magnitude star Beta Pictoris.

Nov 6th: Crosses into the constellation Dorado.

Nov 6th: Full Moon occurs, marking the beginning of an unfavorable week for comet hunting.

Nov 7th: The second opposition of the comet for 2014 occurs at 3:00 UT.

Nov 8th: Passes near the +3.3 magnitude star Alpha Doradus.

Nov 11th: Crosses into the constellation Reticulum.

Nov 13th: Crosses into the constellation Horologium.

Nov 14th: Passes 34 degrees from the South Celestial Pole.

Nov 20th: Crosses into the constellation Eridanus.

Nov 22nd: New Moon occurs, marking a week long span optimal for comet-hunting.

Nov 25th: Crosses into the constellation Phoenix.

Starry Night Education Software.
The path of K1 PanSTARRS from October 27th through December 1st. Created by the author using Starry Night Education Software.

Dec 6th: Full Moon occurs.

Dec 12th: Passes near the +2.8 magnitude star Alpha Phoenicis (Ankaa).

Dec 18th: Crosses into the constellation Sculptor.

Dec 22nd: New Moon occurs.

Looking at 2015, K1 PanSTARRS will probably fall back below +10th magnitude by late January. The comet will then head back out into the depths of the outer solar system, its multi-million year orbit only slightly altered by its inner solar system passage down into the ~700,000 year range. What will Earth be like on that far off date? Will human eyes greet the comet once again, and will anyone remember its appearance way back in the mists of time in 2014? All thoughts to ponder as we bid fair well to Comet C/2012 K1 PanSTARRS, a fine binocular comet indeed.

 

Stray Boater Delays Antares Launch to Tuesday

The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, on launch Pad-0A at NASA's Wallops Flight Facility in Virginia. Credit: NASA/Joel Kowsky.

A Monday launch attempt for the third Orbital Sciences cargo mission to the International Space Station was scrubbed because a boat strayed into restricted waters southeast of the launch pad at Wallops Island, Virginia. The Antares rocket, carrying the Cygnus capsule would have flown over the boater had the rocket lifted off and officials cited public safety as the reason for the scrub.

Launch has been rescheduled for 6:22 p.m. EDT (22:22 UTC), about 15 minutes after sunset at the Mid-Atlantic Regional Spaceport, and the Antares blastoff should be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

The scrub caused disappointment, as the highly-anticipated launch had perfect weather and was expected to be visible to millions up and down the Atlantic shoreline. Photographers had also hoped to capture a spectacular night-time launch with the crescent Moon nearby and the Space Station flying overhead shortly after launch.

Monday’s launch window was only 10 minutes long due to a short opportunity for the spacecraft to reach the space station’s orbit. The boat was said to have a single passenger and was without a radio.

If the weather holds, the launch should still be visible along the Eastern seaboard on Tuesday. See our complete guide to viewing the launch here, and Orbital may provide updated viewing maps here.

NASA Television coverage of Tuesday’s launch will begin at 5:30 p.m. EDT, and you can watch live below. A post-launch news conference will follow at approximately 8 p.m.

The Antares will launch the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences’ third contracted cargo delivery flight to the space station for NASA.

A Tuesday launch will result in the Cygnus spacecraft arriving at the space station early Sunday, Nov. 2. NASA TV coverage of rendezvous and berthing will begin at 3:30 a.m. with grapple at approximately 4:58 a.m.



Broadcast live streaming video on Ustream