CAPE CANAVERAL AIR FORCE STATION, FL – On a gloomy night and delayed by rain showers and thick threatening clouds to the very last moment of a two and a half launch window, the completely clandestine satellite known only as CLIO climbed slowly from a Cape Canaveral launch pad atop the thunderous flames of an Atlas V rocket on Tuesday evening on a mysterious mission to orbit.
Under a veil of secrecy for an unknown US government customer, the clouds cleared just enough to finally launch CLIO on a United Launch Alliance (ULA) Atlas V booster at 8:10 p.m. EDT September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla.
A series of ugly thunderstorms with a deluge of rain shows repeatedly passed by the launch pad forcing a weather related delay from the initial daylight launch time of 5:44 p.m.
The 19 story rocket is protected by a quartet of lighting masts ringing the launch pad. And they did their job last night.
It was touch and go with the weather at the Cape all evening. None of us knew what would happen with the satellite we know nothing about. So the weather induced hazy view of the pad fit perfectly with the mystery missions hazy motif.
Normally, even the highly secretive US National Reconnaissance Office (NRO) claims ownership of their satellites named with what seems to be a random numbering scheme.
But not for CLIO. The only publicly released information is that CLIO was built by Lockheed Martin and derived from their commercial A2100 series satellite bus used for commercial telecommunications satellites among others.
“It is an honor to work with Lockheed Martin Space Systems Company and all of our mission partners to launch this very important satellite,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs, in a statement.
“Today’s launch marks ULA’s 11th successful mission this year and the 88th successful mission since ULA was formed in December 2006, a true testament to the team’s focus on mission success, one launch at a time.”
Myself and other media were allowed to visit the launch pad and photograph the rocket up close with the CLIO insignia emblazoned on the payload fairing, shrouding the mysterious satellite beneath.
But even the CLIO insignia is completely nondescript, unlike the rather artistic NRO logos with cool imaginary creatures and a number like NR0-66 for example.
We do know the type of rocket utilized is an Atlas V 401 configuration vehicle, which includes a 4-meter-diameter payload fairing and no solid rocket motors.
We do know that the Atlas booster for this mission was powered by a Russian made RD AMROSS RD-180 engine as is customary. The Centaur upper stage was powered by a single Aerojet Rocketdyne RL10A engine, according to ULA.
We do know the launch was successful and certainly a spectacular sight for myself and all the spectators.
CLIO is presumably somewhere in Earth orbit, circling overhead secretly at unknown altitude(s) and inclination(s).
CLIO marks ULA’s 60th successful mission from Cape Canaveral, the 11th successful mission this year and the 88th successful mission since the company’s formation in 2006.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA’s Dawn spacecraft experienced technical problems in the past week that will force it to arrive at dwarf planet Ceres one month later than planned, the agency said in a statement yesterday (Sept. 16).
Controllers discovered Dawn was in safe mode Sept. 11 after radiation disabled its ion engine, which uses electrical fields to “push” the spacecraft along. The radiation stopped all engine thrusting activities. The thrusting resumed Monday (Sept. 15) after controllers identified and fixed the problem, but then they found another anomaly troubling the spacecraft.
Dawn’s main antenna was also disabled, forcing the spacecraft to send signals to Earth (a 53-minute roundtrip by light speed) through a weaker secondary antenna and slowing communications. The cause of this problem hasn’t been figured out yet, but controllers suspect radiation affected the computer’s software. A computer reset has solved the issue, NASA added. The spacecraft is now functioning normally.
“As a result of the change in the thrust plan, Dawn will enter into orbit around dwarf planet Ceres in April 2015, about a month later than previously planned. The plans for exploring Ceres once the spacecraft is in orbit, however, are not affected,” NASA’s Jet Propulsion Laboratory stated in a press release.
Dawn is en route to Ceres after orbiting the huge asteroid Vesta between July 2011 and September 2012. A similar suspected radiation blast three years ago also disabled Dawn’s engine before it reached Vesta, but the ion system worked perfectly in moving Dawn away from Vesta when that phase of its mission was complete, NASA noted.
Among Dawn’s findings at Vesta is that the asteroid is full of hydrogen, and it contains the hydrated mineral hydroxyl. This likely came to the asteroid when smaller space rocks brought the volatiles to its surface through low-speed collisions.
Spacecraft can experience radiation through energy from the Sun (particularly from solar flares) and also from cosmic rays, which are electrically charged particles that originate outside the Solar System. Earth’s atmosphere shields the surface from most space-based radiation.
A newly published English version of the book, “Astrophotography” by Thierry Legault provides detailed, step-by-step instructions of how to start or improve your photography of astronomical objects. But this is not just a dry manual: Legault tells stories and explains details in a manner that seems like he is talking directly to you, and he shares the expertise he has garnered from over 20 years of amateur astrophotography.
Universe Today is proud to announce we have several copies of this engaging book to give away, and two ways to win.
NOTE: This giveaway is now closed. Thanks for everyone’s participation!
The first way to win a copy is our usual “giveaway” process where we have two copies available to winners. In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, September 22, 2014. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing. If you’ve entered our giveaways before you should also receive an email with a link on how to enter.
The second way to win is through Facebook. Again, two copies are available through this avenue. Please see our Facebook post for this giveaway, then we ask you to “like” the Rocky Nook Publishing Facebook page. Your “like” to Rocky Nook will be considered an entry to the contest. From there, a winner will be chosen and the winners will be notified through Facebook.
The publisher has specified that for this contest, winners chosen from the US will be sent a copy of the book, while winners chosen from other countries will receive an ebook.
In a finding that could turn supermassive black hole formation theories upside-down, astronomers have spotted one of these beasts inside a tiny galaxy just 157 light-years across — about 500 times smaller than the Milky Way.
The clincher will be if the team can find more black holes like it, and that’s something they’re already starting to work on after the discovery inside of galaxy M60-UCD1. The ultracompact galaxy is one of only about 50 known to astronomers in the nearest galaxy clusters.
“It’s very much like a pinprick in the sky,” said lead researcher Anil Seth, an astrophysicist at the University of Utah, of M60-UCD1 during an online press briefing Tuesday (Sept. 16).
Seth said he realized something special was happening when he saw the plot for stellar motions inside of M60-UCD1, based on data from the Gemini North Telescope in Hawaii. The stars in the center of the galaxy were orbiting much more rapidly than those at the edge. The velocity was unexpected given the kind of stars that are in the galaxy.
“Immediately when I saw the stellar motions map, I knew we were seeing something exciting,” Seth said. “I knew pretty much right away there was an interesting result there.”
In its weight class, M60-UCD1 is a standout. Last year, Seth was second co-author on a group that announced that it was the densest nearby galaxy, with stars jam-packed 25 times closer than in the Milky Way. It’s also one of the brightest they know of, a fact that is helped by the galaxy’s relative closeness to Earth. It’s roughly 54 million light-years away, as is the massive galaxy it orbits: M60. The two galaxies are only 20,000 light-years apart.
Supermassive black holes are known to lurk in the centers of most larger galaxies, including the Milky Way. How they got there in the first place, however, is unclear. The find inside of M60-UCD1 is especially intriguing given the relative size of the black hole to the galaxy itself. The black hole is about 15% of the galaxy’s mass, with an equivalent mass of 21 million Suns. The Milky Way’s black hole, by contrast, takes up less than a percentage of our galaxy’s mass.
Given so few ultracompact galaxies are known to astronomers, some basic properties are a mystery. For example, the mass of these galaxy types tends to be higher than expected based on their starlight.
Some astronomers suggest it’s because they have more massive stars than other galaxy types, but Seth said measurements of stars within M60-UCD1 (based on their orbital motion) show normal masses. The extra mass instead comes from the black hole, he argues, and that will likely be true of other ultracompact galaxies as well.
“It’s a new place to look for black holes that was previously not recognized,” he said, but acknowledged the idea of black holes existing in similar galaxies will not be widely accepted until the team makes more finds. An alternative explanation to a black hole could be a suite of low-mass stars or neutron stars that do not give off a lot of light, but Seth said the number of these required in M60-UCD1 is “unreasonably high.”
His team plans to look at several other ultracompact galaxies such as M60-UCD1, but perhaps only seven to eight others would be bright enough from Earth to perform these measurements, he said. (Further work would likely require an instrument such as the forthcoming Thirty-Meter Telescope, he said.) Additionally, Seth has research interests in globular clusters — vast collections of stars — and plans a visit to Hawaii next month to search for black holes in these objects as well.
Results were published today (Sept. 17) in the journal Nature.
If you’re looking for detailed, step-by-step instructions of how to start or improve your photography of astronomical objects, look no further. Astrophotographer Thierry Legault shares the expertise he has garnered from over 20 years of “amateur” photography in his newly translated book titled simply — and appropriately — “Astrophotography.”
“It took me more than two years to write the first edition of the book (published in French in 2006),” Legault told Universe Today, “and I worked several months on the second edition (2013), and worked several months again for this new English edition.”
This softcover book is filled with dramatic images, helpful graphs, charts, and more – plus over 100,000 words of text to provide detailed, guided instructions on everything from choosing the right camera for your needs to how to process imagery for the best and most accurate results.
100% of the astronomical images in the book are Legault’s own photos, just a few of which are featured here in this review. “I really wanted to use my own images,” Legault said.
While each page is a treasure trove of Legault’s beautiful images, he’s not just showing off: he tells you how you can try to get the same results.
Of course, we’ve featured Legault’s stunning and sometimes ground-breaking astrophotography here on Universe Today, and his work has been published and broadcast worldwide. You’ll likely recall images of the space shuttle or International Space Station crossing the Sun or Moon, views of spy satellites in orbit, beautiful deep sky views, or shots like the striking image above of a ‘moonbow’ and meteor over Australia’s Wallaman Falls.
His continued dedication to his craft, along with his attention to detail and quality has earned Legault the reputation as one of the top amateur astrophotographers in the world. And he now shares his tips and know-how in this well-organized and detailed — but highly accessible — manual. Legault’s descriptions and instructions will not lose even those just beginning with astronomical imaging.
So, with experts like Legault and so many other accomplished astrophotographers taking incredible photos (which we love to feature on Universe Today) why would someone want to bother with trying to just start out and learn the craft?
Legault addresses that question immediately in the forward of his book.
“Part of the answer to that question lies in the desire to get our own pictures of the stars: after all most of the tourists who visit the Egyptian pyramids, Niagara Falls, or The Great Wall of China also take photographs, even though these sites have already been photographed millions of times with beautiful tomes devoted to them,” Legault writes. “The pleasure of photographing the sky is a natural progression from the visual observations of the night sky…”
Plus, Legault continues, with current equipment that is now available, the expanding avenues of citizen science offers the chance for anyone to add to the body of astronomical knowledge.
“It is entirely possible to go beyond the purely aesthetic aspect of astrophography and use images of celestial bodies to study their behavior and deduce the physical mechanisms that govern them, or even reveal new insights,” Legault writes. “In some cases, advanced amateurs can do useful work assisting professionals who, while certainly having more sophisticated means and deeper skills are s0 few that it is impossible for them to perform a complete survey of a a celestial object to to continuously monitor it.”
So not only can you create beautiful imagery but you can contribute to science as well.
The book begins with the simplest ways for amateurs to begin photographing the night sky, and you don’t even need to own a telescope. For example, Legault’s video, below, of fireworks and a big Moon over Paris is something anyone can record. But using the right settings — and planning ahead — are key to capturing beautiful images and video.
But then Legault delves into the details of telescopic photography, and provides information on using telescopes and tracking mounts. He shares how to precisely capture everything from incredible solar imagery, to deep sky photos, to his ‘trademark’ transits of satellites, like those seen below:
Also key is image processing. While Legault has provided details for Universe Today before on how not to over-process and be fooled by image artifacts, his book offers much more thorough information on how to start — as well as knowing when to quit — processing images for the best results.
Other areas Legault covers are how to:
Select the most useful equipment: cameras, adapters, filters, focal reducers/extenders, field correctors, and guide telescopes
Set up your camera (digital, video, or CCD) and your lens or telescope for optimal results
Plan your observing sessions
Polar-align your equatorial mount and improve tracking for pin-point star images
Make celestial time-lapse videos
Calculate the shooting parameters: focal length and ratio, field of view, exposure time, etc.
Combine multiples exposures to reveal faint galaxies, nebulae details, elusive planetary structures, and tiny lunar craters
Postprocess your images to fix defects such as vignetting, dust shadows, hot pixels, uneven background, and noise
Identify problems with your images and improve your results
“Astrophotography” is not just a dry manual: Legault tells stories and explains details in a manner that seems like he is talking directly to you. For a translated book, the text flows extremely well, making for a very readable book. Legault credits Alan Holmes from the Santa Barbara Instruments Group (SBIG) – one of the main manufacturers of CCD cameras for astronomy — for his assitance with the translation from French. “He did a tremendous job of correcting my bad translation!” Legault told UT.
KENNEDY SPACE CENTER, FL – NASA Administrator Charles Bolden announced that Boeing and SpaceX have won the high stakes and history making NASA competition to build the first ever private ‘space taxis’ to launch American astronauts to the International Space Station (ISS) and restore America’s capability to launch our crews from American soil for the first time since 2011.
Bolden made the historic announcement of NASA’s commercial crew contract winners to build America’s next human rated spaceships at the Kennedy Space Center (KSC) on Wednesday, Sept. 16 at a briefing for reporters.
The ‘space taxi’ contract to build the Boeing CST-100 and SpaceX Dragon V2 spaceships is worth a total of $6.8 Billion, with the goal to end the nation’s sole source reliance on Russia in 2017.
Boeing was awarded the larger share of the contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.
“From day one, the Obama Administration made clear that the greatest nation on Earth should not be dependent on other nations to get into space,” Bolden told reporters at the agency’s Kennedy Space Center in Florida.
“Thanks to the leadership of President Obama, the hard work of our NASA and industry teams, and support from Congress, today we are one step closer to launching our astronauts from U.S. soil on American spacecraft and ending the nation’s sole reliance on Russia by 2017. Turning over low-Earth orbit transportation to private industry will also allow NASA to focus on an even more ambitious mission – sending humans to Mars.”
The awards from NASA’s Commercial Crew Program (CCP) offices will continue to be implemented as a public-private partnership and are the fruition of NASA’s strategy to foster the development of privately built human spaceships that began in 2010.
Both spaceships are capsule design with parachute assisted landings. The third competitor involving Sierra Nevada’s Dream Chaser mini-shuttle offering runway landings was not selected for further development.
“We are excited to see our industry partners close in on operational flights to the International Space Station, an extraordinary feat industry and the NASA family began just four years ago,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.
“This space agency has long been a technology innovator, and now we also can say we are an American business innovator, spurring job creation and opening up new markets to the private sector. The agency and our partners have many important steps to finish, but we have shown we can do the tough work required and excel in ways few would dare to hope.”
Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flight since the dawn of the space age.
The Boeing CST-100 will launch atop a man rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.
The SpaceX Dragon will launch atop a man rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.
Boeing and SpaceX issued the following statements after the awards were announced.
“Boeing has been part of every American human space flight program, and we’re honored that NASA has chosen us to continue that legacy,” said John Elbon, Boeing vice president and general manager, Space Exploration, in a statement in response NASA’s award.
“The CST-100 offers NASA the most cost-effective, safe and innovative solution to U.S.-based access to low-Earth orbit.”
“Under the Commercial Crew Transportation (CCtCap) phase of the program, Boeing will build three CST-100s at the company’s Commercial Crew Processing Facility at Kennedy Space Center in Florida. The spacecraft will undergo a pad-abort test in 2016 and an uncrewed flight in early 2017, leading up to the first crewed flight to the ISS in mid-2017.”
“SpaceX is deeply honored by the trust NASA has placed in us. We welcome today’s decision and the mission it advances with gratitude and seriousness of purpose,” said Elon Musk, CEO & Chief Designer, SpaceX, in a statement in response NASA’s award.
“It is a vital step in a journey that will ultimately take us to the stars and make humanity a multi-planet species.”
Stay tuned here for Ken’s continuing Boeing, SpaceX, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
NASA will make a “major announcement” today on the return of human spaceflight launches for the U.S, specifically which commercial space company — or companies — will taxi astronauts to and from the International Space. You can watch the press conference live here today (Sept. 16) at 4 pm EDT (1 pm PDT, 20:00 UTC).
The competition for the Commercial Crew Program (CCP) has been between four companies: SpaceX, Boeing, Sierra Nevada and Blue Origin. Some media reports indicate NASA will make commercial crew awards to the obvious front-runners, Boeing and SpaceX.
SpaceX’s Dragon became the first commercial spacecraft to deliver cargo to the space station in 2012, and SpaceX has been working on a version of the Dragon that can carry humans as well.
Boeing’s CST-100 can carry up to seven passengers or a mix of humans and cargo.
Sierra Nevada has been working on the Dream Chaser, a winged spacecraft that looks similar to a mini space shuttle. Blue Origin has been developing a capsule called Space Vehicle.
The CCP program was developed after the space shuttle program ended in 2011. While NASA focuses its human spaceflight efforts on the new Space Launch System and going beyond Earth orbit, they will use commercial companies that will launch from the US to ferry their astronauts to the space station.
With a newly cleared memory, it’s time for Opportunity to resume the next stage of its long, long Martian drive. The next major goal for the long-lived rover is to go to Marathon Valley, a spot that (in images from orbit) appears to have clay minerals on site. Clay tends to form in the presence of water, so examining the region could provide more information about Mars’ wet, ancient past.
A NASA planetary senior review panel from early September, which was evaluating the science value of several extended missions, said there are “software and communication issues that afflict the rover” that could affect its ability to send data. (This was written before the memory reformat.)
The major goal of Opportunity’s latest extended mission, the review continued, is to find out what habitability conditions existed on Mars. This includes looking at the water, the geology and the environment.
“This will be achieved by measurements of rocks and soils, as well as atmospheric observations, as it traverses from Murray Ridge to Cape Tribulation,” the report read.
“This extended mission will focus on the orbitally detected phyllosilicate deposits near Endeavour crater, which are considered to represent deposits from the ancient Noachian period. This would represent the first time that such ancient deposits have been analyzed on the Martian surface.”
The report further cautioned that there is no proof yet that the phyllosilicates (which are sheet salt silicate materials made of silicon and oxygen) are from the Noachian era, which represents geology that is more than 3.5 billion years old (depending on which source you consult). It added, however, that Opportunity is expected to be able to complete the science.
Meanwhile, enjoy these pictures from the rim of Endeavour Crater that Opportunity sent in the past few days.
We often speak of the discoveries and data flowing from astronomical observatories, which makes it easy to forget the cool factor. Think of it — huge telescopes are probing the universe under crystal-clear skies, because astronomers need the dark skies to get their work done.
That’s what makes this astronomical video by Jan Hattenbach such a treat. He’s spent the past three years catching stunning video shots at observatories all over the world, showing timelapses of the Milky Way galaxy and other celestial objects passing overhead.
“The time-lapses were a byproduct of our visual observing – because obviously, these sites are also the best in the world for visual observing and astrophotography. If you ever have the chance to spend a night at one of these observatories, consider yourself very lucky!” wrote Hattenbach on Vimeo.
And often you don’t even need a telescope to appreciate the beauty of the cosmos. Earlier this summer, we posted another video showing the stunning sky above Desert National Park.