As the Milky Way now begins to set earlier in the evening here in the northern hemisphere, that doesn’t mean the photos of our night sky are any less stunning. This lovely shot for #TerrestrialTuesday by photographer Jack Fusco was taken this week at Horseshoe Bend in Arizona, a horseshoe-shaped meander of the Colorado River.
“During the day, the walk to Horseshoe Bend was full of tourists from all over the world,” Jack explained on Flickr. “At night, we sat alone and stared up at a brilliant star filled sky and only heard coyotes in the distance. It was an absolutely incredible location during the day and at night. This was shot with no Moon at the sky, so the area was at it’s absolute darkest. I was a little nervous setting up my gear for this shot as my tripod was just a few inches from a 1000ft drop down to the river. It was certainly an experience I’ll never forget.”
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
That ‘amazing astro-shot that isn’t’ is making the rounds of ‘ye ole web again.
You know the one. “See an Amazing Image of an Eclipse… From SPACE!!!” screams the breathless headline, with the all-too-perfect image of totality over the limb of the Earth, with the Milky Way thrown in behind it for good measure.
As the old saying goes, if it looks too good to be true, it probably is. Sure, the pic is a fake, and it’s been debunked many, many times since it was first released into the wild a few years back. But never let reality get in the way of a good viral meme. As eclipse season 2 of 2 gets underway tonight with a total lunar eclipse followed by a partial solar eclipse on October 23rd both visible from North America, the image is once again making its rounds. But there’s a long history of authentic captures of eclipses from space that are just as compelling. We’ve compiled just such a roll call of real images of eclipses seen from space:
The Solar Dynamics Observatory:
Launched in 2010, The Solar Dynamics Observatory or SDO is NASA’s premier orbiting solar observatory. But unlike Sun-staring satellites based in low Earth orbit, SDO’s geosynchronous orbit assures that it tends to see a cycle of partial solar eclipses twice a year, roughly around the equinoxes. And like many satellites, SDO also passes into the Earth’s shadow as well, offering unique views of a solar eclipse by the limb of the Earth from its vantage point.
Hinode:
A joint mission between NASA and JAXA (the Japanese Aerospace Exploration Agency) launched in 2006, Hinode observes the Sun from low Earth orbit. As a consequence, it nearly has a similar vantage point as terrestrial viewers and frequently nabs passages of the Moon as solar eclipses occur. Such events, however, are fleeting; moving at about eight kilometres per second, such eclipses last only seconds in duration!
Proba-2:
Like Hinode, Proba-2 is the European Space Agency’s flagship solar observing spacecraft based in low Earth orbit. It also catches sight of the occasional solar eclipse, and these fleeting passages of the Moon in front of the Earth happen in quick multiple cycles. Recent images from Proba-2 are available online.
Eclipses from the ISS:
The International Space Station isn’t equipped to observe the Sun per se, but astronauts and cosmonauts aboard have managed to catch views of solar eclipses in an unusual way, as the umbra of the Moon crosses the surface of the Earth. Such a view also takes the motion of the ISS in low Earth orbit into account. Cosmonauts aboard the late Mir space station also caught sight of the August 11th, 1999, total solar eclipse over Europe.
NASA-GOES:
Weather satellites can, and do, occasionally catch sight of the inky black dot of the Moon’s penumbra crossing the disk of the Earth. GOES-West snapped the above image of the November 13th, 2012, solar eclipse. The umbra of the Moon’s shadow races about 1700 kilometres per hour from west to east during an eclipse, and we can expect some interesting images in 2017 when the next total solar eclipse crosses the United States on August 21st, 2017.
Apollo-Soyuz Test Project:
The final mission of Apollo program, the 1975 Apollo-Soyuz Test Project, also yielded an unusual and little known effort to observe the Sun. The idea was to use the Apollo command module as a “coronagraph” and have cosmonauts image the Sun from the Soyuz as the Apollo spacecraft blocked it out after undocking. Unfortunately, the Apollo thrusters smeared the exposure, and it became a less than iconic— though unusual — view from the space age.
Gemini XII and the first eclipse seen from space:
On November 12th, 1966, a total solar eclipse graced South America. Astronauts James Lovell Jr. and Edwin “Buzz” Aldrin Jr. were also in orbit at the time, and managed to snap the first image of a solar eclipse from space. Gemini XII was the last flight of the program, and the astronauts initially thought they’d missed the eclipse after a short trajectory burn.
ISS Astronauts catch a transit of Venus:
We were fortunate that the International Space Station had its very own amateur astronomer in residence in 2012 to witness the historic transit of Venus from space. NASA astronaut Don Pettit knew that the transit would occur during his rotation, and packed a full-aperture white light solar filter for the occasion. Of course, a planetary transit meets the very loosest definition of a partial eclipse, but it’s a unique capture nonetheless.
Kaguya:
Japan’s SELENE-Kaguya spacecraft entered orbit around the Moon in 2007 and provided some outstanding imagery of our solitary natural neighbor. On February 10th, 2009, it also managed to catch a high definition view of the Earth eclipsing the Sun as seen from lunar orbit. A rare catch, such an event occurs during every lunar eclipse as seen from the Earth.
An unusual eclipse… seen from Mars:
We’re fortunate to live in an epoch in time and space where total solar eclipses can occur as seen from the Earth. But bizarre eclipses and transits can also be seen from Mars. The Spirit and Opportunity rovers have witnessed brief transits of the Martian moons Phobos and Deimos across the face of the Sun, and in 2010, the Curiosity rover recorded the passage of Phobos in front of the Sun in a bizarre-potato shaped “annular eclipse”. But beyond just the “coolness” factor, the event also helped researchers refine our understanding of orbital path of the Martian moon.
The future: It’s also interesting to think of what sort of astronomical wonders await travelers as we venture out across the solar system. For example, no human has yet to stand on the Moon and witness a solar eclipse. Or how about a ring plane passage through Saturn’s rings, thus far only witnessed via the robotic eyes of Cassini? Of course, for the best views of Saturn’s rings, we recommend a vacation stay on Iapetus, the only major Saturnian moon whose orbit is inclined to the ring plane. And stick around ‘til November 10th, 2084, and you can witness a transit of Earth, the Moon and Phobos as seen from the slopes of Elysium Mons on Mars:
Hopefully, they’ll have perfected that whole Futurama “head-in-a-jar” thing by then…
EDIT Oct. 8, 12:14 p.m. EDT: This article has been amended at XCOR’s request to remove a reference to a specific deal.
Ready, set … launch? That’s what XCOR is hoping to accomplish as the company continues building its Lynx spacecraft prototype.
The company announced this week that it has mated the cockpit to the fuselage on the prototype — which they classify as a major milestone in construction. Check out pictures of the team at work below.
“The team at XCOR has been working a long time to reach this goal,” stated XCOR CEO Jeff Greason. “We always knew there would be a day when we could see a spacecraft forming in our hangar. Today is that day. These pictures show our ongoing journey to make commercial space flight a reality.”
The company is also testing Lynx’s propulsion system and is starting to bond other components together to the spacecraft prototype, such as the landing gear.
Quick, do you have an Android phone in your pocket? A few small changes and you could help physicists probe more of the curious nature of cosmic rays, high-energy particles that emanate from outside our solar system.
Just download an app, cover up your phone’s camera with duct tape, then place it somewhere (running idle) with the screen facing up. If a particle “event” happens, the information will be logged in a central database.
The project (called Distributed Electronic Cosmic-ray Observatory or DECO) aims to record secondary particles called muons that occur when cosmic rays hit the Earth’s atmosphere. Scientists believe cosmic rays are created in black holes and supernovas, but more studies are needed.
Researchers at the Wisconsin IceCube Particle Astrophysics Center (WIPAC), led by Justin Vandenbroucke, note that there are things about cosmic rays that confuse physicists. Their paths in space change as they go across magnetic fields, and it makes searching for other astronomy events difficult. That’s where they hope the phone study will be useful.
“Smartphone cameras use silicon chips that work through what is called the photoelectric effect, in which particles of light, or photons, hit a silicon surface and release an electric charge,” the University of Wisconsin-Madison wrote in a press release.
“The same is true for muons. When a muon strikes the semiconductor that underpins a smartphone camera, it liberates an electric charge and creates a signature in pixels that can be logged, stored and analyzed.”
For more details on how to run and use the app, consult this page (it’s the second item).
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
NASA’s Opportunity rover is still experiencing frequent memory resets as it roams the Martian terrain near Endeavour Crater, even though the agency performed a reset a few weeks ago.
Officials, however, say the rover is healthy otherwise and ready for its next science goals: reaching a small crater dubbed Ulysses, and watching a comet pass by Mars in mid-October.
Opportunity is approaching its eleventh anniversary of working on Mars this coming January. The hardy rover has driven 25.34 miles (40.78 kilometers) as of late September, almost a marathon’s worth of exploration. Its original mandate was to last just 90 Earth days on Mars.
In late August, however, science was getting derailed because the aging rover’s Flash memory experienced frequent resets. This kind of memory stores information even while the rover is turned off. NASA did a reformat from afar and said at the time that the procedure worked perfectly, but in the weeks since Opportunity has experienced several resets. The agency is investigating what to do next.
NASA’s Opportunity update archive reports memory resets on Sept. 17, 20, 22, 23, 24 and 26. The agency is calling these events “benign” and the rover is performing drives and science amid the issues.
Among its work, in late September the rover did a twilight test of its panoramic camera to get ready for observations of Comet Siding Spring, which is skimming the Red Planet on Oct. 19, 2014.
On the surface, the rover has been examining ejecta of the small crater Ulysses and doing close-up observations of a rock surface nicknamed “Hoover”. Opportunity’s long-term science goal is to reach a zone dubbed Marathon Valley, where there could be clay minerals that formed in water.
The emergency launch abort system (LAS) has been installed on NASA’s pathfinding Orion crew capsule to prepare for its first launch – now just under two months away.
Technicians and engineers working inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida joined the LAS to the top of the Orion EFT-1 crew module on Friday, Oct. 3, 2014.
Attaching the LAS is one of the final component assembly steps leading up to the inaugural uncrewed liftoff of the state-of-the-art Orion EFT-1 spacecraft in December.
The maiden blastoff of Orion on the EFT-1 mission is slated for December 4, 2014 from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
Indeed last week and this past month has been an extremely busy time for Orion’s launch preparations. And I’ve been present at KSC reporting first hand on many Orion processing events over the past few years.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was completed at KSC in September. I witnessed the rollout of the Orion crew module/service module (CM/SM) stack on Sept. 11, 2014 on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building and transport to the Payload Hazardous Servicing Facility (PHFS) for fueling. Read my Orion move story – here.
Running in parallel to processing of the Orion spacecraft is the processing of the triple barreled United Launch Alliance Delta IV Heavy. The Delta rocket assembly was completed by late September and detailed from my visit to the ULA Horizontal Integration Facility (HIF)- here.
The Delta rocket was moved to its Cape Canaveral launch pad overnight Sept 30 and hoisted at the pad on Oct. 1. Read my story – here.
“We’ve been working toward this launch for months, and we’re in the final stretch,” says former shuttle commander and Kennedy Space Center Director Bob Cabana.
The LAS stands at the very top of the Orion launch stack, bolted above the crew module, and it plays a critically important role to ensure crew safety.
In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.
For the EFT-1 mission, the LAS will be mostly inactive since no crew is aboard.
Thus the abort motors are inert and not filled with solid fuel propellant. However the jettison motors will be active in order to pull the LAS and Orion’s nose fairing away from the spacecraft just before Orion goes into orbit.
The LAS is one of the five primary components of the flight test vehicle for the EFT-1 mission and will be active on future Orion flights.
The Orion stack is scheduled to remain inside the LASF until mid-November. At that time when the Delta IV Heavy rocket is ready for integration with the spacecraft, Orion will be transported to pad 37 and hoisted atop the rocket.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first stage generates some 2 million pounds of liftoff thrust.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot during the boosters unveiling earlier this year at the Cape. “The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”
“We will test the heat shield, the separation of the fairing and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.
Learn more about Orion, Space Taxis and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations
Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM
Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA
The Old Faithful geyser in Yellowstone National Park in the western US is one of the most predictable geographical features on Earth, as it erupts “faithfully” every 60 – 110 minutes. But you can never predict what the night sky will look like overhead. Astroval1 on Flickr captured this gorgeous shot of the stars over Old Faithful on September 28, 2014, with 30 seconds of exposure time.
Gorgeous!
Just another #MilkyWayMonday shot from Universe Today’s Flickr page! Enjoy browsing through all the great images from our readers and join our group to add your own astronomical imagery.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Ready for Wednesday’s morning lunar eclipse? Some people – and I envy them at times – treat an eclipse more casually. They enjoy the show with no desire to set up a telescope or take a photo. For those of us can’t part with our cameras, here’s a little guide to help you get better pictures.
If you’re also into photography and would like to grab a few shots, here are a few tips on what equipment you’ll need and camera settings. This eclipse offers unique opportunities especially for the eastern half of the country because the eclipsed moon will be low in the western sky near the start of and during morning twilight.
In the Midwest at the start of the hour-long totality, the red moon will be about 20º (two fists) above the western horizon. From the East Coast the moon slips into total eclipse only a half hour before sunrise 6-7º high. So if you live in the eastern half of the country, find a site with a good view to the west.
A low moon means easier framing with a pleasing foreground like a grove of fall trees, a church or distant line of mountain peaks. And the lower it drops, the longer the telephoto lens you can use to enlarge the moon relative to the foreground. When the moon is high in the sky it’s more difficult to find a suitable foreground.
As the scene brightens during twilight, balancing the light of the dim moon, your photos will get even more interesting. Textures and details in foreground objects will stand out instead of appearing as silhouettes.
Use the table below to plan when to watch depending on your time zone. The blanks mean the moon will have set by the time of the event.
Eclipse Events EDT CDT MDT PDT
Penumbra first visible
4:45 a.m.
3:45 a.m.
2:45 a.m.
1:45 a.m.
Partial eclipse begins
5:15 a.m.
4:15 a.m.
3:15 a.m.
2:15 a.m.
Total eclipse begins
6:25 a.m.
5:25 a.m.
4:25 a.m.
3:25 a.m.
Mid-eclipse
6:55 a.m.
5:55 a.m.
4:55 a.m.
3:55 a.m.
Total eclipse ends
7:24 a.m.
6:24 a.m.
5:24 a.m.
4:24 a.m.
Partial eclipse ends
———
7:34 a.m.
6:34 a.m.
5:34 a.m.
Penumbra last visible
———
———
7:05 a.m.
6:05 a.m.
Exposures and lens settings
The full moon and even the partially eclipsed moon (up to about half) are so bright you can shoot a handheld photo without resorting to a tripod. Exposures at ISO 400 are in the neighborhood of f/8 at 1/250-1/500 second. Only thing is, all you’ll get is the moon surrounded by blackness. These exposures are so brief almost nothing will show in your foreground except for possibly moonlit clouds. That’s usually fine for the early partial phases.
Once the moon is more than half smothered by shadow, open up your lens to a wider setting – f/2.8 to f/4 – or increase the exposure. Let the back of the camera be your guide. If the images look too bright, dial back. If too dim, increase exposure or open the lens to a wider aperture.
While you can continue to shoot the partially eclipsed moon at f/8 from 1/30-1/125 second, you’ll miss the best part – the portion filling up with Earth’s red shadow. To capture that, break out the tripod, open the lens all the way up – f/2.8-f/4 – and expose at ISO 400 between 1/4 and 1 second.
You can also shoot at ISO 800 and cut those times in half, important if you’re using a longish telephoto lens. Remember, Earth’s rotation means the moon’s on the move and will show trailing if you expose longer than a few seconds. On the other hand, this won’t be a problem if you’re shooting with a wide angle lens though they have their limits, too.
During totality, expose anywhere from 1/2 to 5 seconds at f/2.8-4.5 at ISO 400. Let’s say you want to include both scenic foreground and stars in the picture using a wide angle or standard lens. Dial up the ISO to 800, open your lens wide and expose between 6-10 seconds. On the 6-second end you’ll catch only the brightest stars, but the moon won’t show trailing; on the longer end you’ll get lots more stars with some overexposure of the eclipsed moon.
Of course, you can go to even higher ISOs and shorten exposure times considerably. But in all but the newest, high-end cameras that comes at the price of increased graininess and less color saturation.
Where parts of the eclipse happen in twilight, even mobile phones may suffice. There should be enough light to capture a pretty scene with the moon just emerging from total eclipse and during the ensuing partial phases.
If you’re clouded out or on the wrong side of the planet for the eclipse, you can catch live webcasts from the following sites:
NASA told two companies to halt work on the next phase of its commercial crew program — the spacecraft expected to replace Russian ones ferrying astronauts to the International Space Station — because of a protest related to the contract award, according to media reports.
Sierra Nevada Corp. (SNC) filed a complaint on Sept. 26, shortly after its Dream Chaser shuttle-like design was not selected for further funding under the Commercial Crew Transportation Capability (CCtCap) phase of the program. Competitors SpaceX and Boeing each received billions of dollars for further development for their Dragon and CST-100 spacecraft, which are expected to start flying around 2017.
A Spaceflight Now report, quoting NASA spokesperson Stephanie Schierholz, said the agency told both selectees that they must “stop performance of the CCtCap contract” pending the result of the challenge, which is before the Government Accountability Office. The office’s deadline for a response is Jan. 5, the report said.
In a statement, SNC said this is the first fight it undertook in relation to a government contract in more than five decades of operations. “Inconsistencies” in the process, SNC added, prompted it to go forward with the protest:
Importantly, the official NASA solicitation for the CCtCap contract prioritized price as the primary evaluation criteria for the proposals, setting it equal to the combined value of the other two primary evaluation criteria: mission suitability and past performance. SNC’s Dream Chaser proposal was the second lowest priced proposal in the CCtCap competition. SNC’s proposal also achieved mission suitability scores comparable to the other two proposals. In fact, out of a possible 1,000 total points, the highest ranked and lowest ranked offerors were separated by a minor amount of total points and other factors were equally comparable.
NASA administrator Charles Bolden declined to comment on the situation last week in response to questions from reporters at the International Astronautical Congress in Toronto, Canada, citing the legal situation.