Rosetta Now Up Close to Comet 67P – Snapping Mapping Mosaics for Momentous Philae Landing

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across.
Credits: ESA/Rosetta/NAVCAM/Ken Kremer – kenkremer.com/Marco Di Lorenzo
See rotated version and 4 individual images below[/caption]

ESA’s Rosetta orbiter has now moved in so close to its comet quarry that the primordial body overwhelms the screen, and thus its snapping mapping mosaics to capture the complete scene of the bizarre world so it can find the most suitable spot for the momentous Philae landing – upcoming in mid-November.

In fact Rosetta has ‘drawn and quartered’ the comet to collect high resolution views of Comet 67P/Churyumov-Gerasimenko with the navcam camera on Sunday, August 31.

The navcam quartet has just been posted to the Rosetta portal today, Monday, September 1, 2014. ESA invited readers to create global photo mosaics.

See above our four frame photo mosaic of navcam images Rosetta took on Aug. 31.

The purpose of taking the images as well as spectra and physical measurements up close is to find a ‘technically feasible’ Philae touchdown site that is both safe and scientifically interesting.

Below is the Rosetta teams four image navcam montage, arranged individually in a 2 x 2 raster.

Four-image montage comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM
Four-image montage comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM

The navcam image raster sequence was taken from a distance of 61 km from comet 67P.

“Roughly one quarter of the comet is seen in the corner of each of the four images. The four images are taken over an approximately 20 minute period, meaning that there is some motion of the spacecraft and rotation of the comet between the images. As a result, making a clean mosaic out of the four images is not simple,” according to ESA’s Rosetta blog.

As I reported here last week, the ‘Top 5’ landing site candidates have been chosen for the Rosetta orbiters piggybacked Philae lander for humankind’s first attempt to land on a comet.

The potential touchdown sites were announced on Aug. 25, based on a thorough analysis of high resolution measurements collected by ESA’s Rosetta spacecraft over the prior weeks since it arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014.

See our montage of the ‘Top 5’ landing sites below.

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Rosetta is a mission of many firsts, including history’s first ever attempt to orbit a comet for long term study.

Philae’s history making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

The new images released today are the best taken so far by the Navcam camera. The probes OSIRIS science camera are even more detailed, and will hopefully be released by ESA soon!

“This is the first time landing sites on a comet have been considered,” said Stephan Ulamec, Lander Manager at DLR (German Aerospace Center), in an ESA statement.

Since rendezvousing with the comet after a decade long chase of over 6.4 billion kilometers (4 Billion miles), a top priority task for the science and engineering team leading Rosetta has been “Finding a landing strip” for the Philae comet lander.

“The clock is ticking’ to select a suitable landing zone soon since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet's nucleus. It was taken by the Rosetta spacecraft's OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Read my Rosetta series here:

5 Landing Site Candidates Selected for Rosetta’s Historic Philae Comet Lander

Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

25 Days from Mars – India’s MOM is in Good Health!

India’s Mars Orbiter Mission (MOM) marked 100 days out from Mars on June 16, 2014 and the Mars Orbit Insertion engine firing when it arrives at the Red Planet on September 24, 2014 after its 10 month interplanetary journey. Credit ISRO

Now less than 25 days from her history making rendezvous with the Red Planet and the critical Mars Orbital Insertion (MOI) engine firing, India’s MOM is in good health!

The Mars Orbiter Mission, or MOM, counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun on September 24, 2014 – if all goes well.

MOM was designed and developed by the Indian Space Research Organization (ISRO).

“MOM and its payloads are in good health,” reports ISRO in a new update.

As of today, Aug. 31, MOM has traveled a total distance of over 622 million km in its heliocentric arc towards Mars, says ISRO. It is currently 199 million km away from Earth.

25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch.  Credit: ISRO
25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch. Credit: ISRO

Altogether the probe has completed over 90% of the journey to Mars.

In the past week alone it has traveled over 20 million km and is over 10 million km further from Earth. It is now less than 9 million kilometers away from Mars

Round trip radio signals communicating with MOM now take some 21 minutes.

The 1,350 kilogram (2,980 pound) probe has been streaking through space for nearly ten months.

To remain healthy and accomplish her science mission ahead, the spacecraft must fire the 440 Newton liquid fueled main engine to brake into orbit around the Red Planet on September 24, 2014 – where she will study the atmosphere and sniff for signals of methane.

The do or die MOI burn on September 24, 2014 places MOM into an 377 km x 80,000 km elliptical orbit around Mars.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) moved the spacecraft into the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.

MOM is streaking to Mars along with NASA’s MAVEN orbiter, which arrives a few days earlier on September 21, 2014.

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Tonight’s Moon-Mars-Saturn Trio Recalls Time of Terror

The crescent moon, Saturn and Mars will form a compact triangle in the southwestern sky in this evening August 31st. 3.5º separate the moon and Saturn; Mars and Saturn will be 5º apart. Stellarium

Check it out. Look southwest at dusk tonight and you’ll see three of the solar system’s coolest personalities gathering for a late dinner. Saturn, Mars and the waxing crescent moon will sup in Libra ahead of the fiery red star Antares in Scorpius. All together, a wonderful display of out-of-this-world worlds. 

Four dark lunar seas, also called 'maria' (MAH-ree-uh), pop out in binoculars. Four featured craters are also highlighted - the triplet of Theophilus, Cyrillus and Catharina and Maurolycus, named after Francesco Maurolico, a 16th century Italian scientist. Credit: Virtual Moon Atlas / Christian LeGrande, Patrick Chevalley
Four dark lunar seas, also called ‘maria’ (MAH-ree-uh), pop out in binoculars. Four featured craters are also highlighted – the triplet of Theophilus, Cyrillus and Catharina and Maurolycus, named after Francesco Maurolico, a 16th century Italian scientist. Credit: Virtual Moon Atlas / Christian LeGrande, Patrick Chevalley

If you have binoculars, take a closer look at the thick lunar crescent. Several prominent lunar seas, visible to the naked eye as dark patches, show up more clearly and have distinctly different outlines even at minimal magnification. Each is a plain of once-molten lava that oozed from cracks in the moon’s crust after major asteroid strikes 3-3.5 billion years ago.

Larger craters also come into view at 10x including the remarkable trio of Theophilus, Cyrillus and Catharina, each of which spans about 60 miles (96 km) across. Even in 3-inch telescope, you’ll see that Theophilus partly overlaps Cyrillus, a clear indicator that the impact that excavated the crater happened after Cyrillus formed.

Close-up of our featured trio of craters. Sharpness indicates freshness. Comparing the three, the Theophilus impact clearly happened after the others. Craters gradually become eroded over time from micrometeorite impacts, solar wind bombardment, moonquakes and extreme day-to-night temperature changes. Credit: Damian Peach
Close-up of our featured trio of craters. Sharpness indicates freshness. Comparing the three, the Theophilus impact clearly happened after the others. Craters gradually become eroded over time from micrometeorite impacts, solar wind bombardment, moonquakes and extreme day-to-night temperature changes. Credit: Damian Peach

Notice that the rim Theophilus crater is still relatively crisp and fresh compared to the older, more battered outlines of its neighbors. Yet another sign of its relative youth.

Astronomers count craters on moons and planets to arrive at relative ages of their surfaces. Few craters indicate a youthful landscape, while many overlapping ones point to an ancient terrain little changed since the days when asteroids bombarded all the newly forming planets and moons. Once samples of the moon were returned from the Apollo missions and age-dated, scientists could then assign absolute ages to particular landforms. When it comes to planets like Mars, crater counts are combined with estimates of a landscape’s age along with information about the rate of impact cratering over the history of the solar system. Although we have a number of Martian meteorites with well-determined ages, we don’t know from where on Mars they originated.

At least three different impact sequences are illustrated in this photo. Maurolycus appears to lie atop an older crater, while younger, sharp-rimmed craters pock its center and southern rim. Even a 3-inch telescope will show signs of all three ages. Credit: Damian Peach
At least three different impact sequences are illustrated in this photo. Maurolycus appears to lie atop an older crater, while younger, sharp-rimmed craters pock its center and southern rim. Even a 3-inch telescope will show signs of all three ages. Credit: Damian Peach

Another crater visible in 10x binoculars tonight is Maurolycus (more-oh-LYE-kus), a great depression 71 miles (114 km) across located in the moon’s southern hemisphere in a region rich with overlapping craters. Low-angled sunlight highlighting the crater’s rim will make it pop near the moon’s terminator, the dividing line between lunar day and night.

Like Theophilus, Maurolycus overlaps a more ancient, unnamed crater best seen in a small telescope. Notice that Maurolycus is no spring chicken either; its floor bears the scares of more recent impacts.

Putting it all into context, despite their varying relative ages, most of the moon’s craters are ancient, punched out by asteroid and comet bombardment more than 3.8 billion years ago. To look at the moon is to see a fossil record of a time when the solar system was a terrifyingly untidy place. Asteroids beat down incessantly on the young planets and moons.

Despite the occasional asteroid scare and meteorite fall, we live in relative peace now. Think what early life had to endure to survive to the present. Deep inside, our DNA still connects us to the terror of that time.

Caterpillar Comet Poses for Pictures En Route to Mars

Comet C/2013 A1 Siding Spring passed between the Small Magellanic Cloud (left) and the rich globular cluster NGC 130 on August 29, 2014. Credit: Rolando Ligustri

Now that’s pure gorgeous. As Comet C/2013 A1 Siding Spring sidles towards its October 19th encounter with Mars, it’s passing a trio of sumptuous deep sky objects near the south celestial pole this week. Astrophotographers weren’t going to let the comet’s picturesque alignments pass without notice. Rolando Ligustri captured this remarkable view using a remote, computer-controlled telescope on August 29th. It shows the rich assemblage of stars and star clusters that comprise the Small Magellanic Cloud, one of the Milky Way’s satellite galaxies located 200,000 light years away.

A photo taken one day earlier on August 28th captures the comet and NGC 362 in a tight pairing. Credit: Damian Peach
A photo taken one day earlier on August 28th captures the comet and NGC 362 in close embrace. Credit: Damian Peach

Looking like a fuzzy caterpillar, Siding Spring seems to crawl between the little globular cluster NGC 362 and the  rich swarm called  47 Tucanae, one of the few globulars bright enough to see with the naked eye. C/2013 A1 is currently circumpolar from many locations south of the equator and visible all night long. Glowing at around magnitude +9.5 with a small coma and brighter nucleus, a 6-inch or larger telescope will coax it from a dark sky. Siding Spring dips farthest south on September 2-3 (Dec. -74º) and then zooms northward for Scorpius and Sagittarius. It will encounter additional deep sky objects along the way, most notably the bright open cluster M7 on October 5-6, before passing some 82,000 miles from Mars on October 19th.

Map showing Comet Siding Spring's recent and upcoming travels near the Small Magellanic Cloud. Positions are shown nightly for Alice Springs, Australia. Source: Chris Marriott's SkyMap
Map showing Comet Siding Spring’s recent and upcoming travels near the Small Magellanic Cloud. Positions are shown nightly for Alice Springs, Australia. Source: Chris Marriott’s SkyMap

While the chance of a Mars impact is near zero, the fluffy comet’s fluffy coma and broad tail, both replete with tiny but fast-moving (~125,000 mph) dust particles, might pose a hazard for spacecraft orbiting the Red Planet. Assuming either coma or tail grows broad enough to sweep across the Martian atmosphere, impacting dust might create a spectacular meteor shower. Mars Rover cameras may be used to photograph the comet before the flyby and to capture meteors during its closest approach. NASA plans to ‘hide’ its orbiting probes on the opposite side of the planet for a brief time during the approximately 4-hour-long encounter just in case.

Today, Siding Spring’s coma or temporary atmosphere measures about 12,000 miles (19,300 km) wide. While I can’t get my hands on current dust production rates, in late January, when it was farther from the sun than at present, C/2013 A1 kicked out ~800,000 lbs per hour (~100 kg/sec). On October 19th, observers across much of the globe with 6-inch or larger instruments will witness the historic encounter with their own eyes at dusk in the constellation Sagittarius.

Heat Protecting Back Shell Tiles Installed on NASA’s Orion EFT-1 Spacecraft Set for Dec. 2014 Launch

Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians dressed in clean-room suits install a back shell tile panel onto the Orion crew module. Credit: NASA/Dimitri Gerondidakis

Fabrication of the pathfinding version of NASA’s Orion crew capsule slated for its inaugural unmanned test flight in December is entering its final stages at the Kennedy Space Center (KSC) launch site in Florida.

Engineers and technicians have completed the installation of Orion’s back shell panels which will protect the spacecraft and future astronauts from the searing heat of reentry and scorching temperatures exceeding 3,150 degrees Fahrenheit.

Orion is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) test flight in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida.

Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1. Credit: NASA/Dimitri Gerondidakis
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1. Credit: NASA/Dimitri Gerondidakis

The cone-shaped back shell actually has a rather familiar look since its comprised of 970 black thermal protection tiles – the same tiles which protected the belly of the space shuttles during three decades and 135 missions of returning from space.

However, Orion’s back shell tiles will experience temperatures far in excess of those from the shuttle era. Whereas the space shuttles traveled at 17,000 miles per hour, Orion will hit the Earth’s atmosphere at some 20,000 miles per hour on this first flight test.

The faster a spacecraft travels through Earth’s atmosphere, the more heat it generates. So even though the hottest the space shuttle tiles got was about 2,300 degrees Fahrenheit, the Orion back shell could get up to 3,150 degrees, despite being in a cooler area of the vehicle.

Engineers have also rigged Orion to conduct a special in flight test to see just how vulnerable the vehicle is to the onslaught of micrometeoroid orbital debris.

Two one-inch-wide holes have been drilled into tiles on Orion’s back shell to simulate micrometeoroid orbital debris damage.  Sensors on the vehicle will record how high temperatures climb inside the hole during Orion’s return through Earth’s atmosphere following its first flight in December.  Credit:  NASA
Two one-inch-wide holes have been drilled into tiles on Orion’s back shell to simulate micrometeoroid orbital debris damage. Sensors on the vehicle will record how high temperatures climb inside the hole during Orion’s return through Earth’s atmosphere following its first flight in December. Credit: NASA

Even tiny particles can cause immense and potentially fatal damage at high speed by punching a hole through the back shell tiles and possibly exposing the spacecrafts structure to temperatures high than normal.

“Below the tiles, the vehicle’s structure doesn’t often get hotter than about 300 degrees Fahrenheit, but if debris breeched the tile, the heat surrounding the vehicle during reentry could creep into the hole it created, possibly damaging the vehicle,” says NASA.

The team has run done numerous modeling studies on the effect of micrometeoroid hits. Now it’s time for a real world test.

Therefore engineers have purposely drilled a pair of skinny 1 inch wide holes into two 1.47 inches thick tiles to mimic damage from a micrometeoroid hit. The holes are 1.4 inches and 1 inch deep and are located on the opposite side of the back shell from Orion’s windows and reaction control system jets, according to NASA.

“We want to know how much of the hot gas gets into the bottom of those cavities,” said Joseph Olejniczak, manager of Orion aerosciences, in a NASA statement.

“We have models that estimate how hot it will get to make sure it’s safe to fly, but with the data we’ll gather from these tiles actually coming back through Earth’s atmosphere, we’ll make new models with higher accuracy.”

Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida.   Credit: Ken Kremer - kenkremer.com
Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

The data gathered will help inform the team about the heat effects from potential damage and possible astronaut repair options in space.

Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle.

The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

The EFT-1 mission will test the systems critical for future human missions to deep space.

Orion’s back shell attachment and final assembly is taking place in the newly renamed Neil Armstrong Operations and Checkout Building, by prime contractor Lockheed Martin.

Inside the Operations and Checkout Building high bay at the Kennedy Space Center, Fl, technicians on work platform monitor progress as crane lowers the middle back shell tile panel for installation on the Orion crew module.   Credit: NASA/Dimitri Gerondidakis
Inside the Operations and Checkout Building high bay at the Kennedy Space Center, Fl, technicians on work platform monitor progress as crane lowers the middle back shell tile panel for installation on the Orion crew module. Credit: NASA/Dimitri Gerondidakis

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield and back shell tiles in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching over 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.

The Orion EFT-1 vehicle is due to roll out of the O & C in about two weeks and be moved to its fueling facility at KSC for the next step in launch processing.

Orion will eventually launch atop the SLS, NASA’s new mammoth heavy lift booster which the agency is now targeting for its maiden launch no later than November 2018 – detailed in my story here.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Radio Telescopes Resolve Pleiades Distance Debate

An optical image of the Pleiades. Credit: NOAO / AURA / NSF

Fall will soon be at our doorstep. But before the leaves change colors and the smell of pumpkin fills our coffee shops, the Pleiades star cluster will mark the new season with its earlier presence in the night sky.

The delicate grouping of blue stars has been a prominent sight since antiquity. But in recent years, the cluster has also been the subject of an intense debate, marking a controversy that has troubled astronomers for more than a decade.

Now, a new measurement argues that the distance to the Pleiades star cluster measured by ESA’s Hipparcos satellite is decidedly wrong and that previous measurements from ground-based telescopes had it right all along.

The Pleiades star cluster is a perfect laboratory to study stellar evolution. Born from the same cloud of gas, all stars exhibit nearly identical ages and compositions, but vary in their mass. Accurate models, however, depend greatly on distance. So it’s critical that astronomers know the cluster’s distance precisely.

A well pinned down distance is also a perfect stepping stone in the cosmic distance ladder. In other words, accurate distances to the Pleiades will help produce accurate distances to the farthest galaxies.

With parallax technique, astronomers observe object at opposite ends of Earth's orbit around the Sun to precisely measure its distance. CREDIT: Alexandra Angelich, NRAO/AUI/NSF.
With the parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO / AUI / NSF

But accurately measuring the vast distances in space is tricky. A star’s trigonometric parallax — its tiny apparent shift against background stars caused by our moving vantage point — tells its distance more truly than any other method.

Originally the consensus was that the Pleiades are about 435 light-years from Earth. However, ESA’s Hipparcos satellite, launched in 1989 to precisely measure the positions and distances of thousands of stars using parallax, produced a distance measurement of only about 392 light-years, with an error of less than 1%.

“That may not seem like a huge difference, but, in order to fit the physical characteristics of the Pleiades stars, it challenged our general understanding of how stars form and evolve,” said lead author Carl Melis, of the University of California, San Diego, in a press release. “To fit the Hipparcos distance measurement, some astronomers even suggested that some type of new and unknown physics had to be at work in such young stars.”

If the cluster really was 10% closer than everyone had thought, then the stars must be intrinsically dimmer than stellar models suggested. A debate ensued as to whether the spacecraft or the models were at fault.

To solve the discrepancy, Melis and his colleagues used a new technique known as very-long-baseline radio interferometry. By linking distant telescopes together, astronomers generate a virtual telescope, with a data-gathering surface as large as the distances between the telescopes.

The network included the Very Long Baseline Array (a system of 10 radio telescopes ranging from Hawaii to the Virgin Islands), the Green Bank Telescope in West Virginia, the William E. Gordon Telescope at the Arecibo Observatory in Puerto Rico, and the Effelsberg Radio Telescope in Germany.

“Using these telescopes working together, we had the equivalent of a telescope the size of the Earth,” said Amy Miouduszewski, of the National Radio Astronomy Observatory (NRAO). “That gave us the ability to make extremely accurate position measurements — the equivalent of measuring the thickness of a quarter in Los Angeles as seen from New York.”

After a year and a half of observations, the team determined a distance of 444.0 light-years to within 1% — matching the results from previous ground-based observations and not the Hipparcos satellite.

“The question now is what happened to Hipparcos?” Melis said.

The spacecraft measured the position of roughly 120,000 nearby stars and — in principle — calculated distances that were far more precise than possible with ground-based telescopes. If this result holds up, astronomers will grapple with why the Hipparcos observations misjudged the distances so badly.

ESA’s long-awaited Gaia observatory, which launched on Dec. 19, 2013, will use similar technology to measure the distances of about one billion stars. Although it’s now ready to begin its science mission, the mission team will have to take special care, utilizing the work of ground-based radio telescopes in order to ensure their measurements are accurate.

The findings have been published in the Aug. 29 issue of Science and is available online.

Enjoy This Eye-Meltingly Awesome Photo of Our Sun

Photo of the Sun captured and processed by Alan Friedman. (All rights reserved.)

Here’s yet another glorious photo of our home star, captured and processed by New York artist and photographer Alan Friedman on August 24, 2014. Alan took the photo using his 90mm hydrogen-alpha telescope – aka “Little Big Man” –  from his backyard in Buffalo, inverted the resulting image and colorized it to create the beautiful image above. Fantastic!

Hydrogen is the most abundant element in our Sun. The “surface” of the Sun and the layer just above it — the photosphere and chromosphere — are regions where atomic hydrogen exists profusely in upper-state form, and it’s these layers that hydrogen alpha photography reveals in the most detail.

In Alan’s image from Aug. 24 several active sunspot regions can be seen, as well as long snaking filaments (which show up bright in this inverted view – in optical light they appear darker against the face of the Sun) and several prominences rising up along the Sun’s limb, one of which along the left side stretching completely off the frame a hundred thousand miles into space!

Click here to see the image above as well as some close-ups from the same day on Alan’s astrophotography website AvertedImagination.com. And you can learn more about how (and why) Alan makes such beautiful images of our home star here.

Photo © Alan Friedman. All rights reserved.

US Heavy Lift Mars Rocket Passes Key Review and NASA Sets 2018 Maiden Launch Date

Looking to the future of space exploration, NASA and TopCoder have launched the "High Performance Fast Computing Challenge" to improve the performance of their Pleiades supercomputer. Credit: NASA/MSFC

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Story updated[/caption]

After a thorough review of cost and engineering issues, NASA managers formally approved the development of the agency’s mammoth heavy lift rocket – the Space Launch System or SLS – which will be the world’s most powerful rocket ever built and is intended to take astronauts farther beyond Earth into deep space than ever before possible – to Asteroids and Mars.

The maiden test launch of the SLS is targeted for November 2018 and will be configured in its initial 70-metric-ton (77-ton) version, top NASA officials announced at a briefing for reporters on Aug. 27.

On its first flight known as EM-1, the SLS will also loft an uncrewed Orion spacecraft on an approximately three week long test flight taking it beyond the Moon to a distant retrograde orbit, said William Gerstenmaier, associate administrator for the Human Explorations and Operations Mission Directorate at NASA Headquarters in Washington, at the briefing.

Previously NASA had been targeting Dec. 2017 for the inaugural launch from the Kennedy Space Center in Florida – a slip of nearly one year.

But the new Nov. 2018 target date is what resulted from the rigorous assessment of the technical, cost and scheduling issues.

This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs.   Credit:  NASA/MSFC
This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs. Credit: NASA/MSFC

The decision to move forward with the SLS comes after a wide ranging review of the technical risks, costs, schedules and timing known as Key Decision Point C (KDP-C), said Associate Administrator Robert Lightfoot, at the briefing. Lightfoot oversaw the review process.

“After rigorous review, we’re committing today to a funding level and readiness date that will keep us on track to sending humans to Mars in the 2030s – and we’re going to stand behind that commitment,” said Lightfoot. “Our nation is embarked on an ambitious space exploration program.”

“We are making excellent progress on SLS designed for missions beyond low Earth orbit,” Lightfoot said. “We owe it to the American taxpayers to get it right.”

He said that the development cost baseline for the 70-metric ton version of the SLS was $7.021 billion starting from February 2014 and continuing through the first launch set for no later than November 2018.

Lightfoot emphasized that NASA is also building an evolvable family of vehicles that will increase the lift to an unprecedented lift capability of 130 metric tons (143 tons), which will eventually enable the deep space human missions farther out than ever before into our solar system, leading one day to Mars.

“It’s also important to remember that we’re building a series of launch vehicles here, not just one,” Lightfoot said.

Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida.   Credit: NASA/MSFC
Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida. Credit: NASA/MSFC

Lightfoot and Gerstenmaier both indicated that NASA hopes to launch sooner, perhaps by early 2018.

“We will keep the teams working toward a more ambitious readiness date, but will be ready no later than November 2018,” said Lightfoot.

The next step is conduct the same type of formal KDP-C reviews for the Orion crew vehicle and Ground Systems Development and Operations programs.

The first piece of SLS flight hardware already built and to be tested in flight is the stage adapter that will fly on the maiden launch of Orion this December atop a ULA Delta IV Heavy booster during the EFT-1 mission.

The initial 70-metric-ton (77-ton) version of the SLS stands 322 feet tall and provides 8.4 million pounds of thrust. That’s already 10 percent more thrust at launch than the Saturn V rocket that launched NASA’s Apollo moon landing missions, including Apollo 11, and it can carry more than three times the payload of the now retired space shuttle orbiters.

The core stage towers over 212 feet (64.6 meters) tall with a diameter of 27.6 feet (8.4 m) and stores cryogenic liquid hydrogen and liquid oxygen. Boeing is the prime contractor for the SLS core stage.

The first stage propulsion is powered by four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The pressure vessels for the Orion crew capsule, including EM-1 and EFT-1, are also being manufactured at MAF. And all of the External Tanks for the space shuttles were also fabricated at MAF.

The airframe structure for the first Dream Chaser astronaut taxi to low Earth orbit is likewise under construction at MAF as part of NASA’s commercial crew program.

The first crewed flight of the SLS is set for the second launch on the EM-2 mission around the 2020/2021 time frame, which may visit a captured near Earth asteroid.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Observing Neptune: A Guide to the 2014 Opposition Season

Credit

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant world lies “opposite” to the Sun as seen from our Earthly perspective and rises to the east as the Sun sets to the west, riding high in the sky across the local meridian near midnight.

2014 finds Neptune shining at magnitude +7.6 in the constellation of Aquarius. Unfortunately, the planet is too faint to be seen with the naked eye, but can be sighted using a good pair of binoculars if know exactly where to look for it. Though the telescope, Neptune exhibits a tiny blue-gray disk 2.4” across — 750 “Neptunes” would fit across the apparent diameter of the Full Moon — that’s barely discernible. Don’t be afraid to crank up the magnification in your quest. We’ve found Neptune on years previous by patently examining suspect stars one by one, looking for the one in the field that stubbornly refuses to focus to a star-like point. Make sure your optics are well collimated to attempt this trick. Neptune will exhibit a tiny fuzzy disk, much like a second-rate planetary nebula. In fact, this is where “planetaries” get their moniker, as the pesky deep sky objects resembled planets in those telescopes of yore…

Looking eastward
The position of Neptune, looking eastward on the night of opposition around an hour after sunset. Created using Stellarium.

The 1846 discovery of Neptune stood as a vindication of the (then) new-fangled theory of Newtonian gravitational dynamics. Uranus was discovered just decades before by Sir William Hershel in 1781, and it stubbornly refused to follow predictions concerning its position. French astronomer Urbain Le Verrier correctly assumed that an unseen body was tugging on Uranus, predicted the position of the suspect object in the sky, and the race was on. On the night of September 24th, Heinrich Louis d’Arrest and Johann Gottfried Galle observing from the Berlin observatory became the first humans to gaze upon the new world referring to it as such. Did you know: Galileo actually sketched Neptune near Jupiter in 1612? And those early 18th century astronomers got a lucky break… had Neptune happened to have been opposite to Uranus in its orbit, it might’ve eluded discovery for decades to come!

It’s also sobering to think that Neptune has only recently completed a single orbit of the Sun in 2011 since its discovery. Opposition of Neptune occurs once every 368 days, meaning that opposition is slowly moving forward by about three days a year on our Gregorian calendar and will soon start occurring in northern hemisphere Fall.

September 15th
Neptune and a one degree field (green) circle. Note that it passes the bright naked eye star Sigma Aquarii on September 15th. Created using Starry Night Education Software.

Now for the “wow factor” of what you’re actually seeing. Though tiny, Neptune is actually 24,622 kilometres in radius, and is 58 times as big as the Earth in volume and over 17 times as massive. Neptune is 29 A.U.s or 4.3 billion kilometres from Earth at opposition, meaning the light we see took almost four hours to transit from Neptune to your backyard.

Neptune is currently south of the equator, and won’t be north of it again until 2027.

Next month, keep an eye on Neptune as it passes less than half a degree north of the +4.8 magnitude star Sigma Aquarii through mid-September, making a great guide to find the planet…

Aug 29
The orbit of Triton on the evening of August 29th, superimposed on a one arc minute field of view. Created using Starry Night Software.

Still not enough of a challenge? Try tracking down Neptune’s large moon, Triton. Orbiting the planet in a retrograde path once every 5.9 days, Triton is within reach of a large backyard scope at magnitude +14. Triton never strays more than 15” from the disk of Neptune, but opposition is a great time to cross this curious moon off of your observing life list. Neptune has 14 moons at last count.

And speaking of Triton, NASA recently released a new map of the moon. We’ve only gotten one good look at Triton, Neptune, and its retinue of moons back in 1989 when Voyager 2 conducted the only flyby of the planet to date.  Will Pluto turn out to be Triton’s twin when New Horizons completes its historic flyby next summer?

The Moon also passes 4.3 degrees north of Neptune on September 8th on its way to “Supermoon 3 of 3” for 2014 on the night of September 8th/9th. Fun fact: a cycle of occultations of Neptune by the Moon commences on June 2016.

When will we explore Neptune once more? Will a dedicated “Neptune orbiter” ever make its way to the planet in our lifetimes? All fun things to ponder as you check out the first planet discovered using scientific reasoning this weekend.

Astronomers Spot Pebble-Size Dust Grains in the Orion Nebula

Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF); We acknowledge the use of NASA's SkyView Facility located at NASA Goddard Space Flight Center.

Stars and planets form out of vast clouds of dust and gas. Small pockets in these clouds collapse under the pull of gravity. But as the pocket shrinks, it spins rapidly, with the outer region flattening into a disk.

Eventually the central pocket collapses enough that its high temperature and density allows it to ignite nuclear fusion, while in the turbulent disk, microscopic bits of dust glob together to form planets. Theories predict that a typical dust grain is similar in size to fine soot or sand.

In recent years, however, millimeter-size dust grains — 100 to 1,000 times larger than the dust grains expected — have been spotted around a few select stars and brown dwarfs, suggesting that these particles may be more abundant than previous thought. Now, observations of the Orion nebula show a new object that may also be brimming with these pebble-size grains.

The team used the National Science Foundation’s Green Bank Telescope to observe the northern portion of the Orion Molecular Cloud Complex, a star-forming region that spans hundreds of light-years. It contains long, dust-rich filaments, which are dotted with many dense cores. Some of the cores are just starting to coalesce, while others have already begun to form protostars.

Based on previous observations from the IRAM 30-meter radio telescope in Spain, the team expected to find a particular brightness to the dust emission. Instead, they found that it was much brighter.

“This means that the material in this region has different properties than would be expected for normal interstellar dust,” said Scott Schnee, from the National Radio Astronomy Observatory, in a press release. “In particular, since the particles are more efficient than expected at emitting at millimeter wavelengths, the grains are very likely to be at least a millimeter, and possibly as large as a centimeter across, or roughly the size of a small Lego-style building block.”

Such massive dust grains are hard to explain in any environment.

Around a star or a brown dwarf, it’s expected that drag forces cause large particles to lose kinetic energy and spiral in toward the star. This process should be relatively fast, but since planets are fairly common, many astronomers have put forth theories to explain how dust hangs around long enough to form planets. One such theory is the so-called dust trap: a mechanism that herds together large grains, keeping them from spiraling inward.

But these dust particles occur in a rather different environment. So the researchers propose two new intriguing theories for their origin.

The first is that the filaments themselves helped the dust grow to such colossal proportions. These regions, compared to molecular clouds in general, have lower temperatures, high densities, and lower velocities — all of which encourage grain growth.

The second is that the rocky particles originally grew inside a previous generation of cores or even protoplanetary disks. The material then escaped back into the surrounding molecular cloud.

This finding further challenges theories of how rocky, Earth-like planets form, suggesting that millimeter-size dust grains may jump-start planet formation and cause rocky planets to be much more common than previously thought.

The paper has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.