NASA Selects a Sample Return Mission to Venus

Graphic depiction of Sample Return from the Surface of Venus. Credit: Geoffrey Landis

In Dante Alighieri’s epic poem The Divine Comedy, the famous words “Abandon all hope, ye who enter here” adorn the gates of hell. Interestingly enough, Dante’s vision of hell is an apt description of what conditions are like on Venus. With an average temperature of 450 °C (842 °F), atmospheric pressures 92 times that of Earth, and clouds of sulfuric acid rain to boot, Venus is the most hostile environment in the Solar System. It is little wonder why space agencies, going all the way back to the beginning of the Space Age, have had such a hard time exploring Venus’ atmosphere.

Despite that, there are many proposals for missions that could survive Venus’ hellish environment long enough to accomplish a sample return mission. One such proposal, the Sample Return from the Surface of Venus, comes from aerospace engineer and author Geoffrey Landis and his colleagues at the NASA Glenn Research Center. Their proposed concept was selected for this year’s NASA Innovative Advanced Concepts (NIAC) program. It consists of a solar-powered aircraft that would fashion propellant directly from Venus’ atmosphere and deploy a sample-return rover to the surface.

Continue reading “NASA Selects a Sample Return Mission to Venus”

Astronomers Have Mapped the Milky Way's Magnetic Fields in 3D

Magnetic fields mapped within the Whirlpool Galaxy. Credit: NASA, SOFIA science team, ESA, STScI

Our galaxy is filled with magnetic fields. They come not just from stars and planets, but from dusty stellar nurseries and the diffuse hydrogen gas of interstellar space. We’ve long known of this galactic magnetic field, but mapping it in detail has posed a challenge. Now a new study gives us a detailed 3-dimensional map of these fields, with a few surprises.

Continue reading “Astronomers Have Mapped the Milky Way's Magnetic Fields in 3D”

Reflectors in Space Could Make Solar Power More Effective

Reflectors in low-earth orbit

Solar power is a booming industry right now as we all strive to run our lives with minimum carbon footprint. Solar is a relatively easy way to get clean electricity but of course we are limited to the hours then Sun is above the horizon. Solar panels in space have been muted before but the costs and technology to transmit power to Earth is prohibitive. An alternative approach has been explored by a team of engineers who have been looking at the possibility of deploying giant reflectors into space.

Continue reading “Reflectors in Space Could Make Solar Power More Effective”

NASA Confirms that 2023 was the Hottest Year on Record

This map of Earth in 2023 shows global surface temperature anomalies, or how much warmer or cooler each region of the planet was compared to the average from 1951 to 1980. Normal temperatures are shown in white, higher-than-normal temperatures in red and orange, and lower-than-normal temperatures in blue. Image Credit: NASA SVS

After analyzing the temperature data from 2023, NASA has concluded that it was the hottest year on record. This will surprise almost nobody. If you live in one of the regions stricken by drought, forest fires, or unusually powerful weather, you don’t need NASA to confirm that the planet is warming.

Continue reading “NASA Confirms that 2023 was the Hottest Year on Record”

Engineers Finally Open OSIRIS-REx’s Sample Container

OSIRIS REx curation team attempting to remove the two stuck fasteners that are currently prohibiting the complete opening of the TAGSAM head. Photo Date: January 10, 2024. Location: Bldg. 31 - 2nd Floor - OSIRIS-REx lab. Photographer: Robert Markowitz

We have all been there, had that one stubborn jar of jam that we just can’t open. Maybe you grab a rubber band or run it under warm water and its an easy fix but just imagine when the jar is a module from a $1.16 billion interplanetary probe! That’s what happened to NASA engineers when they were trying to recover samples from the OSIRIS-REx module  when they discovered the clamps had cold welded shut! 

Continue reading “Engineers Finally Open OSIRIS-REx’s Sample Container”

Astronomers Identify 164 Promising Targets for the Habitable Worlds Observatory

Planning large astronomical missions is a long process. In some cases, such as the now functional James Webb Space Telescope, it can literally take decades. Part of that learning process is understanding what the mission will be designed to look for. Coming up with a list of what it should look for is a process, and on larger missions, teams of scientists work together to determine what they think will be best for the mission. In that vein, a team of researchers from UC Berkeley and UC Riverside have released a paper describing a database of exoplanets that could be worth the time of NASA’s new planned habitable planet survey, the Habitable Worlds Observatory HWO.

Continue reading “Astronomers Identify 164 Promising Targets for the Habitable Worlds Observatory”

A Primordial Dark Matter Galaxy Found Without Stars

An artistic concept of hydrogen gas observed in galaxy J0613+52. The colors indicate the rotational action of gas relative to us. Courtesy: STScI POSS-11, NSF/GBO/P. Vosteen.
An artistic concept of hydrogen gas observed in galaxy J0613+52. The colors indicate the rotational action of gas relative to us. Courtesy: STScI POSS-11, NSF/GBO/P. Vosteen.

There’s a galaxy out there without apparent stars but largely chock full of dark matter. What’s that you say? A galaxy without stars? Isn’t that an impossibility? Not necessarily, according to the astronomers who found it and are trying to explain why it appears starless. “What we do know is that it’s an incredibly gas-rich galaxy,” said Green Bank Observatory’s Karen O’Neil, an astronomer studying this primordial galactic object. “It’s not demonstrating star formation like we’d expect, probably because its gas is too diffuse.”

Continue reading “A Primordial Dark Matter Galaxy Found Without Stars”

Machine Learning Could Find all the Martian Caves We Could Ever Want

Examples of potential cave entrances (PCEs) on Mars and their assigned category from the Mars Global Candidate cave Catalogue (MGC3). Credit: NASA/JPL/MSSS/The Murray Lab.

The surface of Mars is hostile and unforgiving. But put a few meters of regolith between you and the Martian sky, and the place becomes a little more habitable. Cave entrances from collapsed lava tubes could be some of the most interesting places to explore on Mars, since not only would they provide shelter for future human explorers, but they could also be a great place to find biosignatures of microbial life on Mars.

But cave entrances are difficult to spot, especially from orbit, as they blend in with the dusty background. A new machine learning algorithm has been developed to quickly scan images of the Martian surface, searching for potential cave entrances.

Continue reading “Machine Learning Could Find all the Martian Caves We Could Ever Want”

Is K2-18b Covered in Oceans of Water or Oceans of Lava?

This illustration shows what exoplanet K2-18 b could look like based on science data. NASA’s James Webb Space Telescope examined the exoplanet and revealed the presence of carbon-bearing molecules. The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. But more extensive observations with the JWST are needed to understand its atmosphere with greater confidence. Image Credit: By Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)Science: Nikku Madhusudhan (IoA)

In the search for potentially life-supporting exoplanets, liquid water is the key indicator. Life on Earth requires liquid water, and scientists strongly believe the same is true elsewhere. But from a great distance, it’s difficult to tell what worlds have oceans of water. Some of them can have lava oceans instead, and getting the two confused is a barrier to understanding exoplanets, water, and habitability more clearly.

Continue reading “Is K2-18b Covered in Oceans of Water or Oceans of Lava?”

Astronomers Rule Out One Explanation for the Hubble Tension

One of the brightest Cepheid variable stars, RS Puppis. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-Hubble/Europe Collaboration
One of the brightest Cepheid variable stars, RS Puppis. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-Hubble/Europe Collaboration

Perhaps the greatest and most frustrating mystery in cosmology is the Hubble tension problem. Put simply, all the observational evidence we have points to a Universe that began in a hot, dense state, and then expanded at an ever-increasing rate to become the Universe we see today. Every measurement of that expansion agrees with this, but where they don’t agree is on what that rate exactly is. We can measure expansion in lots of different ways, and while they are in the same general ballpark, their uncertainties are so small now that they don’t overlap. There is no value for the Hubble parameter that falls within the uncertainty of all measurements, hence the problem.

Continue reading “Astronomers Rule Out One Explanation for the Hubble Tension”