A New Look at Dark Matter — Is the Milky Way Less of a Behemoth Than Previously Thought?

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

Astronomy is notorious for raising more questions than it answers. Take the observation that the vast majority of matter is invisible.

Although astronomers have gathered overwhelming evidence that dark matter makes up roughly 84 percent of the universe’s matter — providing straightforward explanations for the rotation of individual galaxies, the motions of distant galaxy clusters, and the bending of distant starlight — they remain unsure about any specifics.

Now, a group of Australian astronomers thinks there’s only half as much dark matter in the Milky Way as previously thought.

In 1933, Swiss astronomer Fritz Zwicky observed the Coma cluster — a galaxy cluster roughly 320 million light-years away and nearly 2 light-years across — and found that it moved too rapidly. There simply wasn’t enough visible matter to hold the galaxy cluster together.

Zwicky decided there must be a hidden ingredient, known as dunkle Materie, or dark matter, that caused the motions of these galaxies to be so large.

The rotation curve of the Milky Way. Image Credit: Kafle et al.
The rotation curve of the Milky Way. Image Credit: Kafle et al.

Then in 1978, American astronomer Vera Rubin looked at individual galaxies. Astronomers largely assumed galaxies rotated much like our Solar System, with the outer planets rotating slower than the inner planets. This argument aligns with Newton’s Laws and the assumption that most of the mass is located in the center.

But Rubin found that galaxies rotated nothing like our own Solar System. The outer stars did not rotate slower than the inner stars, but just as fast. There had to be dark matter on the outskirts of every galaxy.

Now, astronomer Prajwal Kafle, from The University of Western Australia, and his colleagues have once again observed the speed of stars on the outskirts of our own galaxy, the Milky Way. But he did so in much greater detail than previous estimates.

From a star’s speed, it’s relatively simple to calculate any interior mass. The simple equation below shows that the interior mass (M) is equal to the distance the star is from the galactic center (R) times its velocity (V) squared, all divided by the gravitational constant (G):
Screen Shot 2014-10-13 at 2.35.47 PM

Kafle and his colleagues used messier physics accounting for the sloppiness of the galaxy. But the point holds, with a star’s velocity, you can calculate any interior mass. And with multiple stars’ velocities you’re bound to be more accurate. The team found the dark matter in our galaxy weighs 800 billion times the mass of the Sun, half of previous estimates.

“The current idea of galaxy formation and evolution … predicts that there should be a handful of big satellite galaxies around the Milky Way that are visible with the naked eye, but we don’t see that,” said Kafle in a news release. This is typically referred to as the missing satellites problem, and it has evaded astronomers for years.

“When you use our measurement of the mass of the dark matter the theory predicts that there should only be three satellite galaxies out there, which is exactly what we see; the Large Magellanic Cloud, the Small Magellanic Cloud and the Sagittarius Dwarf Galaxy,” said Kafle.

These new measurements might prove the Milky Way is not quite the behemoth astronomers previously thought. They also help explain why there are so few satellite galaxies in orbit. But first the results will have to be confirmed as they stand up against numerous other ways to weigh the dark matter in our galaxy.

The results have been published in the Astrophysical Journal and are available online.

Were Lunar Volcanoes Active When Dinosaurs Roamed the Earth?

The feature called Maskelyne is one of many newly discovered young volcanic deposits on the moon. Called irregular mare patches, these areas are thought to be remnants of small lava eruptions that occurred recently in the moon's past. To view this image correctly, the large, dark, circular feature right of center is pancake-like dome that rises ABOVE the surrounding lighter-toned terrain. Lower domes, many pitted with small craters, are seen from left to right across the photo. Credit: NASA/GSFC/Arizona State University

The Moon’s a very dusty museum where the exhibits haven’t changed much over the last 4 billion years. Or so we thought. NASA’s Lunar Reconnaissance Orbiter (LRO) has provided researchers strong evidence the Moon’s volcanic activity slowed gradually instead of stopping abruptly a billion years ago.

Some volcanic deposits are estimated to be 100 million years old, meaning the moon was spouting lava when dinosaurs of the Cretaceous era were busy swatting giant dragonflies. There are even hints of 50-million-year-old volcanism, practically yesterday by lunar standards.

Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA
Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA

The deposits are scattered across the Moon’s dark volcanic plains (lunar “seas”) and are characterized by a mixture of smooth, rounded, shallow mounds next to patches of rough, blocky terrain. Because of this combination of textures, the researchers refer to these unusual areas as “irregular mare patches.”

Measuring less than one-third mile (1/2 km) across, almost all are too small to see from Earth with the exception of Ina Caldera, a 2-mile-long D-shaped patch where blobs of older, crater-pitted lunar crust (darker blobs) rise some 250 feet above the younger, rubbly surface like melted cheese on pizza.

Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS
Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS

Ina was thought to be a one-of-a-kind until researchers from Arizona State University in Tempe and Westfälische Wilhelms-Universität Münster in Germany spotted 70 more patches in close-up photos taken by the LRO. The large number and the fact that the patches are scattered all over the nearside of the Moon means that volcanic activity was not only recent but widespread.

Astronomers estimate ages for features on the moon by counting crater numbers and sizes (the fewer seen, the younger the surface) and the steepness of the slopes running from the tops of the smoother domes to the rough terrain below (the steeper, the younger).

“Based on a technique that links such crater measurements to the ages of Apollo and Luna samples, three of the irregular mare patches are thought to be less than 100 million years old, and perhaps less than 50 million years old in the case of Ina,” according to the NASA press release.

Artist concept illustration of the internal structure of the moon. Credit: NOAJ
Artist concept illustration of the internal structure of the moon. Credit: NOAJ

The young mare patches stand in stark contrast to the ancient volcanic terrain surrounding them that dates from 3.5 to 1 billion years ago.

For lava to flow you need a hot mantle, the deep layer of rock beneath the crust that extends to the Moon’s metal core. And a hot mantle means a core that’s still cranking out a lot of heat.

Scientists thought the Moon had cooled off a billion or more years ago, making recent flows all but impossible. Apparently the moon’s interior remained piping hot far longer than anyone had supposed.

“The existence and age of the irregular mare patches tell us that the lunar mantle had to remain hot enough to provide magma for the small-volume eruptions that created these unusual young features,” said Sarah Braden, a recent Arizona State University graduate and the lead author of the study.

It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth's gravity stretches and compresses the moon to warm its interior. Illustration: Bob King
It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth’s gravity stretches and compresses the moon to warm its interior. Illustration: Bob King

One way to keep the Moon warm is through tidal interaction with the Earth. A recent study points out that strains caused by Earth’s gravitational tug on the Moon (nearside vs. farside) heats up its interior. Could this be the source of the relatively recent lava flows?

So the pendulum swings. Prior to 1950 it was thought that lunar craters and landforms were all produced by volcanic activity. But the size and global distribution of craters – and the volcanoes required to produce them – would be impossible on a small body like the Moon. In the 1950s and beyond, astronomers came to realize through the study of nuclear bomb tests and high-velocity impact experiments that explosive impacts from asteroids large and small were responsible for the Moon’s craters.

This latest revelation gives us a more nuanced view of how volcanism may continue to play a role in the formation of lunar features.

Earth and Mars Captured Together in One Photo from Lunar Orbit

The Lunar Reconnaissance Orbiter turned for a quick look at Earth and one of our closest planetary neighbors—Mars. Credit: NASA/GSFC/Arizona State University,

Wow, this doesn’t happen very often: Earth and Mars together in one photo. To make the image even more unique, it was taken from lunar orbit by the Lunar Reconnaissance Orbiter. This two-for-one photo was was acquired in a single shot on May 24, 2014, by the Narrow Angle Camera (NAC) on LRO as the spacecraft was turned to face the Earth, instead of its usual view of looking down at the Moon.

The LRO imaging team said seeing the planets together in one image makes the two worlds seem not so far apart, and that the Moon still might have a role to play in future exploration.

“The juxtaposition of Earth and Mars seen from the Moon is a poignant reminder that the Moon would make a convenient waypoint for explorers bound for the fourth planet and beyond!” said the LRO team on their website. “In the near-future, the Moon could serve as a test-bed for construction and resource utilization technologies. Longer-range plans may include the Moon as a resource depot or base of operations for interplanetary activities.”

Watch a video created from this image where it appears you are flying from the Earth to Mars:

The LROC team said this imaging sequence required a significant amount of planning, and that prior to the “conjunction” event, they took practice images of Mars to refine the timing and camera settings.

When the spacecraft captured this image, Earth was about 376,687 kilometers (234,062 miles) away from LRO and Mars was 112.5 million kilometers away. So, Mars was about 300 times farther from the Moon than the Earth.

The NAC is actually two cameras, and each NAC image is built from rows of pixels acquired one after another, and then the left and right images are stitched together to make a complete NAC pair. “If the spacecraft was not moving, the rows of pixels would image the same area over and over; it is the spacecraft motion, combined with fine-tuning of the camera exposure time, that enables the final image, such as this Earth-Mars view,” the LRO team explained.

Check out more about this image on the LRO website, which includes a zoomable, interactive version of the photo.

Bigelow Inflatable Module to be Added to Space Station in 2015

Artist's concept of the Bigelow Expandable Activity Module (BEAM), currently scheduled to be added to the International Space Station in 2015. Credit: Bigelow Aerospace.

Astronauts aboard the International Space Station are going to be getting an addition in the near future, and in the form of an inflatable room no less. The Bigelow Expandable Activity Module (BEAM) is the first privately-built space habitat that will added to the ISS, and it will be transported into orbit aboard a Space X Falcon 9 rocket sometime next year.

“The BEAM is one small step for Bigelow Aerospace,” Bigelow representative Michael Gold told Universe Today, “but is also one giant leap for private sector space activities since the BEAM will be the first privately owned and developed module ever to be part of a crewed system in space.”

Continue reading “Bigelow Inflatable Module to be Added to Space Station in 2015”

What Does Earth Look Like From the Moon?

What Does Earth Look Like From the Moon?

If you could stand on the Moon and look back at the Earth, what would you see? How would it compare from our familiar vantage point?

We know what the Moon looks like from Earth, but what would the Earth look like from the Moon?

Pretty strange, actually.

The Moon is tidally locked to us, and it presents only one face to the Earth.

If you were on the near side of the Moon, the Earth would always be in the sky. And if you were on the far side, you’d never see it.

Also, it’s weird there. So you’d probably want to move.

If you were standing on the Moon, looking up, you’d see the Earth, hanging in the sky forever, or for however long your robot body holds out.

It would go through phases, like the Moon, moving from total darkness, though quarter illumination, Full Earth, and back again. But the features on the Earth would be changing. The face of the Earth would be illuminated, and you’d see the entire planet turning throughout the day and you could use it to cheat on Geography tests.

It wouldn’t be totally dark on the night side because “humans”. You’d see those beautiful blobs of stringy light on the shadowed parts of the Earth.

Our Moon follows an elliptical path around the Earth, getting as close as 363,000 km and as far as 405,000 km.

This means the Earth would get bigger and smaller in the sky. As Earth is much larger than the Moon, it would take up 13 times as much area.

The Earth wouldn’t actually hang motionless in the sky. We see lunar libration from our perspective, which lets us peek around the corner of the Moon. But from the Moon, we’d see the Earth move back and forth in the sky over 27 days.

Earthrise  (credit—Apollo 8/NASA)
Earthrise (credit—Apollo 8/NASA)

Remember this famous Earthrise photo captured by Apollo 8? It’s on every single sales brochure for lunar real estate.

Don’t be fooled, if you were on the Moon, you’d never see an Earthrise like that.
In fact, the only way to get a view like that is be on a spacecraft orbiting the Moon.

If I lived on the Moon, I’d want property Earthside.

Would you like to see the Earth from the Moon? What other views of the Solar System would you like to get?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

NASA Inaugurates New Space Station Era as Earth Science Observation Platform with RapidScat Instrument

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

NASA inaugurated a new era of research for the International Space Station (ISS) as an Earth observation platform following the successful installation and activation of the ISS-RapidScat science instrument on the outposts exterior at Europe’s Columbus module.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

“Its antenna began spinning and it started transmitting and receiving its first winds data on Oct.1,” according to a NASA statement.

The first image from RapidScat was released by NASA on Oct. 6, shown below, and depicts preliminary measurements of global ocean near-surface wind speeds and directions.

Launched Sept. 21, 2014, to the International Space Station, NASA's newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images.  Credit: NASA-JPL/Caltech
Launched Sept. 21, 2014, to the International Space Station, NASA’s newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images. Credit: NASA-JPL/Caltech

The $26 million remote sensing instrument uses radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

“Most satellite missions require weeks or even months to produce data of the quality that we seem to be getting from the first few days of RapidScat,” said RapidScat Project Scientist Ernesto Rodriguez of NASA’s Jet Propulsion Laboratory, Pasadena, California, which built and manages the mission.

“We have been very lucky that within the first days of operations we have already been able to observe a developing tropical cyclone.

“The quality of these data reflect the level of testing and preparation that the team has put in prior to launch,” Rodriguez said in a NASA statement. “It also reflects the quality of the spare QuikScat hardware from which RapidScat was partially assembled.”

RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

Dragon was successfully berthed at the Earth-facing port on the station’s Harmony module on Sept 23, as detailed here.

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst
Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst

The nadir adapter orients the instrument to point at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

Engineers are in the midst of a two week check out process that is proceeding normally so far. Another two weeks of calibration work will follow.

Thereafter RapidScat will begin a mission expected to last at least two years, said Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, at a prelaunch media briefing at the Kennedy Space Center.

RapidScat is the forerunner of at least five more Earth science observing instruments that will be added to the station by the end of the decade, Volz explained.

The second Earth science instrument, dubbed CATS, could be added by year’s end.

The Cloud-Aerosol Transport System (CATS) is a laser instrument that will measure clouds and the location and distribution of pollution, dust, smoke, and other particulates in the atmosphere.

CATS is slated to launch on the next SpaceX resupply mission, CRS-5, currently targeted to launch from Cape Canaveral, FL, on Dec. 9.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency in February, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

NASA managers show installed location of ISS-RapidScat instrument on the Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission.  Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington and Howard Eisen, RapidScat Project Manager.  Credit: Ken Kremer - kenkremer.com
NASA managers show installed location of ISS-RapidScat instrument on the ESA Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission. Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, and Howard Eisen, RapidScat Project Manager. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space Taxis, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM

Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Watch the “Blood Moon” Eclipse from Mercury

Earth and the Moon imaged by the MESSENGER spacecraft on Oct. 8, 2014

Yes, it’s another time-lapse of the October 8 lunar eclipse that was observed by skywatchers across half the Earth… except that these images weren’t captured from Earth at all; this was the view from Mercury!

The animation above was constructed from 31 images taken two minutes apart by the MESSENGER spacecraft between 5:18 a.m. and 6:18 a.m. EDT on Oct. 8, 2014.

“From Mercury, the Earth and Moon normally appear as if they were two very bright stars,” said Hari Nair, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory, which developed and operates the MESSENGER mission for NASA. “During a lunar eclipse, the Moon seems to disappear during its passage through the Earth’s shadow, as shown in the movie.”

According to Nair the images have been zoomed by a factor of two and the Moon’s brightness has been increased by a factor of about 25 to enhance visibility. Captured by MESSENGER’s narrow-angle camera, Earth and the Moon were 0.713 AU (106.6 million km / 66.2 million miles) away from Mercury when the images were acquired.

Want to see some great photos of the eclipse shared by talented photographers around the world? Click here.

The Oct. 8 “Hunter’s Moon” eclipse was the second and last total lunar eclipse of 2014. The next will occur on April 4 of next year… but by that time MESSENGER won’t be around to witness it.

Launched August 3, 2004, MESSENGER entered orbit at Mercury on March 18, 2011. It is currently nearing the end of its missions as well as its its operational life, but we still have several more months of observations to look forward to from around the Solar System’s innermost planet before MESSENGER makes its final pass and ultimately impacts Mercury’s surface in March 2015.

Video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Source: MESSENGER news release

Nearby Galaxy Holds First Ultraluminous X-Ray Source that is a Pulsar

Artist's illustration of a rotating neutron star, the remnants of a super nova explosion. Credit: NASA, Caltech-JPL

A research team led by Caltech astronomers of Pasadena California have discovered an ultraluminous X-ray (ULX) source that is pulsating. Their analysis concluded that the source in a nearby galaxy – M82 – is from a rotating neutron star, a pulsar. This is the first ULX source attributed to a pulsar.

Matteo Bachetti of the Université de Toulouse in France first identified the pulsating source and is the lead author of the paper, “An ultraluminous X-ray source powered by an accreting neutron star” in the journal Nature. Caltech astronomer Dr. Fiona Harrison, the team leader, stated “This compact little stellar remnant is a real powerhouse. We’ve never seen anything quite like it. We all thought an object with that much energy had to be a black hole.”

What is most extraordinary is that this discovery places even more strain on theories already hard pressed to explain the existence of ultraluminous X-Ray sources. The burden falls on the shoulder of the theorists.

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)

The source of the observations is the NuSTAR space telescope, a SMEX class NASA mission. It is a Wolter telescope that uses grazing incidence optics, not glass (refraction) or mirrors (reflection) as in visible light telescopes. The incidence angle of the X-rays must be very shallow and consequently the optics are extended out on a 10 meter (33 feet) truss. NuSTAR records its observations with a time stamp such as taking a video of the sky. The video recording in high speed is not in visible everyday light but what is called hard x-rays. Only gamma rays are more energetic. X-rays emanate from the most powerful sources and events in the Universe. NuStar observes in the energy range of X-Rays from 5 to 80 KeV (electron volt)while the famous Chandra space telescope observes in the .1 to 10 KeV range. Chandra is one NASA’s great space telescope, was launched by the Space Shuttle Columbia (STS-93) in 1999. Chandra has altered our view of the Universe as dramatically as the first telescope constructed by Galileo. NuSTAR carries on the study of X-rays to higher energies and with greater acuity.

ULX sources are rare in the Universe but this is the first pulsating ULX. After analysis, they concluded that this is not a black hole but rather its little brother, a spinning neutron star as the source. More specifically, this is an accreting binary pulsar; matter from a companion star is being  gravitationally attracted by and accreting onto the pulsar.

The Crab Nebula Pulsar, M1. Both are sequences of observations that show the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula. The Crab Pulsar actually pulsates 30 times per second a result of its rotation rate and the relative offset of the magnetic pole. Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)
The prime example of a pulsar – the Crab Nebula Pulsar, M1. These actual observations show the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula. The Crab Pulsar actually pulsates 30 times per second, not seen here, a result of its rotation rate and the relative offset of the magnetic pole. Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)

Take a neutron star and spin it up to anywhere from 700 rotations per second to a mere one  rotation every 10 seconds. Now you have a neutron star called a pulsar. Spinning or not, these are the remnants of supernovae, stellar explosions that can outshine a galaxy of 300 billion stars. Just one teaspoon of neutron star material weighs 10 million tons (9,071,847,400 kg). That is the same weight as 900 Great Pyramids of Giza all condensed to one teaspoon. As incredible a material and star that a neutron star is, they were not thought to be the source of any ultraluminous X-Ray sources. This view has changed with the analysis of observations by this research team utilizing NuSTAR. The telescope name – NuSTAR – stands for Nuclear Spectroscopic Telescope Array.

There is nothing run of the mill about black holes. Dr. Stephen Hawking only conceded after 25 years, in 2004 (the Thorne-Hawking Bet)  that Black Holes exist. And still today it is not absolutely certain. Recall the Universe Today weekly – Space Hangout on September 26 – “Do Black Holes exist?” and the article by Jason Major, “There are no such things as Black Holes.

Pulsars stars are nearly as exotic as black holes, and all astronomers accept the existence of these spinning neutron stars. There are three final states of a dying star. Stars like our Sun at the end of their life become very dense White Dwarf stars, about the size of the Earth. Neutron stars are the next “degenerate” state of a dying exhausted star. All the electrons have merged with the protons in the material of the star to become neutrons. A neutron star is a degenerate form of matter effectively made up of all neutron particles. Very dense, these stars are really small, the size of cities, about 16 miles in diameter. The third type of star in its final state is the Black Hole.

The Crab Nebula was first  observed in the 1700s and is catalogued Messier object, M1. The remant explosion of a SuperNova, Chinese astronomers observed in 1054 A.D and holds the second Pular discovered (1968).
The Crab Nebula was first observed in the 1700s and is catalogued Messier object, M1. The remant explosion of a SuperNova that Chinese astronomers observed in 1054 A.D, it holds the second Pulsar discovered (1968).

A spinning neutron star creates a magnetic field, the most powerful of such fields in the Universe. They are like a dipole of a bar magnet and because of how magnetic fields confine the hot gases – plasma – of the neutron star, constant streams of material flow down and light streams out from the magnetic poles.

Recently, the Earth has had incredible northern lights, aurora. These lights are also from hot gases — a plasma — at the top of our atmosphere. Likewise, hot energetic particles from the Sun are funneled down into the magnetic poles of the Earth’s field that creates the northern lights. For spinning neutron stars – pulsars – the extreme light from the magnetic poles are like beacons. Just like our Earth, the magnetic poles and the spin axis poles do not coincide. So the intense beacon of light will rotate around and periodically point at the Earth. The video of the first illustration describes this action.

Messier object - M82, the Cigar Nebula, nicknamed for the shape seen through telescopes of the 1800s. This is the location of the newly discovered Pulsar.
Messier object – M82, the Cigar Nebula, nicknamed for the shape seen through telescopes of the 1800s. This is the location of the newly discovered Pulsar.

The light beacons from pulsars are very bright but theory, until now, has been supported by observations. No ultraluminous X-ray sources should be pulsars. The newly discovered pulsar is outputting 100 times more energy than any other. Discoveries like the one by these astronomers utilizing NuSTAR is proof that there remains more to discover and understand and new telescopes will be conceived to help resolve questions raised by NuSTAR or Chandra.

Further reading: JPL

Every Falcon 9 Launch in One Image

A photo montage of every Falcon 9 launch so far. Used by permission. Credit: SpaceXStats.

If you’re a fan of SpaceX, you’ll love the website SpaceXStats. Writ large on the site are real-time countdowns to upcoming launches, all sorts of SpaceX statistics, launch manifest info, and fun trivia (there’s a countdown to how many days until Elon Musk’s bet about getting to Mars by 2020 or 2025 expires.)

The owner of the site, Lukas Davia, recently created a fantastic Falcon 9 launch collage, which was originally posted on imgur and discussed on Reddit (where there’s a 16,000-strong SpaceX community).

Lukas told Universe Today that one r/SpaceX user recently inquired if anyone had come across SpaceX montages. “While I don’t have the time for any serious video editing, I did have enough time spare to create a photo montage,” Lukas said via email. “Since I’m the owner of spacexstats.com, I already had all the launch images and assets necessary to produce it, stored locally on my computer. Using Adobe Photoshop, the whole process took just over an hour, from a blank canvas to the final image – and didn’t require much more than layer masks and guides to create. I then submitted it to /r/SpaceX & /r/space on Reddit, where it (quite surprisingly) managed to generate over 1,300,000 views in less than 24 hours.”

He added that he does plan on producing similar SpaceX graphics and perhaps updating this one in the future, “although I fear at SpaceX’s recent launch cadence, it’ll become unsuitably wide at some point!” he said.

Be sure to click on the image above to see the full resolution size.

Thanks to Lukas for sharing his montage with Universe Today.