Surf Saturn’s Rings In Amazing Raw Cassini Images From This Week

Sunlight and shadow combine in this photo of Saturn and its rings taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

When Saturn is at its closest to Earth, it’s three-quarters of a billion miles away — or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Nearly every day, the Cassini spacecraft beams back what it sees at Saturn and the images are put up on this NASA website. This week, for example, it was checking out Saturn’s rings. We have a few of the pictures below, plus an older picture of the entire planet for reference.

Saturn’s rings are believed to be about 4.4 billion years old — that’s close to the age of the Solar System itself. Astronomers, however, have only known about them since the 1600s, when Galileo Galilei was trying to make sense of some funny-looking shapes on either side of the planet in his telescope.

According to NASA, the particles in the rings range from dust-sized to mountain-sized. Some of Saturn’s dozens of moons act as shepherds to the rings, keeping gaps open. You can read more about what we know about their origins here.

The Cassini spacecraft looks to the side of Saturn's rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft looks to the side of Saturn’s rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn's rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn’s rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

Space Shapes: Watch This Origami Solar Array Prototype Unfurl

NASA's Jet Propulsion Laboratory is working on a solar array that would fold up like an origami shape, to make it easier to unfurl. Credit: BYU

From paper cranes to solar sails, looks like the Japanese art of origami is making its way into the space world. As you can see in the video above, origami serves a great purpose for launching sails into space — it makes them easy to fold. And this makes it easier to pack into a rocket for the crucial launch phase, before unfurling in orbit.

“This is a unique crossover of art and culture and technology,” stated Brian Trease, a mechanical engineer at NASA’s Jet Propulsion Laboratory who co-created the concept with Shannon Zirbel, a Ph.D. student in mechanical engineering at Brigham Young University in Utah.

Origami and solar arrays have been explored before, particularly with a type of fold named after Koryo Mirua (a Japanese astrophysicist). This allows structures to unfold with a single tug; in fact, there’s only one way to open or close the structure. This was tested in space on a Japanese satellite called the Space Flyer Unit in 1995.

This new solar array, by contrast, uses several kinds of folds that makes it look “like a blooming flower that expands into a large, flat circular surface,” NASA stated. While the technology is in the early stages, it’s possible these could be used on CubeSats (small satellites) in the future.

Source: NASA

 

What is Nothing?

What is Nothing?

Is there any place in the Universe where there’s truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

I want you to take a second and think about nothing. Close your eyes. Picture it in your mind. Focus. Fooooocus. On nothing….It’s pretty hard, isn’t it? Especially when I keep nattering at you.

Instead, let’s just consider the vast spaces between stars and galaxies, or the gaps between atoms and other microscopic particles. When we talk about nothing in the vast reaches between of space, it’s not actually, technically nothing. Got that? It’s not nothing. There’s… something there.

Even in the gulfs of intergalactic space, there are hundreds or thousands of particles in every cubic meter. But even if you could rent MegaMaid from a Dark Helmet surplus store, and vacuum up those particles, there would still be wavelengths of radiation, stretching across vast distances of space.

There’s the inevitable reach of gravity stretching across the entire Universe. There’s the weak magnetic field from a distant quasar. It’s infinitesimally weak, but it’s not nothing. It’s still something.

Philosophers, and some physicists, argue that *that* nothing isn’t the same as “real” nothing. Different physicists see different things as nothing, from nothing is classical vacuum, to the idea of nothing as undifferentiated potential.

Even if you could remove all the particles, shield against all electric and magnetic fields, your box would still contain gravity, because gravity can never be shielded or cancelled out. Gravity doesn’t go away, and it’s always attractive, so you can’t do anything to block it. In Newton’s physics that’s because it is a force, but in general relativity space and time *are* gravity.

Quantum theory includes strange  particles like these quarks, seen here in a three-dimensional computer-generated simulation.  PASIEKA/SPL
Quantum theory includes strange particles like these quarks, seen here in a three-dimensional computer-generated simulation. PASIEKA/SPL

So, imagine if you could remove all particles, energy, gravity… everything from a system. You’d be left with a true vacuum. Even at its lowest energy level, there are fluctuations in the quantum vacuum of the Universe. There are quantum particles popping into and out of existence throughout the Universe. There’s nothing, then pop, something, and then the particles collide and you’re left with nothing again. And so, even if you could remove everything from the Universe, you’d still be left with these quantum fluctuations embedded in spacetime.

There are physicists like Lawrence Krauss that argue the “universe from nothing”, really meaning “the universe from a potentiality”. Which comes down to if you add all the mass and energy in the universe, all the gravitational curvature, everything… it looks like it all sums up to zero. So it is possible that the universe really did come from nothing. And if that’s the case, then “nothing” is everything we see around us, and “everything” is nothing.

What do you think? How do you wrap your head around the idea of nothing? Tell us in the comments below. And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Earth’s Ozone Under Attack Despite Banning Destructive Compound: Study

The ozone hole over Antarctica on Aug. 18, 2014. Purple and blue represent zones with the least ozone, while yellow and red show thicker areas. Data sources come from multiple NASA, European Space Agency and National Oceanic and Atmospheric Administration satellites. Credit: NASA

Some bad news in the fight to protect Earth’s ozone — one of the banned compounds that attacks this protective atmospheric layer is still being produced, somehow.

That compound is called carbon tetrachloride, which used to be common in fire extinguishers and dry cleaning. But those who have signed the Montreal Protocol in 1987 reported no new emissions between 2007 and 2012.

So how is it that new research found atmospheric emissions are persisting at 30% of peak production, even with no new emissions being reported?

“We are not supposed to be seeing this at all,” stated lead author Qing Liang, an atmospheric scientist at NASA’s Goddard Space Flight Center in Maryland. “It is now apparent there are either unidentified industrial leakages, large emissions from contaminated sites, or unknown CCl4 sources.”

The concentrations are still declining, but only by 1% a year instead of the expected 4%. Liang’s team used several sources to piece together data from their new study, including ground-based observation and NASA’s 3-D GEOS Chemistry Climate Model.

Their work found that CC14 is still being produced, somehow, and also stays in the atmosphere for about 40% longer than thought. They estimate worldwide emissions of about 39 kilotons per year.

The results were published late last month in Geophysical Research Letters.

Source: NASA

How Watching 13 Billion Years Of Cosmic Growth Links To Storytelling

Screenshot of a simulation of how the universe's dark matter and gas grew in its first 13 billion years. Credit: Harvard-Smithsonian Center for Astrophysics / YouTube

How do you show off 13 billion years of cosmic growth? One way that astronomers can figure that out is through visualizations — such as this one from the Harvard-Smithsonian Center for Astrophysics, called Illustris.

Billed as the most detailed computer simulation ever of the universe (done on a fast supercomputer), you can slowly see how galaxies come alight and the structure of the universe grows. While the pictures are pretty to look at, the Kavli Foundation also argues this is good for science.

In a recent roundtable discussion, the foundation polled experts to talk about the simulation (and in particular how the gas evolves), and how watching these interaction play out before their eyes helps them come to new understandings. But like any dataset, part of the understanding comes from knowing what to focus on and why.

“I think we should look at visualization like mapmakers look at map making. A good mapmaker will be deliberate in what gets included in the map, but also in what gets left out,” said Stuart Levy, a research programmer at the National Center for Supercomputing Applications’ advanced visualization lab, in a statement.

“Visualizers think about their audience … and the specific story they want to tell. And so even with the same audience in mind, you might set up the visualization very differently to tell different stories. For example, for one story you might want to show only what it’s possible for the human eye to see, and in others you might want to show the presence of something that wouldn’t be visible in any sort of radiation at all. That can help to get a point across.”

You can read the whole discussion at this webpage.

A Piece of Vesta Has Been Stolen!

The Meteorite of Serooskerken (Source: Sterrenwacht Sonnenborgh)

Calling all meteorite collectors and enthusiasts! There’s a hot space rock at large and, as Indiana Jones would say, it belongs in a museum. Perhaps you can help put it back in one.

Mosaic synthesizes some of the best views the spacecraft had of the giant asteroid Vesta. Dawn studied Vesta. The towering mountain at the south pole - more than twice the height of Mount Everest - is visible at the bottom of the image. The set of three craters known as the "snowman" can be seen at the top left. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
Mosaic of the asteroid Vesta made from images acquired by NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

On Aug. 19 a burglary was reported at the Sonnenborgh Museum and Observatory in Utrecht, Netherlands, and one of the items missing is a meteorite that is thought to have originated from the asteroid Vesta.

Seen above in a photo from the museum’s collection, the Meteorite of Serooskerken was recovered from a rare fall in 1925 in the province of Zeeland. Only five meteorites have ever been found in the Netherlands, making the Serooskerken specimen somewhat of a national treasure – not to mention a valuable piece of our Solar System’s history!

About 5–6% of all the meteorites found on Earth are thought to be from Vesta, the second-largest world in the main asteroid belt. (Source)

It doesn’t sound like the meteorite was the target of the burglary, but rather it just happened to be included with other things taken from the museum’s safe.

If you have any information on the burglary or see this meteorite offered up for sale anywhere, please report it to the Sonnenborgh Museum here.

If you are a Dutch-speaker, audio of the news can be found here. (Any translations would be welcome in the comments!)

HT to Google+ Space Community member Andre van der Hoeven.

Is A Sitcom Astronaut Hadfield’s Next Frontier? ABC Comedy In The Works, Report Says

Chris Hadfield all dressed up for another day in space. Credit: Chris Hadfield (Twitter)

It’s possible that Chris Hadfield’s best-selling book will become a sitcom! The astronaut who quickly became the world’s most-wanted Canadian last year, based on his amusing YouTube videos and stunning space pictures, is involved in production of a sitcom based on An Astronaut’s Guide To Life On Earth, Deadline reports.

“The TV series is described as a family comedy about an astronaut who is back from space and finds that re-entering domestic life might be the hardest mission he’s ever faced,” wrote Deadline. Hadfield is slated to be the consulting producer on the show, which has been approved for pilot production.

Hadfield made headlines during his third and final spaceflight in 2012-13, part of which saw him was commander of the International Space Station’s Expedition 35. His five-month flight in space saw his Twitter numbers soar as he virtually hobnobbed with celebrities and worked social media every day, with the help of his son Evan. (This was done in between running one of the most scientifically productive missions on the station ever.)

Chris Hadfield in the Cupola of the ISS. Credit: NASA
Chris Hadfield in the Cupola of the ISS. Credit: NASA

Weeks after returning to Earth, Hadfield retired from the Canadian Space Agency. His second book, You Are Here: Around the World in 92 Minutes, is expected to be released in October.

Space is a serious business, but there are some comedies associated with it. Former NASA astronaut Mike Massimino has been a repeat guest on The Big Bang Theory, particularly when one of the main characters went into space. NBC is also working on a sitcom called Mission Controlwhich describes the challenges of a female aerospace engineer trying to make her way in the male-dominated field of the 1960s.

ABC also is taking space to a more serious side, as it is expected to make a miniseries based on the Lily Koppel bestseller The Astronaut Wives Club — a look at the wives of the first astronauts in the 1960s.

Watch A ‘Swan’ Fly Free From Its Trap In A Space Robotic Arm

Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV

What does it look like when a cargo ship goes flying away from the International Space Station? This timelapse gives you a sense of what to expect. Here, you can see the handiwork of the (off-camera) Expedition 40 crew as they use the robotic Canadarm2 to let go of the Cygnus spacecraft.

“Great feeling to release a captured swan back into the wild last week,” wrote Alexander Gerst, an astronaut with the European Space Agency, on Twitter with the video.

Cygnus (Latin for “swan”, and a northern constellation) is a commercial spacecraft manufactured by Orbital Sciences Corp., and is one of two regular private visitors to the space station. The other one is Dragon, which is manufactured by SpaceX. Both companies have agreements with NASA to run periodic cargo flights to the station so that the astronauts can receive fresh equipment, food and personal items.

Both spacecraft are designed to be captured and released by Canadarm2, which the astronauts operate. When the Canadarm2 captures the spacecraft, it is referred to as a “berthing” (as opposed to a docking, when a spacecraft directly latches on to the station.)

Cygnus made a (planned) fiery re-entry Sunday that the astronauts captured on camera from their orbiting perch. Besides the inherent spectacular value of looking at the pictures, they could also be useful to help plan the eventual de-orbiting of the space station.

Remembering the “World War I Eclipse”

Credit

The paths of total solar eclipses care not for political borders or conflicts, often crossing over war-torn lands.

Such was the case a century ago this week on August 21st, 1914 when a total solar eclipse crossed over Eastern Europe shortly after the outbreak of World War I.

Known as the “War to End All Wars,” — which, of course, it didn’t — World War I would introduce humanity to the horrors of modern warfare, including the introduction of armored tanks, aerial bombing and poison gas. And then there was the terror of trench warfare, with Allied and Central Powers slugging it out for years with little gain.

Eclipse
The path of the total solar eclipse of August 21st, 1914 laid out across modern day Europe. Credit: Google Maps/Fred Espenak/NASA/GSFC.

But ironically, the same early 20th century science that was hard at work producing mustard gas and a better machine gun was also pushing back the bounds of astronomy. Einstein’s Annus Mirabilis or “miracle year” occurred less than a decade earlier on 1905. And just a decade later in 1924, Edwin Hubble would expand our universe a million-fold with the revelation that “spiral nebulae” were in fact, island universes or galaxies in their own right.

Indeed, it’s tough to imagine that many of these discoveries are less than a century in our past. It was against this backdrop that the total solar eclipse of August 21st, 1914 crossed the eastern European front embroiled in conflict.

Solar eclipses have graced the field of battle before. An annular solar eclipse occurred during the Battle of Isandlwana in 1879 during the Zulu Wars, and a total solar eclipse in 585 B.C. during the Battle of Thales actually stopped the fighting between the Lydians and the Medes.

img537
A photograph of an “eclipse camp” in the Crimea in 1914. Credit: University of Cambridge DSpace.

But unfortunately, no celestial spectacle, however grand, would save Europe from the conflagration war. In fact, several British eclipse expeditions were already en route to parts of Russia, the Baltic, and Crimea when the war broke out less than two months prior to the eclipse with the assassination of Archduke Ferdinand on June 28th, 1914. Teams arrived to a Russia already mobilized for war, and Britain followed suit on August 4th, 1914 and entered the war when Germany invaded Belgium.

You can see an ominous depiction of the path of totality from a newspaper of the day, provided from the collection of Michael Zeiler:

1914_August_22_TSE_The_Graphic_1
An illustration of the 1914 total solar eclipse “scorching” a war-ravaged Europe. Credit: From the collection of Michael Zeiler. Used with permission.

Note that the graphic depicts a Europe aflame and adds in the foreboding description of Omen faustum, inferring that the eclipse might be an “auspicious omen…” eclipses have never shaken their superstitious trappings in the eyes of man, which persists even with today’s fears of a “Blood Moon.”

A race was also afoot against the wartime backdrop to get an expedition to a solar eclipse to prove or disprove Einstein’s newly minted theory of general relativity. One testable prediction of this theory is that gravity bends light, and astronomers soon realized that the best time to catch this in action would be to measure the position of a star near the limb of the Sun — the most massive light bending object in our solar system — during a total solar eclipse. The advent of World War I would scrub attempts to observe this effect during the 1914 and 1916 eclipses over Europe.

An expedition led by astronomer Arthur Eddington to observe an eclipse from the island of Principe off of the western coast of Africa in 1919 declared success in observing this tiny deflection, measuring in less than two seconds of arc. And it was thus that a British expedition vindicated a German physicist in the aftermath of the most destructive war up to that date.

The total solar eclipse of August 21st 1914 was a member of saros cycle 124, and was eclipse number 49 of 73 in that particular series. Eclipses in the same saros come back around to nearly the same circumstances once every triple saros period of 3 times 18 years and 11.3 days, or about every 54+ years, and there was an eclipse with similar circumstances slightly east of the 1914 eclipse in 1968 — the last total eclipse of saros 124 — and a partial eclipse from the same saros will occur again on October 25th, 2022.

All historical evidence we’ve been able to track down suggests that observers that did make it into the path of totality were clouded out at show time, or at very least, no images of the August 21st 1914 eclipse exist today. Can any astute reader prove us wrong? We’d love to see some images of this historical eclipse unearthed!

Starry Night
A simulation of the total solar eclipse of August 21st 1914 as seen from Latvia. Created using Starry Night Education software.

And, as with all things eclipse related, the biggest question is always: when’s the next one? Well, we’ve got another of total lunar eclipse coming right up on October 8th, 2014, again favoring North America. The next total solar eclipse occurs on March 20th, 2015 but is only visible along a path covering the Faroe and Svalbard Islands, with a path crossing the Norwegian Sea.

But, by happy coincidence, we’re also only now three years out this week from the total solar eclipse of August 21st, 2017 that spans the contiguous “Lower 48” of the United States. The shadow of the Moon will race from the northwest and make landfall off of the Pacific coast of Oregon before reaching a maximum duration for totality at 2 minutes and 40 seconds across Missouri, southern Illinois and Kentucky and will then head towards the southeastern U.S. to depart land off of the coast of South Carolina. Millions will witness this event, and it will be the first total solar eclipse for many. A total solar eclipse hasn’t crossed the contiguous United States since 1979, so you could say that we’re “due”!

Credit
The path of the 2017 total solar eclipse across the United States. Credit: Eclipse-Maps.

Already, towns in Kentucky to Nebraska have laid plans to host this event. The eclipse occurs towards the afternoon for residents of the eastern U.S., which typically sees afternoon thunderstorms popping up in the sultry August summer heat. Eclipse cartographer Michael Zeiler states that the best strategy for eclipse chasers three years hence is to “go west, young man…”

It’s fascinating to ponder tales of eclipses past, present, and future and the role that they play in human history… where will you be on August 21st, 2017?

–      Check out Michael Zeiler’s  new site, GreatAmericanEclipse.com

–      Eclipses pop up in science fiction on occasion as well… check out our history spanning eclipse tale Exeligmos.

Curiosity Brushes ‘Bonanza King’ Target Anticipating Fourth Red Planet Rock Drilling

NASA’s Curiosity rover looks back to ramp with potential 4th drill site target at ‘Bonanza King’ rock outcrop in ‘Hidden Valley’ in this photo mosaic view captured on Aug. 6, 2014, Sol 711. Inset shows results of brushing on Aug. 17, Sol 722, that revealed gray patch beneath red dust. Note the rover’s partial selfie, valley walls, deep wheel tracks in the sand dunes and distant rim of Gale crater beyond the ramp. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

Curiosity brushes ‘Bonanza King’ drill target on Mars
NASA’s Curiosity rover looks back to ramp with 4th drill site target at ‘Bonanza King’ rock outcrop in ‘Hidden Valley’ in this photo mosaic view captured on Aug. 6, 2014, Sol 711. Inset shows results of brushing on Aug. 17, Sol 722, that revealed gray patch beneath red dust. Note the rover’s partial selfie, valley walls, deep wheel tracks in the sand dunes and distant rim of Gale crater beyond the ramp. Navcam camera raw images stitched and colorized.
Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo[/caption]

Eagerly eyeing her next drill site on Mars, NASA’s Curiosity rover laid the groundwork by brushing the chosen rock target called ‘Bonanza King’ on Wednesday, Aug. 17, Sol 722, with the Dust Removal Tool (DRT) and collecting high resolution imagery with the Mast Camera (Mastcam) to confirm the success of the operation.

By brushing aside the reddish, more-oxidized dust scientists and engineers leading the mission observed a gray patch of less-oxidized rock material beneath that they anticipated seeing while evaluating the utility of ‘Bonanza King’ as the rover’s fourth candidate for Red Planet rock drilling and sampling.

To date, the 1-ton robot has drilled into three target rocks to collect sample powder for analysis by the rover’s onboard pair of the chemistry labs, SAM and CheMin, to analyze for the chemical ingredients that could support Martian microbes, if they ever existed.

Curiosity rover used the Dust Removal Tool on its robotic arm to brush aside reddish, more-oxidized dust, revealing a gray patch of less-oxidized rock material at a target called "Bonanza King," visible in this image from the rover's Mast Camera (Mastcam). Credit: NASA/JPL-Caltech/MSSS
Curiosity rover used the Dust Removal Tool on its robotic arm to brush aside reddish, more-oxidized dust, revealing a gray patch of less-oxidized rock material at a target called “Bonanza King,” visible in this image from the rover’s Mast Camera (Mastcam). Credit: NASA/JPL-Caltech/MSSS

So far everything is proceeding quite well.

The brushing activity also revealed thin, white, cross-cutting veins which is a further indication that liquid water flowed here in the distant past. Water is a prerequisite for life as we know it.

“They might be sulfate salts or another type of mineral that precipitated out of solution and filled fractures in the rock. These thin veins might be related to wider light-toned veins and features in the surrounding rock,” NASA said in a statement.

Based on these results and more from laser zapping with Curiosity’s Chemistry and Camera (ChemCam) instrument on Sol 719 (Aug. 14, 2014) the team decided to proceed ahead.

The imminent next step is to bore a shallow test hole into the brushed area which measures about about 2.5 inches (6 centimeters) across.

If all goes well with the “mini-drill” operation, the team will proceed quickly with full depth drilling to core a sample from the interior of the dinner plate sized rock slab for delivery to Curiosity’s two chemistry labs.

Bonanza King sits in a bright outcrop on the low ramp at the northeastern end of a spot leading in and out of an area called “Hidden Valley” which lies between Curiosity’s August 2012 landing site in Gale Crater and her ultimate destinations on Mount Sharp which dominates the center of the crater.

Just days ago, the rover team commanded a quick exit from “Hidden Valley” to backtrack out of the dune filled valley because of fears the six wheeled robot could get stuck in slippery sands extending the length of a football field.

As Curiosity drills, the rover team is also searching for an alternate safe path forward to the sedimentary layers of Mount Sharp.

To date, Curiosity’s odometer totals over 5.5 miles (9.0 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 178,000 images.

The main map here shows the assortment of landforms near the location of NASA's Curiosity Mars rover as the rover's second anniversary of landing on Mars nears. The gold traverse line entering from upper right ends at Curiosity's position as of Sol 705 on Mars (July 31, 2014). The inset map shows the mission's entire traverse from the landing on Aug. 5, 2012, PDT (Aug. 6, EDT) to Sol 705, and the remaining distance to long-term science destinations near Murray Buttes, at the base of Mount Sharp. The label "Aug. 5, 2013" indicates where Curiosity was one year after landing.    Credit: NASA/JPL-Caltech/Univ. of Arizona
The main map here shows the assortment of landforms near the location of NASA’s Curiosity Mars rover as the rover’s second anniversary of landing on Mars nears. The gold traverse line entering from upper right ends at Curiosity’s position as of Sol 705 on Mars (July 31, 2014). The inset map shows the mission’s entire traverse from the landing on Aug. 5, 2012, PDT (Aug. 6, EDT) to Sol 705, and the remaining distance to long-term science destinations near Murray Buttes, at the base of Mount Sharp. The label “Aug. 5, 2013” indicates where Curiosity was one year after landing. Credit: NASA/JPL-Caltech/Univ. of Arizona

Curiosity still has about another 2 miles (3 kilometers) to go to reach the entry way at a gap in the treacherous sand dunes at the foothills of Mount Sharp sometime later this year.

Mount Sharp is a layered mountain that dominates most of Gale Crater and towers 3.4 miles (5.5 kilometers) into the Martian sky and is taller than Mount Rainier.

“Getting to Mount Sharp is the next big step for Curiosity and we expect that in the Fall of this year,” Dr. Jim Green, NASA’s Director of Planetary Sciences at NASA Headquarters, Washington, DC, told me in an interview making the 2nd anniversary on Aug. 6.

“Drilling on the crater floor will provide needed geologic context before Curiosity climbs the mountain.”

1 Martian Year on Mars!  Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Read an Italian language version of this story by my imaging partner Marco Di Lorenzo – here

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, Dream Chaser, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer